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Introduction to the model

∙ Ωf : Navier-Stokes equation

∙ Ωp: Darcy’s law
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Introduction to the model

Navier-Stokes/Brinkman equation

Find (u,v) in Ω such that

∂u

∂t
+ u ⋅ ∇u− �∆u+∇p+

�

K
u = f

∇ ⋅ u = 0

Arquis, Caltagirone (1984)
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Introduction to the model

L = �
K

Lg(x) := L(x− g)

Navier-Stokes/Brinkman Model

Find (u, v) in Ω such that

∂u

∂t
+ u ⋅ ∇u− �∆u+∇p+ Lgu = f

∇ ⋅ u = 0

Problem: Find g ∈ Ω such that the solution maximizes some

performance
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Introduction to the model

Micrositing
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The optimal control problem

Lg : ℝ2 → ℝ+ ∪ {0}
State equation⎧⎨⎩

ut + u ⋅ ∇u− �∆u+∇p+ Lgu = f in Ω
∇ ⋅ u = 0 in Ω
u∣∂Ω = 0
u(x,0) = u0(x)

Uad = {(u, g) satisfies NS/Brinkman, g ∈ Ω}
Cost function:

J(u, g) =
�

2

T∫
0

∫
Ω

Lg∣u− U ∣2dxdt+
�

2
∣g −G∣2

Optimal control problem: Find min J(u, g), (u, g) ∈ Uad
Theorem (Existence) There exist (u, g) ∈ Uad that is global min-

imizer of the cost function.
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The optimal control problem

The optimality system

Navier-Stokes/Brinkman system{
ut + u ⋅ ∇u− �∆u+∇p+ Lgu = f
∇ ⋅ u = 0

with initial condition: u(x,0) = u0(x)

Adjoint system{
−ŵt + (∇u)T ⋅ ŵ − (u ⋅ ∇)ŵ − �∆ŵ +∇q + LTg ŵ = �Lg(u− U)
∇ ⋅ ŵ = 0

with final condition ŵ(T, x) = 0

First order necessary condition:

T∫
0

∫
Ω

(u ⋅ ŵ)∇Lg = −
�

2

T∫
0

∫
Ω

∣u− U ∣2∇Lg − �(g −G)
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The optimal control problem

Establish the optimality system:

DJ(u(g), g)

Dg
ℎ = �

T∫
0

∫
Ω

Lg(u− U)w +
�

2

T∫
0

∫
Ω

(∇Lg ⋅ ℎ)∣u− U ∣2 + �(g −G)ℎ

=

T∫
0

∫
Ω

(∇Lg ⋅ ℎ)uŵ +
�

2

T∫
0

∫
Ω

(∇Lg ⋅ ℎ)∣u− U ∣2 + �(g −G)ℎ

where w is solution to the sensitivity equation{
wt + �∆w + (u ⋅ ∇)w + (w ⋅ ∇)u+ Lgw − (∇Lg ⋅ ℎ)u = 0
∇ ⋅ w = 0

g is minimizer so DJ(u(g))
Dg ℎ = 0 ∀ℎ ∈ TanΩ(g)

T∫
0

∫
Ω

(∇Lg ⋅ ℎ)(u ⋅ ŵ) = −
�

2

T∫
0

∫
Ω

(∇Lg ⋅ ℎ)∣u− U ∣2 − �(g −G)ℎ ∀ℎ ∈ TanΩ(g)
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The semidiscrete-in-time approxi-

mation

Formulation⎧⎨⎩

1
∆t(u

(n+1) − u(n))− �∆u(n+1) + u(n+1) ⋅ ∇u(n+1)+

+∇p(n+1) + Lgu(n+1) = f(n+1)

∇ ⋅ u(n+1) = 0

u(n+1)(x) = 0, x ∈ ∂Ω

u(0)(x) = u0(x)

Cost function:

�∆t

2

N∑
n=1

Lg∥u(n) − U(n)∥2 +
�

2
∣g −G∣2
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The semidiscrete-in-time approximation

Theorem (Consistency) Given ∆t = T
N .

For ∆t → 0, the solution {(u(n), g)}Nn=1 of the semi-discrete-in-

time optimal control problem converges to the solution (u, g) of

the corresponding continuous optimal control problem.

∙ {uN} is uniformly bounded in L2(0, T ;V (Ω))

∙ {uN} is uniformly bounded in L∞(0, T ;W (Ω))

∙ {u′N} is uniformly bounded in L2(0, T ;V ∗(Ω))

∙ Passing the limit
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The semidiscrete-in-time approximation

B1 = H1
0(Ω)× L2

0(Ω)× ℝ2

B2 = H−1(Ω)× L2
0(Ω)

M : B1 → B2 is defined as M(uN , pN , g) = (ℎN , zN) if and

only if⎧⎨⎩

1
∆t(u

(n+1) − u(n), v) + �(∇u(n+1),∇v) + (u(n+1) ⋅ ∇u(n+1), v)+

+(p(n+1),∇ ⋅ v) + (Lgu(n+1), v) = (f(n+1) + ℎ(n+1), v) ∀v ∈ H1
0(Ω)

(∇ ⋅ u(n+1), q) = (z(n+1), q) ∀q ∈ L2
0(Ω)

u(n+1)(x) = 0, x ∈ ∂Ω

u(0)(x) = u0(x)

N : B1 → ℝ×B2 is defined as follow

N(uN , pN , g) =
(J(uN , g)− J(û, ĝ)

M(uN , pN , g)

)
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The semidiscrete-in-time approximation

Theorem. Let (û, p̂, ĝ) ∈ H1
0(Ω)× L2

0(Ω)× ℝ2 denote the optimal

solution. Then there exists a nonzero Lagrange multiplier ( , �) ∈
H1(Ω)× L2(Ω) such that

J ′(û, ĝ) ⋅ (w, r, k)+ < M ′(û, p̂, ĝ) ⋅ (w, r, k), ( , �) >= 0

∀(w, r, k) ∈ H1
0(Ω)× L2

0(Ω)× ℝ2

where < ., . > denotes the duality pairing between H1(Ω)× L2(Ω)

and (H1(Ω))∗ × L2(Ω)
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The semidiscrete-in-time approximation

∙ N ′(û, p̂, ĝ) has a closed range

∙ N ′(û, p̂, ĝ) is not onto

By the Hahn-Banach theorem, there exists (�,  , �) ∕= 0 in R×B∗2
such that

< (�,  , �), (�, h̄, z̄) >= 0 ∀(�, h̄, z̄) ∈ Range(N ′(û, p̂, ĝ))

� ⋅ J ′(û, ĝ) ⋅ (w, r, k)+ < M ′(û, p̂, ĝ) ⋅ (w, r, k), ( , �) >= 0

∀(w, r, k) ∈ B1

� := 1
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The semidiscrete-in-time approximation

First order necessary condition Let (û, p̂, ĝ) be the optimal so-

lution of the semidiscrete-in-time problem. Then we have

∆t
N∑
n=1

∫
Ω

(û(n) ⋅  (n−1))∇Lĝdx =−
�

2
∆t

N∑
n=1

∫
Ω

∣û(n) − U(n)∣2∇Lĝdx−

− �(ĝ −G)

where  and � satisfies⎧⎨⎩

− 1
∆t( 

(n+1) −  (n), v) + �(∇ (n),∇v)− (û(n+1) ⋅  (n), v)+

+((∇û(n+1))T ⋅  (n), v) + (LTĝ  
(n), v) + (�(n),∇ ⋅ v) =

= �Lĝ(û
(n+1) − U(n+1), v)

∀v ∈ H1
0(Ω), n = 0, ..., N − 1

(∇ ⋅  (n), q) = 0, ∀q ∈ L2
0(Ω), n = 0, ..., N − 1

 (n) = 0 on ∂Ω, n = 0, ..., N − 1

 (N) = 0
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The fully discrete time-space approximation

Xℎ ⊂ H1
0(Ω) and Sℎ ⊂ L2(Ω): finite dimensional subspace

Approximation properties: There exists an integer l and a

constant C, independent of ℎ, u and p such that for all 1 ≤ k ≤ l

we have

inf
uℎ∈Xℎ

∥uℎ − u∥1 ≤ Cℎk∥u∥k+1 ∀u ∈ Hk+1(Ω) ∩H1
0(Ω)

inf
pℎ∈Sℎ

∥p− pℎ∥ ≤ Cℎk∥p∥k ∀p ∈ Hk(Ω) ∩ L2
0(Ω)

The LBB condition: There exists a constant C′, independent of ℎ

such that

inf
0∕=qℎ∈Sℎ

sup
0∕=uℎ∈Xℎ

b(uℎ, qℎ)

∥uℎ∥1∥qℎ∥
≥ C′ > 0
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The fully discrete time-space approximation

Formulation⎧⎨⎩

1
∆t(u

(n+1)
ℎ − u(n)

ℎ , vℎ) + �(∇u(n+1)
ℎ ,∇vℎ) + (u(n+1)

ℎ ⋅ ∇u(n+1)
ℎ , vℎ)+

+(p(n+1)
ℎ ,∇ ⋅ vℎ) + (Lgu

(n+1)
ℎ , vℎ) = (f(n+1), vℎ) ∀vℎ ∈ Xℎ(Ω)

(∇ ⋅ u(n+1)
ℎ , qℎ) = 0 ∀qℎ ∈ Sℎ0(Ω)

Cost function:

�∆t

2

N∑
n=1

Lg∥u(n)
ℎ − U(n)∥2 +

�

2
∣g −G∣2

Problem. Given ∆t = T/N , find (uℎ,pℎ, g) in Xℎ(Ω)×Sℎ0(Ω)×R2

such that the state equation is satisfied and the cost function is

minimized.
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The fully discrete time-space approximation

The adjoint equation⎧⎨⎩

− 1
∆t( 

(n+1)
ℎ −  (n)

ℎ , vℎ) + �(∇ (n)
ℎ ,∇vℎ)− (ûℎ

(n+1) ⋅ ∇ (n)
ℎ , vℎ)+

+((∇û(n+1)
ℎ )T ⋅  (n)

ℎ , vℎ) + (LTĝ  
(n)
ℎ , vℎ) + (�(n)

ℎ ,∇ ⋅ vℎ) =

= �Lĝ(û
(n+1)
ℎ − U(n+1), vℎ) ∀vℎ ∈ Xℎ(Ω)

(∇ ⋅  (n)
ℎ , qℎ) = 0, ∀qℎ ∈ Sℎ0(Ω)

 
(n)
ℎ = 0 on ∂Ω

 
(N)
ℎ = 0
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Future work

- Computational experiment

- Analysis the optimal control problem, provided that there are

more than one porous medium in the domain
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Thank you for your attention!

19-1


