Two-Level Discretizations of Closure Models for Proper Orthogonal Decomposition

Zhu Wang

Department of Mathematics Virginia Tech wangzhu@vt.edu

SIAM Student Conference 2010, VT Feb 20, 2010

Collaborators

Imran Akhtar

Interdisciplinary Center for Applied Mathematics Virginia Tech

Jeff Borggaard

Department of Mathematics Interdisciplinary Center for Applied Mathematics Virginia Tech jborggaard@vt.edu

Traian Iliescu

Department of Mathematics Interdisciplinary Center for Applied Mathematics Virginia Tech illiescu@vt.edu

POD-Galerkin and Energy Cascade

POD:
$$\mathbf{u}(x,t) \approx \mathbf{u}^r = \bar{\mathbf{u}}(x) + \sum_{n=1}^r a_n(t)\phi_n(x)$$

POD-Galerkin

$$\begin{pmatrix} \frac{\partial \mathbf{u}^{r}}{\partial t}, \phi_{\mathbf{n}} \end{pmatrix} + ((\mathbf{u}^{r} \cdot \nabla)\mathbf{u}^{r}, \phi_{\mathbf{n}}) \\ + \left(\frac{2}{Re}\mathbb{D}(\mathbf{u}^{r}), \nabla\phi_{\mathbf{n}}\right) = 0, \quad \mathbf{n} = 1, \cdots, r$$

- energy cascade \Longrightarrow eddy viscosity
- Couplet, Sagaut, Basdevant, J. Fluid Mech., 2003

Mixing Length Model

Aubry, Holmes, Lumley, Stone, J. Fluid Mech., 1988

$$\begin{pmatrix} \frac{\partial \mathbf{u}^{r}}{\partial t}, \phi_{\mathbf{n}} \end{pmatrix} + \left((\mathbf{u}^{r} \cdot \nabla) \mathbf{u}^{r}, \phi_{\mathbf{n}} \right) \\ + \left(\left(\frac{\nu_{ML}}{Re} + \frac{2}{Re} \right) \mathbb{D}(\mathbf{u}^{r}), \nabla \phi_{\mathbf{n}} \right) = 0, \quad \mathbf{n} = 1, \cdots, r$$

•
$$\nu_{ML} = \alpha \, \nu_T = \alpha \, U_{ML} \, L_{ML}$$

• Podvin, Lumley, J. Fluid Mech., 1998

LES-POD

Smagorinsky type

$$\begin{pmatrix} \frac{\partial \mathbf{u}^{r}}{\partial t}, \phi_{\mathbf{n}} \end{pmatrix} + \left((\mathbf{u}^{r} \cdot \nabla) \mathbf{u}^{r}, \phi_{\mathbf{n}} \right) \\ + \left(\left(\nu_{\mathcal{S}} + \frac{2}{Re} \right) \mathbb{D}(\mathbf{u}^{r}), \nabla \phi_{\mathbf{n}} \right) = 0, \quad \mathbf{n} = 1, \cdots, r$$

• $\nu_S := C_S |\mathbb{D}(\mathbf{u}^r)|$

LES-POD

Smagorinsky type LES-POD on N-S equations

- $(\mathbf{u}_{t}^{r},\phi) + ((\mathbf{u}^{r}\cdot\nabla)\mathbf{u}^{r},\phi) + ((2Re^{-1}+C_{s}||\mathbb{D}(\mathbf{u}^{r})||)\mathbb{D}(\mathbf{u}^{r}),\nabla\phi) = 0$ ODE System $\dot{a} = A + \widetilde{A} + (B + \widetilde{\beta})a + a^{T}Ca;$
- $\frac{\mathrm{d}a_k(t)}{\mathrm{d}t} = \mathcal{A}_k + \widetilde{\mathcal{A}}_k + \sum_{m=1}^r (\mathcal{B}_{km} + \widetilde{\mathcal{B}}_{km}) a_m(t) + \sum_{m=1}^r \sum_{n=1}^r \mathcal{C}_{kmn} a_n(t) a_m(t)$

•
$$\mathcal{A}_k = -(\phi_k, \bar{\mathbf{u}} \cdot \nabla \bar{\mathbf{u}}) - 2Re^{-1}(\nabla \phi_k, \frac{\nabla \bar{\mathbf{u}} + \nabla \bar{\mathbf{u}}^T}{2}),$$

•
$$\mathcal{B}_{km} = -(\phi_k, \bar{\mathbf{u}} \cdot \nabla \phi_m) - (\phi_k, \phi_m \cdot \nabla \bar{\mathbf{u}}) - 2Re^{-1}(\nabla \phi_k, \frac{\nabla \phi_m + \nabla \phi_m^T}{2}),$$

• $\mathcal{C}_{kmn} = -(\phi_k, \phi_m \cdot \nabla \phi_n).$

•
$$\widetilde{\mathcal{A}}_k = -2C_s(\nabla \phi_k, \|\mathbb{D}(\bar{\mathbf{u}} + \sum_{n=1}^r a_n(t)\phi_n(x))\| \frac{\nabla \bar{\mathbf{u}} + \nabla \bar{\mathbf{u}}^T}{2}),$$

•
$$\widetilde{\mathcal{B}}_{km} = -2C_s(\nabla\phi_k, \|\mathbb{D}(\bar{\mathbf{u}} + \sum_{n=1}^r a_n(t)\phi_n(x))\|\frac{\nabla\phi_m + \nabla\phi_m^T}{2}).$$

LES-POD

Smagorinsky type LES-POD on N-S equations

- $(\mathbf{u}_{t}^{r},\phi) + ((\mathbf{u}^{r}\cdot\nabla)\mathbf{u}^{r},\phi) + ((2Re^{-1}+C_{s}||\mathbb{D}(\mathbf{u}^{r})||)\mathbb{D}(\mathbf{u}^{r}),\nabla\phi) = 0$ ODE System $\dot{a} = A + \widetilde{A} + (B + \widetilde{B})a + a^{T}Ca;$
- $\frac{\mathrm{d}a_k(t)}{\mathrm{d}t} = \mathcal{A}_k + \widetilde{\mathcal{A}}_k + \sum_{m=1}^r (\mathcal{B}_{km} + \widetilde{\mathcal{B}}_{km}) a_m(t) + \sum_{m=1}^r \sum_{n=1}^r \mathcal{C}_{kmn} a_n(t) a_m(t)$
 - $\mathcal{A}_k = -(\phi_k, \bar{\mathbf{u}} \cdot \nabla \bar{\mathbf{u}}) 2Re^{-1}(\nabla \phi_k, \frac{\nabla \bar{\mathbf{u}} + \nabla \bar{\mathbf{u}}^T}{2}),$
 - $\mathcal{B}_{km} = -(\phi_k, \bar{\mathbf{u}} \cdot \nabla \phi_m) (\phi_k, \phi_m \cdot \nabla \bar{\mathbf{u}}) 2Re^{-1}(\nabla \phi_k, \frac{\nabla \phi_m + \nabla \phi_m^T}{2}),$ • $\mathcal{C}_{kmn} = -(\phi_k, \phi_m \cdot \nabla \phi_n).$
 - $\widetilde{\mathcal{A}}_{k} = -2C_{s}(\nabla\phi_{k}, \|\mathbb{D}(\bar{\mathbf{u}} + \sum_{n=1}^{r} a_{n}(t)\phi_{n}(x))\|\frac{\nabla\bar{\mathbf{u}} + \nabla\bar{\mathbf{u}}^{T}}{2}),$ • $\widetilde{\mathcal{B}}_{km} = -2C_{s}(\nabla\phi_{k}, \|\mathbb{D}(\bar{\mathbf{u}} + \sum_{n=1}^{r} a_{n}(t)\phi_{n}(x))\|\frac{\nabla\phi_{m} + \nabla\phi_{m}^{T}}{2}).$

 $\bullet \ h \ll H$

LES-POD Two-level Num. Conclusions

Two-Level POD-EV algorithms

- Temporal discretization forward Euler method;
- Spatial discretization finite element method.

(I) Two-level Coarse POD-EV algorithm

$$\begin{split} &k=0; \text{compute } \mathcal{A}, \mathcal{B}, \mathcal{C} \text{ on } \underline{\text{ coarse }} \text{ mesh }; \\ &\text{for } k=1 \text{ to } \mathcal{M} \\ &\text{ compute } \widetilde{\mathcal{A}}_k, \widetilde{\mathcal{B}}_k \text{ on } \underline{\text{ coarse }} \text{ mesh }; \\ &\mathbf{a}^{k+1}:=F(\mathbf{a}^k); \\ &\text{endfor } \end{split}$$

(II) Two-level Hybrid POD-EV algorithm

$$\begin{split} &k = 0; \text{compute } \mathcal{A}, \mathcal{B}, \mathcal{C} \text{ on } \underline{\text{fine mesh}}; \\ &\text{for } k = 1 \text{ to } M \\ &\text{ compute } \widetilde{\mathcal{A}}_k, \widetilde{\mathcal{B}}_k \text{ on } \underline{\text{ coarse mesh}}; \\ &\mathbf{a}^{k+1} := F(\mathbf{a}^k); \\ &\text{ endfor } \end{split}$$

Tech

Experiment 1. 2D flow passed the cylinder

- Re = 200;
- Diameter(cylinder) = D;
- Diameter(Domain) = 50D;
- Grid size (fine) 192× 256;
- Inflow B. C. Dirichlet;
- Outflow B. C. Neumann;
- Surface of cylinder No-slip;
- 40 snapshots.

POD-Galerkin

- red DNS projection
- blue POD basis coefficients (r=4)

Zhu Wang Two-level LES POD Models

red - DNS projection;

blue - POD basis coefficients.

LES-POD Two-level Num. Conclusions

Two-Level POD-EV

- red DNS projection;
- black -2L POD-EV, R_c = 2;

- blue 1L POD-EV;
- green -2L POD-EV, $R_c = 4$.

Average error over 100 shedding cycles

Time average error

error =
$$\frac{\frac{1}{m}\sum\limits_{k=1}^{m} \|\mathbf{u}^{POD}(\mathbf{x},t_k) - \mathbf{u}^{DNS}(\mathbf{x},t_k)\|_{0}^{2}}{\frac{1}{m}\sum\limits_{k=1}^{m} \|\mathbf{u}^{DNS}(\mathbf{x},t_k)\|_{0}^{2}}$$

1L POD-EV		R _c	2L coarse P	DD-EV	2L hybrid POD-EV	
CPU-time (s)	error		CPU-time (s)	error	CPU-time (s)	error
		2	9.94e+3	0.0102	1.01e+4	0.0090
4.01e+4	0.0090	4	2.52e+3	0.0112	2.75e+3	0.0090

• $R_c=4$: error_{1L} \approx error_{2L}, Time_{1L} \approx 15Time_{2L}

DNS 1L

2L-Coarse Rc=2

2L-Hybrid Rc=4

Zhu Wang Two-level LES POD Models

Experiment 2. 3D flow passed the cylinder

- Re = 1000;
- Diameter(cylinder) = D;
- Diameter(Domain) = 15D;
- Grid size (fine) -145×193×17;
- Inflow B. C. Dirichlet;
- Outflow B. C. Neumann;
- Surface of cylinder No-slip;
- 1000 snapshots.

red - DNS projection;

blue - POD basis coefficients (r=6).

Zhu Wang Two-level LES POD Models

Average error

1L POD-EV		R _c	2L coarse POD-EV		2L hybrid POD-EV	
CPU-time (s)	error		CPU-time (s)	error	CPU-time (s)	error
		2	1.07e+5	0.0444	1.02e+5	0.0452
5.32e+5	0.0446	4	2.17e+4	0.0385	2.20e+4	0.0473

• $R_c=4$: error_{1L} \approx error_{2L}, Time_{1L} \approx 25 Time_{2L}

Conclusions

- more physical closure models
- two-level discretization
- $error_{2L} \approx error_{1L}$
- $Time_{1L} = Time_{2L} \times \mathcal{O}(10)$

Thank You!

