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The system

Possible measurements
and Stationary Sensors
nt of the problem
ria?

Problem statement

Two dimensional parabolic problem

Consider the convection-diffusion process in Q = (0,1) x (0,1)
and in t € (0,7)

88tT = (A +a(x,y) - V)T + B(t)(t):

with n a Wiener process on a separable Hilbert space X,
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Problem statement

Two dimensional parabolic problem

Consider the convection-diffusion process in Q = (0,1) x (0,1)
and in t € (0,7)
0

5.7 = (2A +a(x,y) - V)T + B(t)n(t);

with n a Wiener process on a separable Hilbert space X, for each
t € (0,7), B(t) belongs to .Z(X, L?(Q))
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tatement of the problem
What is our criteria?

Problem statement

Two dimensional parabolic problem

Consider the convection-diffusion process in Q = (0,1) x (0,1)
and in t € (0,7)

9 2

ST =(An+alxy) V)T + BO)(),
with n a Wiener process on a separable Hilbert space X, for each
t € (0,7), B(t) belongs to .Z(X, L?(R)) and boundary and initial
conditions

T(t,X,y) 99 =0, T(07X7y) = TO(X) +§7
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Problem statement

Two dimensional parabolic problem

Consider the convection-diffusion process in Q = (0,1) x (0,1)
and in t € (0,7)

9 2

ST =(An+alxy) V)T + BO)(),
with n a Wiener process on a separable Hilbert space X, for each
t € (0,7), B(t) belongs to .Z(X, L?(R)) and boundary and initial
conditions

T(t,X,y) 99 =0, T(07X7y) = TO(X) +§7

with £ a Gaussian random variable. The natural state space for the
problem is 7 = L2() and the domain of the differential operator
in the right hand side is H?(Q) N H3().
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The system
Possible me

Problem statement

nary Sensors
f the problem

If B(-) is essentially bounded ( i.e. if B(-) belongs to
L>=([0, 7]; Z(X, )
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The system
Possible measurements
Types o and Stationary Sensors

Problem statement

Abstract nt of the problem
What is our criteria?

If B(-) is essentially bounded ( i.e. if B(-) belongs to
Lo([0, 7]; Z(X,#))), then the solution of

Ei.‘T = (®A+a(x,y)- V)T + B(t)n(t);

T(OaX7Y) = TO(X) +¢&

is a stochastic process with values in 7 = L?(Q).

Bensoussan, A. Filtrage Optimal des Systémes Lin’eaires (Dunod,
1971)
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The system

Possible measurements
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What is our criteria?

Problem statement

Stationary and Mobile Sensors

Suppose that we can only “measure” T(t,x) with a finite number
of sensors.
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Problem statement

Stationary and Mobile Sensors

Suppose that we can only “measure” T(t,x) with a finite number
of sensors. We will consider two ways of doing this:

Stationary Networks The position of the sensor remains constant.
The design variables are the positions of the sensors
in the domain.
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The system
Possible measurements
of Mobile and Stationary Sensors
state t of the problem
What is our criteria?

Problem statement

Stationary and Mobile Sensors

Suppose that we can only “measure” T(t,x) with a finite number
of sensors. We will consider two ways of doing this:

Stationary Networks The position of the sensor remains constant.
The design variables are the positions of the sensors
in the domain.

Mobile Networks The positions of the sensors are described by
controlled differential equations and their initial
positions are fixed. The design variable are the
controls.
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The syste
Problem statement e system

urements
and Stationary Sensors

f the problem

Suppose we have a finite number of mobile sensors.
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The system
Possible measurements
Types of Mobile and Stationary Sensors

Problem statement

Abstract statement of the problem
What is our criteria?

Suppose we have a finite number of mobile sensors. The position
of the sensors are given by smooths trajectories
X1(t),%X2(t),...,%Xn(t), inside Q that are determined by the
controlled ordinary differential equations

hH

);Ei = ‘(Xl,Xg, NP LI),

with |u(t)] <1
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The system
Possible measurements
Types of Mobile and Stationary Sensors

Problem statement

Abstract statement of the problem
What is our criteria?

Suppose we have a finite number of mobile sensors. The position
of the sensors are given by smooths trajectories
X1(t),%X2(t),...,%Xn(t), inside Q that are determined by the
controlled ordinary differential equations

hH

ﬁi = ‘(Xl,Xg, sy by LI),

with |u(t)] < 1.

So, we may assume that each sensor measures an average value of
T(t,x) within a fixed range § of the position of the sensor for each
t=10,7]
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The system
Possible measurements
Types of Mobile and Stationary Sensors

Problem statement

Abstract statement of the problem
What is our criteria?

Suppose we have a finite number of mobile sensors. The position
of the sensors are given by smooths trajectories
X1(t),%X2(t),...,%Xn(t), inside Q that are determined by the
controlled ordinary differential equations

hH

ﬁi = ‘(Xl,Xg, sy by LI),

with |u(t)] < 1.

So, we may assume that each sensor measures an average value of
T(t,x) within a fixed range § of the position of the sensor for each
t = [0, 7], in pictures it looks like this...
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Problem statement

Types of Mobile and Stationary Sensors
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Types of Mobile and Stationary Sensors
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0.6 - 1

0.4+ a
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The system
Possible measurements
Types of Mobile and Stationary Sensors

Problem statement

Abstract statement of the problem
What is our criteria?

So for each u, we determine a trajectory X(+, u) and these type of
measurements h have the form,
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The system
Possible measurements
Types of Mobile and Stationary Sensors

Problem statement

Abstract statement of the problem

What is our criteria?

So for each u, we determine a trajectory X(+, u) and these type of
measurements h have the form,

() = /Q Ay, Rt 1)) T(t.y) dy + 1(2),

where x(x,y) = 1if ||x — y|| < J and zero everywhere else
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The system
Possible measurements
Types of Mobile and Stationary Sensors

Problem statement

Abstract statement of the problem
What is our criteria?

So for each u, we determine a trajectory X(+, u) and these type of
measurements h have the form,

() = /Q Ay, Rt 1)) T(t.y) dy + 1(2),

where x(x,y) = 1if ||x — y|| < J and zero everywhere else, for
some other Wiener process v (that is uncorrelated with 7)
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The system
Possible measurements
Types of e and Stationary Sensors

Problem statement

Abstract nt of the problem
What is our criteria?

So for each u, we determine a trajectory X(+, u) and these type of
measurements h have the form,

() = /Q Ay, Rt 1)) T(t.y) dy + 1(2),

where x(x,y) = 1if ||x — y|| < J and zero everywhere else, for
some other Wiener process v (that is uncorrelated with 7)
Then, we can write this as

h(t) = Cu(8) T (2, ) + v(2),

and for each t € [0, 7], the operator C;;C,(t) is of trace class.
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The system
Possible measurements
Types of Mobile and Stationary Sensors

Problem statement

Abstract statement of the problem
What is our criteria?

For the Stationary Sensor Problem, for each x € ), we determine a
type of measurements h of the form,
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The system
Possible measurements
Types of Mobile and Stationary Sensors

Problem statement

Abstract statement of the problem

What is our criteria?

For the Stationary Sensor Problem, for each x € ), we determine a
type of measurements h of the form,

h(r) = /Q A X)T(t.y) dy + 1(2),

where x(x,y) = 1if ||x — y|| < J and zero everywhere else
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The system
Possible measurements
Types of Mobile and Stationary Sensors

Problem statement

Abstract statement of the problem
What is our criteria?

For the Stationary Sensor Problem, for each x € ), we determine a
type of measurements h of the form,

h(r) = /Q A X)T(t.y) dy + 1(2),

where x(x,y) = 1if ||x — y|| < J and zero everywhere else, for
some other Wiener process v (that is uncorrelated with 7)
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The system
Possible measurements
Types of Mobile and Stationary Sensors

Problem statement

Abstract statement of the problem
What is our criteria?

For the Stationary Sensor Problem, for each x € ), we determine a
type of measurements h of the form,

h(r) = /Q A X)T(t.y) dy + 1(2),

where x(x,y) = 1if ||x — y|| < J and zero everywhere else, for
some other Wiener process v (that is uncorrelated with 7)
Then, we can write this as

h(t) = GT(t,-) + v(t),

the operator G C is of trace class.
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The system
Possible measurements
Types of Mobile and Stationary Sensors

Problem statement

Abstract statement of the problem
What is our criteria?

Then, we can rewrite the problem as an abstract infinite
dimensional model of the form

2(t) = Az(t) + B(t)n(t) € L*(Q),
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The system

Problem statement
ements

e and Stationary Sensors
Abstract statement of the problem
What is our criteria?

Then, we can rewrite the problem as an abstract infinite
dimensional model of the form

2(t) = Az(t) + B(t)n(t) € LX(Q),
with measured output

h(t) = Cu(t)z(t) + v(t).

C. N. Rautenberg Optimal filtering of infini imensional systems with stationa



The system

Problem statement T
Pc measurements

y and Stationary Sensors
Abstract statement of the problem
What is our criteria?

Then, we can rewrite the problem as an abstract infinite
dimensional model of the form

2(t) = Az(t) + B(t)n(t) € LX(Q),
with measured output

h(t) = Cu(t)z(t) + v(t).

Question: How are we going to choose C,(t)?
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The te
Problem statement P{w Jystem

measurements
and Stationary Sensors
ent of the problem
What is our criteria?

If we construct a Kalman filter, then the covariance operator ¥ (t)
between the real state z(t) and the estimated one 2(t) is the mild
solution of the Riccati differential equation

Y =AY + TA+ BRB* — XCiR1C,X,

with some ¥(0) = Z¢ and some operators R; and R, * related to 7
and v, then...
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The system
Possible measurements
and Stationary Sensors

Problem statement

nt of the problem
eria?

If we construct a Kalman filter, then the covariance operator ¥ (t)
between the real state z(t) and the estimated one 2(t) is the mild
solution of the Riccati differential equation

Y =AY + TA+ BRB* — XCiR1C,X,

with some ¥(0) = Z¢ and some operators R; and R, * related to 7
and v, then...

E{ll2(t) — 2(1)[*} = Tr(x(t)),
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Problem statement

What is our criteria?

If we construct a Kalman filter, then the covariance operator ¥ (t)
between the real state z(t) and the estimated one 2(t) is the mild
solution of the Riccati differential equation

Y =AY + TA+ BRB* — XCiR1C,X,

with some ¥(0) = Z¢ and some operators R; and R, * related to 7
and v, then...

E{ll2(t) — 2(1)[*} = Tr(x(t)),

Answer: Then, we would like to minimize

J(u) = /0 Tr(Q(£)T(t)) dt,
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Problem statement

What is our criteria?

If we construct a Kalman filter, then the covariance operator ¥ (t)
between the real state z(t) and the estimated one 2(t) is the mild
solution of the Riccati differential equation

Y =AY + TA+ BRB* — XCiR1C,X,

with some ¥(0) = Z¢ and some operators R; and R, * related to 7
and v, then...

E{||2(t) — z()]*} = Tx(Z(t)),
Answer: Then, we would like to minimize

J(u) = /0 Tr(Q(£)Tu(1)) dt,

but when is X, a trace class operator?
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Trace Class valued solutions to the Riccati equation t — X (t) is trace class continuous
Existence of Minimizers

The Riccati integral equation

We are interested in trace-class valued solutions of

Y(t) = T(t)ZoT*(t)+/ot T(t—s)(BB*—X(C*C)X)(s) T*(t—s)ds,
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Trace Class valued solutions to the Riccati equation t — X (t) is trace class continuous
Existence of Minimizers

The Riccati integral equation

We are interested in trace-class valued solutions of
t
Y (t) = T(t)Xo T*(t)+/ T(t—s)(BB*—X(C*C)X)(s) T*(t—s)ds,
0

where the integral is well defined as a Bochner integral, so the
solution is a “uniform” one.
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Trace Class valued solutions to the Riccati equation t — X (t) is trace class continuous
Existence of Minimizers

The Riccati integral equation

We are interested in trace-class valued solutions of
t
Y (t) = T(t)Xo T*(t)+/ T(t—s)(BB*—X(C*C)X)(s) T*(t—s)ds,
0

where the integral is well defined as a Bochner integral, so the
solution is a “uniform” one.

This is not the usual case, for example if T(t) is semigroup of
linear operators with generator A,

/01 T(t) dt,

is a well defined Bochner integral IF AND ONLY IF A is bounded!
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Problem statement
Trace Class valued solutions to the Riccati equation t — X (t) is trace class continuous

Examples Existence of Minimizers
Conclusions and Future Work

Theorem | (PROPERTIES OF THE MAP t — X (t))
(1) ZOG,ﬂlandZOZO.
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Problem statement
Trace Class valued solutions to the Riccati equation t — X (t) is trace class continuous

Examples Existence of Minimizers
Conclusions and Future Work

Theorem | (PROPERTIES OF THE MAP t — X (t))
(1) ZOG,ﬂlandZOZO.
Q@ BB*(:) € LI([0,7]; #).
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Problem statement
Trace Class valued solutions to the Riccati equation t — X (t) is trace class continuous

Examples Existence of Minimizers
Conclusions and Future Work

Theorem | (PROPERTIES OF THE MAP t — X (t))
Q Xp€ . “ and Xy > 0.
@ 55°() e L([0,7); 7).
© C*C(-) € L=([0, 7]; Z(#)).
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Problem statement
Trace Class valued solutions to the Riccati equation t — X (t) is trace class continuous

Examples Existence of Minimizers
Conclusions and Future Work

Theorem | (PROPERTIES OF THE MAP t — X (t))
Q >pc.¥ and Xg > 0.
@ BB'() < Li([0,7]; #1).
© C*C(-) e L=([0,7]; Z(s2)).
Then there is a unique solution t — ¥ (t) of the integral Riccati

equation which belongs to L?([0, 7],.#2) and even more the same
solution belongs to #([0, 7], -#1).
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Trace Class valued solutions to the Riccati equation t — X (t) is trace class continuous
Existence of Minimizers

Importance of the previous Theorem

a) We have general conditions over B(-) and C(-) for
which X(-) is Trace-Class-valued.
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Trace Class valued solutions to the Riccati equation t — X (t) is trace class continuous
Existence of Minimizers

Importance of the previous Theorem

a) We have general conditions over B(-) and C(-) for
which X(-) is Trace-Class-valued.
b) The space L2([0,7]; .#2) is a separable Hilbert

(Approximation in Hilbert space is easier than in a
Banach one).

C. N. Rautenberg Optimal filtering of infinite dimensional systems with stationa



Trace Class valued solutions to the Riccati equation t — X (t) is trace class continuous
Existence of Minimizers

Importance of the previous Theorem

a) We have general conditions over B(-) and C(-) for
which X(-) is Trace-Class-valued.

b) The space L2([0,7]; .#2) is a separable Hilbert
(Approximation in Hilbert space is easier than in a
Banach one).

c) The integral is a well-defined Bochner one
(Approximation is possible through discretization of

[0,7])
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Trace Class valued solutions to the Riccati equation t — X (t) is trace class continuous
Existence of Minimizers

Mobile Sensors

Let J: U — R be defined as
Jo) = [ @R .
0

with Q(+) € L*>([0,7]; Z(s¢)) and Q(t) > 0.

Theorem II|(PROPERTIES OF u +— J(u))

Suppose all previous hypothesis
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Trace Class valued solutions to the Riccati equation t — X (t) is trace class continuous
Existence of Minimizers

Mobile Sensors

Let J: U — R be defined as
Jo) = [ @R .
0

with Q(+) € L*>([0,7]; Z(s¢)) and Q(t) > 0.

Theorem II|(PROPERTIES OF u +— J(u))
Suppose all previous hypothesis, then there is I € U such that

J(@) = inf J(u).

uel
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Trace Class valued solutions to the Riccati equation t — X (t) is trace class continuous
Existence of Minimizers

Stationary Sensors

Let J: Q — R be defined as
J) = [ IH(QUEA(D) de.
0

with Q(+) € L*>([0, 7]; Z(5€)) and Q(t) > 0.

Theorem II*(PROPERTIES OF X — J(x))

Suppose all previous hypothesis
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Trace Class valued solutions to the Riccati equation t — X (t) is trace class continuous
Existence of Minimizers

Stationary Sensors

Let J: Q — R be defined as
J) = [ IH(QUEA(D) de.
0

with Q(+) € L*>([0, 7]; Z(5€)) and Q(t) > 0.

Theorem II*(PROPERTIES OF X — J(x))
Suppose all previous hypothesis, then there is X € £ such that

J(X) = ):2&1‘7 J(x).
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1D Stationary Sensor Example
Sensor Example
Examples mple by Prof. Cliff
2D Mobile Sensors Example - A Gradient method

one dimensional convection-diffusion process

Te = €Tox + ax Tx + b(x, r,a)n(t),

on0<t<1 and 0 < x <1. With T(t,0)= T(t,1)=0 and
T(0,x) = To(x)
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1D Stationary Sensor Example
2D Stationary Sensor Example
Examples 1D Mobile ample by Prof. CIiff
2D Mobile Sensors Example - A Gradient method

one dimensional convection-diffusion process

Te = €Tox + ax Tx + b(x, r,a)n(t),

on0<t<1 and 0 < x <1. With T(t,0)= T(t,1)=0 and
T(0,x) = To(x), and output

h(t) = G T(t,) +v(t) = /[0 ; c(x —y)T(t,y)dy + v(t)

C. N. Rautenberg
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1D Stationary Sensor Example
2D Stationary Sensor Example
Examples 1D Mobile ample by Prof. CIiff
2D Mobile Sensors Example - A Gradient method

one dimensional convection-diffusion process

Te = €Tox + ax Tx + b(x, r,a)n(t),

on0<t<1 and 0 < x <1. With T(t,0)= T(t,1)=0 and
T(0,x) = To(x), and output

h(t) = G T(t,) +v(t) = /[0 ; c(x —y)T(t,y)dy + v(t)

In this example

b(x,r,a) = e~r(x—a)’ c(x—y)= e~ 10(x—y)?

C. N. Rautenberg
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1D Stationary Sensor Example

Examples

€ =a,=0and b(x,0,a) =1

0.515 ]

0.511 b

J(x)

0.505 - b

0.5F 1

0.495 1

ite dimensional systems with stationa



1D Stationary Sensor Example
2D Stationary Sensor Example
Examples i r Example Prof. CIiff
Example - A Gradient method

a, = 0 and b(x, 10, 0.3) = e 10(x~03)’

021} 1
0.209} 1
0.208 g

_ 0207} / E

x
0206} 1
0205} 1

0.204 - 1

0.203 s . - .
0 0.2 0.4 0.6 0.8 1
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1D Stationary Sensor Example
2D Stationary Sensor Example
Examples i r Example Prof. CIiff
Example - A Gradient method

x—0.3)2

0.0914F w ‘ w - 3

0.0912 q

0.091F 1

= 0.0908 - 1

0.0906 [ b

0.0904 | 1

ional systems with stationa



1D Stationary Sensor Example
2D Stationary Sensor Example
Examples i r Example Prof. CIiff
Example - A Gradient method

x—0.3)2

0.0401 T T T T

0.0401 b

0.0401 | 1

J(x)

0.0401 | 1

0.0401 | 1

0.0401 : : : :
0 . .

ional systems with stationa



Examples by Prof. CIiff

2D Mobile mple - A Gradient method
Consider
0
ET =eAT +ac T+ a, T, + b(x,y, r)n(t);
e) = GeT(e) () = [ clx—y)T(e.y)dy + o(0)
[0.1]

on0<t<1 andx=(x,y) e Q2=(0,1)x(0,1). With
T(t,x) =0and T(0,x) = To(x).
x€0Q
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Examples by Prof. CIiff

2D Mobile mple - A Gradient method
Consider
0
ET =eAT +ac T+ a, T, + b(x,y, r)n(t);
e) = GeT(e) () = [ clx—y)T(e.y)dy + o(0)
[0.1]

on0<t<1 andx=(x,y) e Q2=(0,1)x(0,1). With
T(t,x) =0and T(0,x) = To(x).

x€0Q
In this example

—r| (x=0.1)24(y—0.1)2
b(x,y, r) = 10 + 40e (( S )>

_ 21— v1 )24 (30— v )2
c(x—y)=e 20((1 y1)°+(x2 yz))

C. N. Rautenberg Optimal filtering of infinite dimensional systems with stationa



2D Stationary Sensor Example
Examples

€ =ay=a, =0and b(x,y,0) =50

(a) Side View (b) Top View

Figure: Value of J(x) = [°

o Tr(Xx(t)) dt where x is the position of the
sensor
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2D Stationary Sensor Example
Examples

e=0.01, a, =5, a, =0 and b(x,y,0) =50

(a) Side View (b) Top View

Figure: Value of J(x) = [°

o Tr(Xx(t)) dt where x is the position of the
sensor
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2D Stationary Sensor Example
Examples

e=0.01, a, =0, a, =5 and b(x,y,0) =50

(a) Side View (b) Top View

Figure: Value of J(x) = [°

o Tr(Xx(t)) dt where x is the position of the
sensor
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2D Stationary Sensor Example
Examples

e=0.01, a, =5, a, =5 and b(x,y,0) =10

(a) Side View (b) Top View

Figure: Value of J(x) = [°

o Tr(Xx(t)) dt where x is the position of the
sensor
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2D Stationary Sensor Example
Examples

e =0.01, a, = a, = 0 and b(x, y,5)

(a) Side View (b) Top View

Figure: Value of J(x) = [°

o Tr(Xx(t)) dt where x is the position of the
sensor
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Consider the one dimensional convection diffusion
Tt = €Ty — aTx + b(x)n(t),

on 0<t<0.2 and 0 < x < 1. With T,(t,0) = T,(t,1) =0 and
T(0,x) = To(x).
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2D Mobile Sensors Example - A Gradient method

Consider the one dimensional convection diffusion
Tt = €Ty — aTx + b(x)n(t),

on 0<t<0.2 and 0 < x < 1. With T,(t,0) = T,(t,1) =0 and
T(0,x) = To(x).

Suppose that the family of sensors F, correspond to those which
move uniformly in time, from xp € [0,1] to x; € [0, 1] and with
range § = 0.05.
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Consider the one dimensional convection diffusion
Tt = €Ty — aTx + b(x)n(t),

on 0<t<0.2 and 0 < x < 1. With T,(t,0) = T,(t,1) =0 and
T(0,x) = To(x).

Suppose that the family of sensors F, correspond to those which
move uniformly in time, from xp € [0,1] to x; € [0, 1] and with

range § = 0.05.
Then, we can parameterize J(C) = fol Tr(X) dt, with xo and xq as
J(Xo,X]_)...
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Finite element approximation with n = 128

[, Tr 0 o

1312

1.311

131
1309
g

1.307

1.306

0.4

Final Sensor Lacation oo Initial Sensor Location
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Then, it appears that we have to move the sensor uniformly along
Xo + x1 =~ 1 to minimize the functional.
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Then, it appears that we have to move the sensor uniformly along
Xo + x1 =~ 1 to minimize the functional.

Apparently the minimum is attained when xp ~ 0.592 and

x1 =~ 0.590... which is more or less stationary.
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The solution of the Riccati equation can be regarded as a function
of the operator C*C(-) € €([0, 7]; #1)
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The solution of the Riccati equation can be regarded as a function
of the operator C*C(-) € ¥([0, 7]; #1), the mapping

C*C(:) — Xc+c(+) is not only continuous, but Frechet
differentiable.
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The solution of the Riccati equation can be regarded as a function
of the operator C*C(-) € ¥([0, 7]; #1), the mapping

C*C(:) — Xc+c(+) is not only continuous, but Frechet
differentiable.

Consider U = L2([0,7]), then, if the map that maps “controls to
trajectories” is differentiable as a map from L2([0,7]) to

([0, 7]; R?)
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The solution of the Riccati equation can be regarded as a function
of the operator C*C(-) € ¥([0, 7]; #1), the mapping

C*C(:) — Xc+c(+) is not only continuous, but Frechet
differentiable.

Consider U = L2([0,7]), then, if the map that maps “controls to
trajectories” is differentiable as a map from L2([0,7]) to

C([0, 7]; R?), then the functional

(o) = /0 " Tr(T.(0)) dt,

is Frechet differentiable as a mapping J : L?([0,1]) — R, and
then...
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The solution of the Riccati equation can be regarded as a function
of the operator C*C(-) € ¥([0, 7]; #1), the mapping

C*C(:) — Xc+c(+) is not only continuous, but Frechet
differentiable.

Consider U = L2([0,7]), then, if the map that maps “controls to
trajectories” is differentiable as a map from L2([0,7]) to

C([0, 7]; R?), then the functional

(o) = /0 " Tr(T.(0)) dt,

is Frechet differentiable as a mapping J : L?([0,1]) — R, and
then...let's try to apply Steepest Descent to this unconstrained
minimization problem and see what happens!
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The sensors

Assume we have 3 sensors located at the points (0.6,0.4), (0.5, 0.5)
and (0.4,0.6) and their trajectories are given by the equations

0

t
%i(t,u) = ( 4 ) + /0 ert=S)by;(s) ds

i

-1 0.3 1.5
A—( 0 _1> and b—(_1>.

where
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Steepest Descent Method

We will use a gradient descent method to try to compute a local
minimizer of the problem.
@ Start with the control with some choice

uO(t) = (ud(t), u(t), u3(t)).
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Steepest Descent Method

We will use a gradient descent method to try to compute a local
minimizer of the problem.

@ Start with the control with some choice
u(t) = (uf(t), u3(t), u3(t)).
@ Update the control as

umH(t) = u"(t) — and (u")(2),

where J'(u) is the gradient of J at u and «, is chosen if
possible as

a, = arg ming J(u” — aJ'(u™)),

and stop if J(u"*1) is not decreased by at least 2% with
respect to J(u").
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Consider

% T =0.01AT + b(x, y, a)n(t);

on0<t<1 andx=(x,y) € 2=(0,1) x (0,1). With
T =

(t,x) oo 0 and T(0, x) = To(x).
In this example

—5( (x—0.1)? —0.9)2
b(x,y,a) =10 + ae 5<( DH=09) )

C. N. Rautenberg Optimal filtering of infinite dimensional systems with stationa



onary Sensor Example
nsor Example
Examples 1D Mobile Sensor Example by Prof. CIiff
2D Mobile Sensors Example - A Gradient method

Initial Controls Final Controls
08
03
OBT
02 04
0.1 02
0
0 .
0.1
o
02 08}
08
0 2 4 6 8 10 0 2 4 6 8 10
(a) Initial Controls (b) Final Controls

Figure: Initial and Final controls (16 iterations and approximately 1 hour)
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Initial Sensor Trajectories for Yy Sensor Trajectory

1 1

09 09

08 08

07 07

06 06
>05 >050

04 04

03 03

02 02

0.1 0.1

0 02 04 06 08 1 0 02 04 06 08 1

x x
(a) Initial Trajectories (b) Final Trajectories

Figure: Initial and Final Iterations(16 iterations and approximately 1
hour)
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(x—0.1)2+(y—0.9)?

-5
b(x,y,10) = 10 + 10e

Initial Controls Final Controls
T T T 02
03
01}
02 op~—— — —
ol
01
0.2 - b
0 03
0.1 04
s
02
o8]
\
07
0 2 4 6 8 10 0 2 4 6 8 10
(a) Initial Controls (b) Final Controls

Figure: Initial and Final controls (12 iterations and approximately 45
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—5| (x—0.1)?+(y—0.9)?
b(x, y, 10) = 10 + 10e _\ 0D 70

Inial Sensor Trajectores for uy Sensor Traectory

1 T T T T 1 T T T T

09 09!

08 08F

07 1 07r

08 1 o8t
>05 \ ~05-

04 ] 04t

03 1 03+

02 02t

01 1 01F

0 02 04 06 08 1 0 01 02 03 04 05 06 07 08 09 1

x p
(a) Initial Trajectories (b) Final Trajectories

Figure: Initial and Final Iterations(12 iterations and approximately 45
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Conclusions and Future Work

Future research is devoted to...

Make use of the mesh independence of the problem.
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Make use of the mesh independence of the problem.
Develop approximation schemes to converge to the optimal
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@ ...Infinite Dimensional Projected Gradient Method ?
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Conclusions and Future Work

Future research is devoted to...

Make use of the mesh independence of the problem.
Develop approximation schemes to converge to the optimal
control...

@ ...Infinite Dimensional Projected Gradient Method ?

@ ...Penalty Functions?
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Conclusions and Future Work

THANK YOU!
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