Slimane Adjerid, Tao Lin, Xu Zhang

Department of Mathematics Virginia Tech

Feb 20, 2010

Table of contents

1 Introduction of one-dimensional IFE

2 IFE Method for Parabolic Equations with Moving Interface

(日) (日) (日) (日) (日) (日) (日) (日)

3 Numerical Examples

Introduction of one-dimensional IFE

FE Methods for Interface Problem

The interface problem

Mathematical model of a physical phenomenon in a domain that consists of multiple materials.

Traditional Finite Element Methods

- Body-fit mesh: meshes are aligned with material interface
- basis function: independent of the interface jump condition

Immersed Finite Element Methods

- Non-body-fit mesh: meshes are independent with material interface (Cartesian Mesh)
- basis function: made to satisfy the interface jump condition

└─ Introduction of one-dimensional IFE

Body-fit meshes for interface problems

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction of one-dimensional IFE

Non-body-fit mesh can be use by IFE method

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction of one-dimensional IFE

1-D IFE Method Work

- Z. Li, The immersed interface method using a finite element formulation, Appl. Numer. Math. 27 (1998) 253 267.
- B. Camp, T. Lin, Y. Lin, W.W. Sun, Quadratic immersed finite element spaces and their approximation capabilities, Adv. Comput. Math. 24 (2006) 81 - 112.
- S. Adjerid, T. Lin, *Higher-order immersed discontinuous* Galerkin methods, Internat. J. Inform. Systems Sci. 3 (4) (2007) 555 - 568.
- S. Adjerid, T. Lin, A p-th degree immersed finite element for boundary value problems with discontinuous coefficients, Appl. Numer. Math. 59 (2009) 1303 - 1321.

Higher Dimension

This IFE idea has been extended to higher dimensional case.

Introduction of one-dimensional IFE

The parabolic equation with moving interface

The parabolic equation:

$$\begin{array}{ll} u_t(t,x) - (\beta u')' = f, & a < x < b, \ 0 \le t \le T, \\ u(t,a) = u_a(t), \ u(t,b) = u_b(t), & 0 \le t \le T, \\ u(0,x) = u_0(x), & a \le x \le b, \end{array}$$
 (1)

The discontinuous thermal diffusivity coefficient: a < lpha(t) < b

$$\beta(x) = \begin{cases} \beta^-, & x \in (a, \alpha(t)), \\ \beta^+, & x \in (\alpha(t), b), \end{cases}$$
(2)

The jump conditions across the interface : $x = \alpha(t)$

$$[u] = 0, \qquad [\beta u'] = 0$$
 (3)

◆□ > < @ > < E > < E > E のQ @

└─ Introduction of one-dimensional IFE

Non-body-fit Mesh Illustration

Introduction of one-dimensional IFE

The extended interface conditions

Smoothness assessment:

$$u_t - (\beta u')' = f$$
, $a < x < b$, $0 \le t \le T$

$$f \in C([0, T]; C^{p-1}(a, b)), \qquad p \ge 0$$

$$\Downarrow$$

$$u \in C^{1}([0, T]; C^{0}(a, b)), \qquad \beta u' \in C([0, T]; C^{p}(a, b))$$

・ロト ・西ト ・ヨト ・ヨー うへぐ

Introduction of one-dimensional IFE

The extended interface conditions

Smoothness assessment:

$$u_t - (\beta u')' = f$$
, $a < x < b$, $0 \le t \le T$

$$\begin{array}{ll} f \in C\left([0,\,T];\,C^{p-1}(a,\,b)\right), & p \geq 0 \\ & & \Downarrow \\ u \in \,C^1\left([0,\,T];\,C^0(a,\,b)\right), & \beta \,u' \in C\left([0,\,T];\,C^p(a,\,b)\right) \end{array}$$

Extended interface conditions (for $p \ge 2$): $x = \alpha(t)$

$$[u] = 0, \ [\beta u^{(j)}] = 0, \ j = 1, 2, \cdots, p$$
(4)

Introduction of one-dimensional IFE

1-D IFE functions

The reference element IFE space

The reference element: $\hat{e} = [-1, 1], \hat{e}^- = [-1, \hat{\alpha}], \hat{e}^+ = [\hat{\alpha}, 1]$

 $\hat{\Pi}_{\rho}(\hat{e}) = \{ \hat{v} : \hat{v}|_{\hat{e}^{\pm}} \in \Pi_{\rho}(\hat{e}^{\pm}), [\hat{v}]_{\hat{\alpha}} = [\beta \hat{v}^{(j)}]_{\hat{\alpha}} = 0, \ j = 1, 2, \cdots, \rho \},$

Introduction of one-dimensional IFE

1-D IFE functions

The reference element IFE space

The reference element: $\hat{\mathbf{e}}=[-1,1], \hat{\mathbf{e}}^-=[-1,\hat{\alpha}], \hat{\mathbf{e}}^+=[\hat{\alpha},1]$

 $\hat{\Pi}_{\rho}(\hat{e}) = \{ \hat{v} : \hat{v}|_{\hat{e}^{\pm}} \in \Pi_{\rho}(\hat{e}^{\pm}), [\hat{v}]_{\hat{\alpha}} = [\beta \hat{v}^{(j)}]_{\hat{\alpha}} = 0, \ j = 1, 2, \cdots, \rho \},$

p + 1 equally space nodes \hat{e} :

$$-1 = t_1 < t_2 < t_3 < \cdots < t_p < t_{p+1} = 1.$$

Let $i_{\hat{\alpha}}$ be the integer such that

$$t_{i_{\hat{\alpha}}} < \hat{\alpha} < t_{i_{\hat{\alpha}}+1}.$$

Introduction of one-dimensional IFE

The IFE polynomials:

$$\hat{\phi}_{i} \text{ for } i = 1, 2, \cdots, i_{\hat{\alpha}}:$$

$$\hat{\phi}_{i}(\hat{x}) = \begin{cases} \hat{\phi}_{i}^{-}(\hat{x}) = \hat{\phi}_{i}^{+}(\hat{\alpha}) + \frac{\beta^{+}}{\beta^{-}}(\hat{\phi}_{i}^{+}(\hat{x}) - \hat{\phi}_{i}^{+}(\hat{\alpha})), & \hat{x} \in [-1, \hat{\alpha}], \\ \hat{\phi}_{i}^{+}(\hat{x}) = \sum_{j=1}^{i_{\hat{\alpha}}} c_{j}L_{j}(\hat{x}), & \hat{x} \in [\hat{\alpha}, 1], \end{cases}$$

Introduction of one-dimensional IFE

The IFE polynomials:

$$\begin{split} \hat{\phi}_{i} \text{ for } i &= 1, 2, \cdots, i_{\hat{\alpha}}: \\ \hat{\phi}_{i}(\hat{x}) &= \begin{cases} \hat{\phi}_{i}^{-}(\hat{x}) &= \hat{\phi}_{i}^{+}(\hat{\alpha}) + \frac{\beta^{+}}{\beta^{-}}(\hat{\phi}_{i}^{+}(\hat{x}) - \hat{\phi}_{i}^{+}(\hat{\alpha})), & \hat{x} \in [-1, \hat{\alpha}], \\ \hat{\phi}_{i}(\hat{x}) &= \sum_{j=1}^{i_{\hat{\alpha}}} c_{j}L_{j}(\hat{x}), & \hat{x} \in [\hat{\alpha}, 1], \\ \hat{\phi}_{i} \text{ for } i &= i_{\hat{\alpha}} + 1, i_{\hat{\alpha}} + 2, \cdots, p + 1: \\ \hat{\phi}_{i}(\hat{x}) &= \begin{cases} \hat{\phi}_{i}^{-}(\hat{x}) &= \sum_{j=1+i_{\hat{\alpha}}}^{p+1} c_{j}L_{j}(\hat{x}), & \hat{x} \in [-1, \hat{\alpha}] \\ \hat{\phi}_{i}^{+}(\hat{x}) &= \hat{\phi}_{i}^{-}(\hat{\alpha}) + \frac{\beta^{-}}{\beta^{+}}(\hat{\phi}_{i}^{-}(\hat{x}) - \hat{\phi}_{i}^{-}(\hat{\alpha})), & \hat{x} \in [\hat{\alpha}, 1]. \end{cases} \end{split}$$

They satisfy the extended jump conditions. The coefficients c_j , $j = 1, 2, \dots, p + 1$ are to be determined by the nodal value constraints:

$$\hat{\phi}_i(\hat{x}_j) = \delta_{ij}, \quad i, j = 1, 2, \cdots, p+1.$$

Introduction of one-dimensional IFE

The Linear IFE and Standard basis functions

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

Introduction of one-dimensional IFE

The Quadratic IFE and Standard basis functions

▲ロト ▲圖ト ▲ヨト ▲ヨト 三ヨー のへで

Introduction of one-dimensional IFE

The Cubic IFE and Standard basis functions

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

└─IFE Method for Parabolic Equations with Moving Interface

Weak formulation

Let
$$\Omega = (a, b) \subset \mathbb{R}$$
. Find $u \in C^1([0, T]; H^1(\Omega))$ such that,

$$\int_{\Omega} \frac{\partial u}{\partial t} v \, \mathrm{d}x - \int_{\Omega} (\beta u_x)_x v \, \mathrm{d}x = \int_{\Omega} f v \, \mathrm{d}x. \quad \forall v \in H^1_0(\Omega)$$

Integration by parts,

$$\int_{\Omega} \frac{\partial u}{\partial t} v \, \mathrm{d}x + \int_{\Omega} \beta u_x v_x \, \mathrm{d}x = \int_{\Omega} f v \, \mathrm{d}x.$$

Simply,

$$(u_t, v) + (\beta u_x, u_x) = (f, v).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

└─IFE Method for Parabolic Equations with Moving Interface

Time Discretization: Crank-Nicolson

Let k be the time step and u^n the approximation of u(t, x) at $t = t_n = nk$. Find $u^n \in H^1(\Omega)$, such that

$$\left(\frac{u^{n}-u^{n-1}}{k},v^{n-\frac{1}{2}}\right) + \left(\frac{\beta^{n}u_{x}^{n}+\beta^{n-1}u_{x}^{n-1}}{2},v_{x}^{n-\frac{1}{2}}\right)$$
$$= \left(f(t_{n-\frac{1}{2}}),v^{n-\frac{1}{2}}\right) \quad \forall v^{n-\frac{1}{2}} \in H_{0}^{1}(\Omega).$$

It is equivalent to

$$(u^{n}, v^{n-\frac{1}{2}}) + \frac{k}{2} (\beta^{n} u_{x}^{n}, v_{x}^{n-\frac{1}{2}})$$

= $(u^{n-1}, v^{n-\frac{1}{2}}) - \frac{k}{2} (\beta^{n-1} u_{x}^{n-1}, v_{x}^{n-\frac{1}{2}}) + k(f(t_{n-\frac{1}{2}}), v^{n-\frac{1}{2}})$

└─IFE Method for Parabolic Equations with Moving Interface

Space Discretization: IFE Method

Let \mathcal{T}_h be a structured partition of Ω and let

$$S_h^n = \{\phi_i^n : i = 0, 1, \cdots, N_h, N_h + 1\}$$

be the IFE space at the time $t = t_n = nk$. Here ϕ_0^n , $\phi_{N_h+1}^n$ denote the IFE basis functions on the boundary. So

$$S_{h,0}^{n} = \{\phi_{i}^{n} : i = 1, 2, \cdots, N_{h}\}$$

denote the IFE space on the interior nodes at the time $t = t_n = nk$

$$u_h^n = \sum_{i=0}^{N_h+1} u_i^n \phi_i^n(x)$$

LIFE Method for Parabolic Equations with Moving Interface

Space Discretization: IFE Method

Fully discretization Problem

Find $u_h^n \in S_{h,0}^n$, such that,

$$(u_{h}^{n}, v_{h}^{n-\frac{1}{2}}) + \frac{k}{2} (\beta^{n} u_{hx}^{n}, v_{hx}^{n-\frac{1}{2}})$$

$$= (u_{h}^{n-1}, v_{h}^{n-\frac{1}{2}}) - \frac{k}{2} (\beta^{n-1} u_{hx}^{n-1}, v_{hx}^{n-\frac{1}{2}}) + k(f(t_{n-\frac{1}{2}}), v_{h}^{n-\frac{1}{2}}) + b.c.$$

$$\forall v_{h}^{n-\frac{1}{2}} \in S_{h,0}^{n-\frac{1}{2}}$$

Matrix form:

$$\left(A^{n,n-\frac{1}{2}}+\frac{k}{2}B^{n,n-\frac{1}{2}}\right)U^{n}=\left(A^{n-1,n-\frac{1}{2}}-\frac{k}{2}B^{n-1,n-\frac{1}{2}}\right)U^{n-1}+kF^{n-\frac{1}{2}}.$$

LIFE Method for Parabolic Equations with Moving Interface

Error Estimate

Theorem

Let u_h^n and u be solutions of the C-N Galerkin Problem and the original parabolic equation, respectively. Then we have for $n \ge 0$

$$\|u_h^n - u(t_n)\|_{L^2} \le C(h^{p+1} + k^2).$$
$$\|u_h^n - u(t_n)\|_{H^1} \le C(h^p + k^2).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

└─IFE Method for Parabolic Equations with Moving Interface

Error Estimate

Theorem

Let u_h^n and u be solutions of the C-N Galerkin Problem and the original parabolic equation, respectively. Then we have for $n \ge 0$

$$\|u_h^n - u(t_n)\|_{L^2} \le C(h^{p+1} + k^2).$$

 $\|u_h^n - u(t_n)\|_{H^1} \le C(h^p + k^2).$

Proof

Vider Thomée, Gakerkin Finite Element Methods for Parabolic Problems

Model Problem

Let
$$\Omega = (0, 1)$$
, $t_0 = 0$, $T = 1$, $\beta^- = 1$, $\beta^+ = 10$.

$$\begin{cases} u^+(t,x) = \left((x - \alpha(t))^{p+1} + \frac{1}{\beta^+} \right) e^x + \left(\frac{1}{\beta^-} - \frac{1}{\beta^+} \right) e^{\alpha(t)} \\ u^-(t,x) = \left((x - \alpha(t))^{p+1} + \frac{1}{\beta^-} \right) e^x \end{cases}$$

where $\alpha(t)$ is the interface moving function. Here we consider two cases:

(日) (日) (日) (日) (日) (日) (日) (日)

•
$$\alpha(t) = \frac{1}{3}t + \frac{1}{3}, \quad 0 \le t \le 1;$$

• $\alpha(t) = \frac{1}{4}\sin(2\pi t) + \frac{\pi}{6}, \quad 0 \le t \le 1.$

-Numerical Examples

Interface Moving Illustration: $\alpha(t) = \frac{1}{3}t + \frac{1}{3}$

Linear IFE Method for Example 1: $\alpha(t) = \frac{1}{3}t + \frac{1}{3}$

$\ u_h - u\ $			
h	k	$\ \cdot\ _{L_2}$	$\ \cdot\ _{H_1}$
1/80	1/80	7.4911e-005	1.7281e-002
1/120	1/120	3.1173e-005	1.1302e-002
1/160	1/160	1.8006e-005	8.4670e-003
1/200	1/200	1.1694e-005	6.8109e-003
1/240	1/240	7.9004e-006	5.6348e-003
1/280	1/280	5.8943e-006	4.8279e-003
1/320	1/320	4.5485e-006	4.2396e-003

Error of linear IEE ||un u||

$$\|u(t_n,\cdot) - u_h^n\|_{L^2} \approx 0.4909 h^{2.0113}.$$

$$\|u(t_n,\cdot) - u_h^n\|_{H^1} \approx 1.4458 h^{1.0118}.$$

Quadratic IFE Method for Example 1: $\alpha(t) = \frac{1}{3}t + \frac{1}{3}$

	•		
h	k	$\ \cdot\ _{L_2}$	$\ \cdot\ _{H_1}$
1/16	1/64	3.0238e-005	3.4011e-003
1/25	1/125	6.3537e-006	9.3410e-004
1/36	1/216	2.1227e-006	4.9225e-004
1/49	1/343	7.4729e-007	2.2768e-004
1/64	1/512	3.3450e-007	1.3982e-004
1/81	1/729	1.6114e-007	8.1779e-005
1/100	1/1000	8.4886e-008	5.4826e-005

Error of quadratic IFE $||u_{L}^{n} - u||$

$$\|u(t_n,\cdot) - u_h^n\|_{L^2} \approx 0.1966 h^{3.1920}.$$
$$\|u(t_n,\cdot) - u_h^n\|_{H^1} \approx 1.3518 h^{2.2111}.$$

Cubic IFE Method for Example 1: $\alpha(t) = \frac{1}{3}t + \frac{1}{3}$

		11 n 11	
h	k	$\ \cdot\ _{L_2}$	$\ \cdot\ _{H_1}$
1/15	1/225	8.5555e-007	6.0992e-005
1/20	1/400	2.6695e-007	2.7559e-005
1/25	1/625	1.0887e-007	1.3013e-005
1/30	1/900	5.2361e-008	7.4963e-006
1/35	1/1225	2.8490e-008	4.8617e-006
1/40	1/1600	1.6585e-008	3.1671e-006
1/45	1/2025	1.0346e-008	2.2219e-006

Error of cubic IFE $||u_i^n - u||$

$$\|u(t_n,\cdot)-u_h^n\|_{L^2}\approx 0.0448h^{4.0149}.$$

$$\|u(t_n,\cdot)-u_h^n\|_{H^1}\approx 0.2331h^{3.0364}.$$

IFE Solution Surface Plot

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

-Numerical Examples

Interface Moving Illustration: $\alpha(t) = \frac{1}{4}\sin(2\pi t) + \frac{\pi}{6}$

Linear IFE Method for Example 2: $\alpha(t) = \frac{1}{4}\sin(2\pi t) + \frac{\pi}{6}$

Error of linear IEE ||un u||

h	k	$\ \cdot\ _{L_2}$	$\ \cdot\ _{\mathcal{H}_1}$
1/80	1/80	1.1574e-004	2.1392e-002
1/120	1/120	4.7688e-005	1.4048e-002
1/160	1/160	2.4970e-005	1.0434e-002
1/200	1/200	1.6181e-005	8.3402e-003
1/240	1/240	1.2817e-005	6.9570e-003
1/280	1/280	1.0520e-005	5.9651e-003
1/320	1/320	7.5918e-006	5.2167e-003

$$\|u(t_n,\cdot) - u_h^n\|_{L^2} \approx 0.4847 \, h^{1.9241}.$$

$$\|u(t_n,\cdot) - u_h^n\|_{H^1} \approx 1.8299 h^{1.0167}.$$

Quadratic IFE Method for Example 2: $\alpha(t) = \frac{1}{4}\sin(2\pi t) + \frac{\pi}{6}$

h	k	$\ \cdot\ _{L_2}$	$\ \cdot\ _{H_1}$
1/16	1/64	2.8665e-004	3.6552e-003
1/25	1/125	7.4826e-005	2.1762e-003
1/36	1/216	2.4547e-005	6.6110e-004
1/49	1/343	9.7443e-006	4.2455e-004
1/64	1/512	4.3892e-006	2.2711e-004
1/81	1/729	2.1475e-006	1.8224e-004
1/100	1/1000	1.1426e-006	8.5876e-005

Error of quadratic IEE $\|u_{i}^{n} - u\|$

$$\|u(t_n,\cdot)-u_h^n\|_{L^2} \approx 1.2226 h^{3.0155}.$$

$$\|u(t_n,\cdot)-u_h^n\|_{H^1} \approx 1.2000 h^{2.0457}.$$

Cubic IFE Method for Example 2: $\alpha(t) = \frac{1}{4} \sin(2\pi t) + \frac{\pi}{6}$

		11 <i>II</i> 11	
h	k	$\ \cdot\ _{L_2}$	$\ \cdot\ _{H_1}$
1/15	1/225	2.9432e-005	1.4829e-004
1/20	1/400	9.3058e-006	7.1214e-005
1/25	1/625	3.8116e-006	2.4627e-005
1/30	1/900	1.8385e-006	1.5025e-005
1/35	1/1225	9.9228e-007	9.2917e-006
1/40	1/1600	5.8164e-007	5.0762e-006
1/45	1/2025	3.6314e-007	4.2689e-006

Error of cubic IFE $||u_i^n - u||$

$$\|u(t_n,\cdot) - u_h^n\|_{L^2} \approx 1.4911h^{4.0004}.$$

$$\|u(t_n,\cdot) - u_h^n\|_{H^1} \approx 1.4539h^{3.3733}.$$

IFE Solution Surface Plot

◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

Conclusion

IFE Method

- The partition is independent of interface. Allow the interface to go through the interiors of elements. (We can use the Cartesian Mesh for interface problem)
- For the moving interface problem, mesh do not need to be regenerated at each time level.
- On the non-interface element, we use standard finite element functions, on the interface element, we use piecewise polynomials
- Similar approximation capability with standard finite element