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Navier-Stokes Equations

We consider the 3d Navier-Stokes equation in the domain Ω with
Lipschitz continuous boundary.

ut + u · ∇u +∇p − Re−1∆u = f , (1)

∇ · u = 0. (2)

p is pressure

u is velocity

Re is the the Reynolds number

f if the body force
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Energy and helicity

Recall energy = 1
2‖u‖

2

Energy is a conserved quantity.
The nonlinearity preserves it and cascades energy from large to small
scales.
Known to be of utmost physical importance.

Helicity =
∫

Ω
u · (∇× u)dx

Physical interpretation: The degree to which vortex lines are tangled
and intertwined (Moffatt, Tsoniber 1992).
Topological interpretation: H = 0 iff velocity field is reflectionally
symmetric (MT 1992).
Helicity is also a conserved quantity.

The nonlinearity also cascades helicity, H(k)≈ k−
5
3 (Ditlevson,

Guiliani 2001) (Q.Chen, S.Chen,G.Eyink 2003).

Nick Wilson newilso@clemson.edu Department of Mathematical Sciences Clemson University Clemson, SC 29634Improved accuracy with an enhanced physics based scheme for the 3d Navier-Stokes equations



Motivation for a scheme to conserve helicity

Helicity is important physically; it seems intuitive that a numerical
scheme will perform better if it correctly accounts for helicity (as
well as energy).

This idea is not unprecedented. Enhanced physics based schemes
have provided more accurate simulations, especially over longer time
intervals.

Arakawa’s energy and enstrophy conserving scheme for the 2D NSE.

For shallow water equations, Arakawa/Lamb’s energy and potential
enstrophy conserving scheme (1981).

For 3d axisymmetric flow J.G Liu and Wang introduced an energy
and helicity conserving scheme (2004).
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A scheme that conserves energy and helicity

For full 3d NSE Rebholz introduced a finite element scheme that
conserved energy and helicity with periodic boundary conditions
(2007).

(
un+1

h − un
h

∆t
, vh)− (p

n+ 1
2

h ,∇ · vh)

+(w
n+ 1

2

h × u
n+ 1

2

h , vh) + Re−1(∇u
n+ 1

2

h ,∇vh) = (f (tn+ 1
2 ), vh)

(∇ · un+1
h , qh) = 0

(wn+1
h , χh) + (λn+1

h ,∇ · χh) = (∇× un+1
h , χh)

(∇ · wn+1
h , rh) = 0

∀(vh; qh;χh; rh) ∈ (Xh; Qh; Xh; Qh).
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Objective and complication

We want to extend the scheme to more general boundary conditions.

Possible drawback: uses Bernoulli pressure P = p + 1
2 |u|

2.

More complex than usual pressure.
Contains boundary layers.

In a stable finite element scheme velocity is often approximated by
polynomials of degree k, where pressure is approximated by
polynomials of degree (k-1).

Numerically this creates large pressure errors, which can adversely
affect the velocity error.

vel error ≈ Re*Bernoulli pressure
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An idea of how to reduce error

Layton/Manica/Neda/Olshanskii/Rebholz, have shown how grad-div
stabilization can improve velocity error by reducing the effect of
pressure error.

Error is scaled by Re
1
2 instead of Re.

Add (∇ · un+ 1
2

h ,∇ · vh) to left hand side of scheme.
This is consistent since it is derived by adding the identically zero
term −∇(∇ · u) to the continuous NSE.
Penalizes for lack of mass conservation.

This effect of the grad div term was first noted by Olshanskii for
Stokes equations (2002).

We consider this term as well as −∇(∇ · ut).

Gives better energy balance and reduces the effect of pressure error.

Not as strong a penalization for lack of mass conservation.
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The schemes

The goal of this work is to combine the extension of the energy
helicity conserving scheme to Dirichlet boundary conditions with
necessary stabilizations.

We will consider 3 numerical schemes of the form

(
un+1

h − un
h

∆t
, vh)− (P

n+ 1
2

h ,∇ · vh) + STAB

(w
n+ 1

2

h × u
n+ 1

2

h , vh) + (∇u
n+ 1

2

h ,∇vh) = (f (tn+ 1
2 ), vh).

STAB1 = 0

STAB2 = (∇ · un+ 1
2

h ,∇ · vh)

STAB3 = 1
∆t (∇ · (un+1

h − un
h), vh)
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Energy conservation

Energy conservation without stabilization

1

2
‖uM

h ‖2 + ν∆t
M−1∑
n=0

‖∇u
n+ 1

2

h ‖2

= ∆t
M−1∑
n=0

(f (tn+ 1
2 ), u

n+ 1
2

h ) +
1

2
‖u0

h‖2

The use of STAB2and STAB3adds the following left hand side terms
respectively

∆t
M−1∑
n=0

||∇ · un+ 1
2

h ||2,

1

2
(||∇ · uM

h ||2 − ||∇ · u0
h||2).
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Helicity conservation laws

Scheme 1:

HM
h + 2ν∆t

M−1∑
n=0

(∇u
n+ 1

2

h ,∇w
n+ 1

2

h )

= 2ν∆t
M−1∑
n=0

(f (tn+ 1
2 ),∇w

n+ 1
2

h ) + H0
h

STAB2 adds to the left hand side the term

2∆t
M−1∑
n=0

(∇ · un+ 1
2

h ,∇ · wn+ 1
2

h ).

STAB3 adds to left hand side the term

2∆t
M−1∑
n=0

(∇ · (un+1
h − un

h),∇ · wn+ 1
2

h ).
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Convergence

Under usual assumptions,

‖u(T )− uM
h ‖2 + Re−1∆t

M−1∑
n=0

‖∇(u(tn+ 1
2 )− u

n+ 1
2

h )‖2

≤ C (ν−1∆t4 + Re∆t
M∑

n=0

inf
qh∈Qh

‖P(tn+ 1
2 )− qh‖2

+Re∆t
M∑

n=0

inf
vh∈Xh

‖∇(u(tn+ 1
2 )− vh)‖2)

The use of stabilization allows for rescaling of
infqh∈Qh

‖P(tn+ 1
2 )− qh‖2 by 1 instead of Re.
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Numerical Test

We now test the schemes on the Either-Steinman problem on
(−1, 1)3, with Re = 1, 000.

The problem has nontrivial helicity and complex flow structure.

Additionally, we have computed solutions using the standard
Crank-Nicolson scheme.

We will compare the velocity and helicity errors of the computed
solutions.
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Flow Structure
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Velocity Error
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Helicity Error
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Conclusions and future work

The use of grad-div stabilization improved accuracy in the energy
helicity conserving scheme.

Altered grad-div stabilization gives slightly better results than the
usual grad-div stabilization on our example.

Additionally the altered grad-div stabilization gives better analytical
physical properties.

Test on more physical problems.

Using Scott-Vogelius elements.
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