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Navier-Stokes Equations

We consider the 3d Navier-Stokes equation in the domain Q with
Lipschitz continuous boundary.

U+ u-Vu+Vp—Re Au=f, (1)
V-u=0. (2)

p is pressure

u is velocity

Re is the the Reynolds number
f if the body force
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Energy and helicity

o Recall energy = 1 ||ulf?
o Energy is a conserved quantity.
o The nonlinearity preserves it and cascades energy from large to small
scales.
o Known to be of utmost physical importance.
o Helicity = [ u-(V x u)dx
o Physical interpretation: The degree to which vortex lines are tangled
and intertwined (Moffatt, Tsoniber 1992).
o Topological interpretation: H = 0 iff velocity field is reflectionally
symmetric (MT 1992).
o Helicity is also a conserved quantity.
o The nonlinearity also cascades helicity, H(k)~ k=3 (Ditlevson,
Guiliani 2001) (Q.Chen, S.Chen,G.Eyink 2003).
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Motivation for a scheme to conserve helicity

@ Helicity is important physically; it seems intuitive that a numerical
scheme will perform better if it correctly accounts for helicity (as
well as energy).

@ This idea is not unprecedented. Enhanced physics based schemes
have provided more accurate simulations, especially over longer time
intervals.

@ Arakawa's energy and enstrophy conserving scheme for the 2D NSE.

@ For shallow water equations, Arakawa/Lamb'’s energy and potential
enstrophy conserving scheme (1981).

@ For 3d axisymmetric flow J.G Liu and Wang introduced an energy
and helicity conserving scheme (2004).
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A scheme that conserves energy and helicity

@ For full 3d NSE Rebholz introduced a finite element scheme that
conserved energy and helicity with periodic boundary conditions
(2007).
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Objective and complication

@ We want to extend the scheme to more general boundary conditions.
@ Possible drawback: uses Bernoulli pressure P = p + 3|ul.

e More complex than usual pressure.
o Contains boundary layers.

@ In a stable finite element scheme velocity is often approximated by
polynomials of degree k, where pressure is approximated by
polynomials of degree (k-1).

@ Numerically this creates large pressure errors, which can adversely
affect the velocity error.

@ vel error = Re*Bernoulli pressure
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An idea of how to reduce error

e Layton/Manica/Neda/Olshanskii/Rebholz, have shown how grad-div
stabilization can improve velocity error by reducing the effect of
pressure error.

o Error is scaled by Re? instead of Re.

e Add (V- uZ+%, V - vp) to left hand side of scheme.

o This is consistent since it is derived by adding the identically zero
term —V/(V - u) to the continuous NSE.

o Penalizes for lack of mass conservation.

@ This effect of the grad div term was first noted by Olshanskii for
Stokes equations (2002).

@ We consider this term as well as —V(V - u;).

@ Gives better energy balance and reduces the effect of pressure error.

@ Not as strong a penalization for lack of mass conservation.
¢ty
e
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@ The goal of this work is to combine the extension of the energy
helicity conserving scheme to Dirichlet boundary conditions with
necessary stabilizations.

@ We will consider 3 numerical schemes of the form

n+1

(%, v) — (PIT2.V - v) + STAB
P il 1
(W;JJré X uh+§ L Vh) + (Vuh+2,Vvh) = (f(t”*é), Vh).
e STAB; =0

o STAB, = (V- ul*2,V - vp)
o STABs = (V- (u™* — uf)), vi)
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Energy conservation

@ Energy conservation without stabilization
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@ The use of STAByand STABsadds the following left hand side terms
respectively
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Helicity conservation laws

Scheme 1:
M-1
HY 4208t S (Vupts, V')
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n=0

@ STAB, adds to the left hand side the term
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n=0

@ STABs adds to left hand side the term
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Convergence

Under usual assumptions,

M-1

lu(T) = upf|? + Re™ At > [V (u(t™2) - ARG
n=0
M

< C(viatt +ReAtZ inf || P(t t"2) — g2
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n—0 h h

@ The use of stabilization allows for rescaling of
infg,cq, [|P(t"2) — gn||? by 1 instead of Re.
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Numerical Test

@ We now test the schemes on the Either-Steinman problem on
(—1,1)3, with Re = 1,000.
@ The problem has nontrivial helicity and complex flow structure.

o Additionally, we have computed solutions using the standard
Crank-Nicolson scheme.

@ We will compare the velocity and helicity errors of the computed
solutions.
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Flow Structure
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Velocity Error
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Helicity Error
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Conclusions and future work

@ The use of grad-div stabilization improved accuracy in the energy
helicity conserving scheme.

@ Altered grad-div stabilization gives slightly better results than the
usual grad-div stabilization on our example.

@ Additionally the altered grad-div stabilization gives better analytical
physical properties.

@ Test on more physical problems.

@ Using Scott-Vogelius elements.
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