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Two dimensional parabolic problem

Consider the convection-diffusion process in Ω = (0, 1)× (0, 1)
and in t ∈ (0, τ)

∂

∂t
T = (c2∆ + a(x , y) · ∇)T + B(t)η(t);

with η a Wiener process on a separable Hilbert space X ,

for each
t ∈ (0, τ), B(t) belongs to L (X , L2(Ω)) and boundary and initial
conditions

T (t, x , y)
∣∣∣
∂Ω

= 0, T (0, x , y) = T0(x) + ξ,

with ξ a Gaussian random variable. The natural state space for the
problem is H = L2(Ω) and the domain of the differential operator
in the right hand side is H2(Ω) ∩ H1

0 (Ω).
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If B(·) is essentially bounded ( i.e. if B(·) belongs to
L∞([0, τ ]; L (X ,H )))

, then the solution of

∂

∂t
T = (c2∆ + a(x , y) · ∇)T + B(t)η(t);

T (0, x , y) = T0(x) + ξ

is a stochastic process with values in H = L2(Ω).

Bensoussan, A. Filtrage Optimal des Systèmes Lin’eaires (Dunod,
1971)

C. N. Rautenberg Optimal filtering of infinite dimensional systems with stationary and mobile sensor networks



Problem statement
Trace Class valued solutions to the Riccati equation

Examples
Conclusions and Future Work

The system
Possible measurements
Types of Mobile and Stationary Sensors
Abstract statement of the problem
What is our criteria?

If B(·) is essentially bounded ( i.e. if B(·) belongs to
L∞([0, τ ]; L (X ,H ))), then the solution of

∂

∂t
T = (c2∆ + a(x , y) · ∇)T + B(t)η(t);

T (0, x , y) = T0(x) + ξ

is a stochastic process with values in H = L2(Ω).

Bensoussan, A. Filtrage Optimal des Systèmes Lin’eaires (Dunod,
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Stationary and Mobile Sensors

Suppose that we can only “measure” T (t, x) with a finite number
of sensors.

We will consider two ways of doing this:

Stationary Networks The position of the sensor remains constant.
The design variables are the positions of the sensors
in the domain.

Mobile Networks The positions of the sensors are described by
controlled differential equations and their initial
positions are fixed. The design variable are the
controls.
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Suppose we have a finite number of mobile sensors.

The position
of the sensors are given by smooths trajectories
x̂1(t), x̂2(t), . . . , x̂N(t), inside Ω that are determined by the
controlled ordinary differential equations

˙̂xi = fi (x̂1, x̂2, . . . , t, u),

with |u(t)| ≤ 1.
So, we may assume that each sensor measures an average value of
T (t, x) within a fixed range δ of the position of the sensor for each
t = [0, τ ], in pictures it looks like this...
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So for each u, we determine a trajectory x̂(·, u) and these type of
measurements h have the form,

h(t) =

∫
Ω
χ(y, x̂(t, u))T (t, y) dy + ν(t),

where χ(x, y) = 1 if ‖x− y‖ ≤ δ and zero everywhere else, for
some other Wiener process ν (that is uncorrelated with η)
Then, we can write this as

h(t) = Cu(t)T (t, ·) + ν(t),

and for each t ∈ [0, τ ], the operator C ∗u Cu(t) is of trace class.
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Then, we can rewrite the problem as an abstract infinite
dimensional model of the form

ż(t) = Az(t) + B(t)η(t) ∈ L2(Ω),

with measured output

h(t) = Cu(t)z(t) + ν(t).

Question: How are we going to choose Cu(t)?
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If we construct a Kalman filter, then the covariance operator Σ(t)
between the real state z(t) and the estimated one ẑ(t) is the mild
solution of the Riccati differential equation

Σ̇ = AΣ + ΣA + BR1B∗ − ΣC ∗u R−1
2 CuΣ,

with some Σ(0) = Σ0 and some operators R1 and R−1
2 related to η

and ν, then...

E{‖ẑ(t)− z(t)‖2} = Tr(Σ(t)),

Answer: Then, we would like to minimize

J(u) =

∫ τ

0
Tr(Q(t)Σu(t)) dt,

but when is Σu a trace class operator?
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t 7→ Σ(t) is trace class continuous
Existence of Minimizers

The Riccati integral equation

We are interested in trace-class valued solutions of

Σ(t) = T (t)Σ0T ∗(t)+

∫ t

0
T (t−s)(BB∗−Σ(C ∗C )Σ)(s)T ∗(t−s)ds,

where the integral is well defined as a Bochner integral, so the
solution is a “uniform” one.
This is not the usual case, for example if T (t) is semigroup of
linear operators with generator A,∫ 1

0
T (t) dt,

is a well defined Bochner integral IF AND ONLY IF A is bounded!
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t 7→ Σ(t) is trace class continuous
Existence of Minimizers

Theorem I (properties of the map t 7→ Σ(t))

1 Σ0 ∈ I1 and Σ0 ≥ 0.

2 BB∗(·) ∈ L1([0, τ ]; I1).

3 C ∗C (·) ∈ L∞([0, τ ]; L (H )).

Then there is a unique solution t 7→ Σ(t) of the integral Riccati
equation which belongs to L2([0, τ ],I2) and even more the same
solution belongs to C ([0, τ ],I1).
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t 7→ Σ(t) is trace class continuous
Existence of Minimizers

Importance of the previous Theorem

a) We have general conditions over B(·) and C (·) for
which Σ(·) is Trace-Class-valued.

b) The space L2([0, τ ]; I2) is a separable Hilbert
(Approximation in Hilbert space is easier than in a
Banach one).

c) The integral is a well-defined Bochner one
(Approximation is possible through discretization of
[0, τ ])
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Mobile Sensors

Let J : U 7→ R be defined as

J(u) =

∫ τ

0
Tr(Q(t)Σu(t)) dt,

with Q(·) ∈ L∞([0, τ ]; L (H )) and Q(t) ≥ 0.

Theorem II(properties of u 7→ J(u))

Suppose all previous hypothesis

, then there is ũ ∈ U such that

J(ũ) = inf
u∈U

J(u).
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t 7→ Σ(t) is trace class continuous
Existence of Minimizers

Stationary Sensors

Let J : Ω 7→ R be defined as

J(x) =

∫ τ

0
Tr(Q(t)Σx(t)) dt,

with Q(·) ∈ L∞([0, τ ]; L (H )) and Q(t) ≥ 0.

Theorem II*(properties of x 7→ J(x))

Suppose all previous hypothesis

, then there is x̃ ∈ Ω such that

J(x̃) = inf
x∈Ω

J(x).
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1D Stationary Sensor Example
2D Stationary Sensor Example
1D Mobile Sensor Example by Prof. Cliff
2D Mobile Sensors Example - A Gradient method

one dimensional convection-diffusion process

Tt = εTxx + axTx + b(x , r , a)η(t),

on 0 ≤ t ≤ 1, and 0 ≤ x ≤ 1. With T (t, 0) = T (t, 1) = 0 and
T (0, x) = T0(x)

, and output

h(t) = CxT (t, ·) + ν(t) =

∫
[0,1]

c(x − y)T (t, y) dy + ν(t)

In this example

b(x , r , a) = e−r(x−a)2
c(x − y) = e−10(x−y)2
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ε = ax = 0 and b(x , 0, a) = 1
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ε = ax = 0 and b(x , 10, 0.3) = e−10(x−0.3)2
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ε = 0.1, ax = 5 and b(x , 10, 0.3) = e−10(x−0.3)2
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Consider

∂

∂t
T = ε∆T + axTx + ay Ty + b(x , y , r)η(t);

h(t) = CxT (t, ·) + ν(t) =

∫
[0,1]

c(x− y)T (t, y) dy + ν(t)

on 0 ≤ t ≤ 1, and x = (x , y) ∈ Ω ≡ (0, 1)× (0, 1). With

T (t, x)
∣∣∣
x∈∂Ω

= 0 and T (0, x) = T0(x).

In this example

b(x , y , r) = 10 + 40e
−r

(
(x−0.1)2+(y−0.1)2

)
c(x− y) = e

−20

(
(x1−y1)2+(x2−y2)2

)
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1D Stationary Sensor Example
2D Stationary Sensor Example
1D Mobile Sensor Example by Prof. Cliff
2D Mobile Sensors Example - A Gradient method

ε = ax = ay = 0 and b(x , y , 0) = 50

(a) Side View (b) Top View

Figure: Value of J(x) =
∫ 10

0
Tr(Σx(t)) dt where x is the position of the

sensor
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ε = 0.01, ax = 5 , ay = 0 and b(x , y , 0) = 50

(a) Side View (b) Top View

Figure: Value of J(x) =
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2D Mobile Sensors Example - A Gradient method

ε = 0.01, ax = 5 , ay = 5 and b(x , y , 0) = 10

(a) Side View (b) Top View

Figure: Value of J(x) =
∫ 10

0
Tr(Σx(t)) dt where x is the position of the

sensor
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ε = 0.01, ax = ay = 0 and b(x , y , 5)

(a) Side View (b) Top View

Figure: Value of J(x) =
∫ 10

0
Tr(Σx(t)) dt where x is the position of the

sensor
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Consider the one dimensional convection diffusion

Tt = εTxx − aTx + b(x)η(t),

on 0 ≤ t ≤ 0.2, and 0 ≤ x ≤ 1. With Tx(t, 0) = Tx(t, 1) = 0 and
T (0, x) = T0(x).

Suppose that the family of sensors F , correspond to those which
move uniformly in time, from x0 ∈ [0, 1] to x1 ∈ [0, 1] and with
range δ = 0.05.
Then, we can parameterize J(C ) =

∫ 1
0 Tr(Σ) dt, with x0 and x1 as

J(x0, x1)...
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Finite element approximation with n = 128
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Then, it appears that we have to move the sensor uniformly along
x0 + x1 ' 1 to minimize the functional.

Apparently the minimum is attained when x0 ' 0.592 and
x1 ' 0.590... which is more or less stationary.

C. N. Rautenberg Optimal filtering of infinite dimensional systems with stationary and mobile sensor networks



Problem statement
Trace Class valued solutions to the Riccati equation

Examples
Conclusions and Future Work

1D Stationary Sensor Example
2D Stationary Sensor Example
1D Mobile Sensor Example by Prof. Cliff
2D Mobile Sensors Example - A Gradient method

Then, it appears that we have to move the sensor uniformly along
x0 + x1 ' 1 to minimize the functional.
Apparently the minimum is attained when x0 ' 0.592 and
x1 ' 0.590... which is more or less stationary.

C. N. Rautenberg Optimal filtering of infinite dimensional systems with stationary and mobile sensor networks



Problem statement
Trace Class valued solutions to the Riccati equation

Examples
Conclusions and Future Work

1D Stationary Sensor Example
2D Stationary Sensor Example
1D Mobile Sensor Example by Prof. Cliff
2D Mobile Sensors Example - A Gradient method

The solution of the Riccati equation can be regarded as a function
of the operator C ∗C (·) ∈ C ([0, τ ]; I1)

, the mapping
C ∗C (·) 7→ ΣC∗C (·) is not only continuous, but Frechet
differentiable.
Consider U = L2([0, τ ]), then, if the map that maps “controls to
trajectories” is differentiable as a map from L2([0, τ ]) to
C ([0, τ ];R2), then the functional

J(u) =

∫ τ

0
Tr(Σu(t)) dt,

is Frechet differentiable as a mapping J : L2([0, 1]) 7→ R, and
then...let’s try to apply Steepest Descent to this unconstrained
minimization problem and see what happens!
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The sensors

Assume we have 3 sensors located at the points (0.6, 0.4), (0.5, 0.5)
and (0.4, 0.6) and their trajectories are given by the equations

~xi (t, u) =

(
x0
i

y 0
i

)
+

∫ t

0
eA(t−s)bui (s) ds

where

A =

(
−1 0.3
0 −1

)
and b =

(
1.5
−1

)
.
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Steepest Descent Method

We will use a gradient descent method to try to compute a local
minimizer of the problem.

1 Start with the control with some choice
u0(t) = (u0

1(t), u0
2(t), u0

2(t)).

2 Update the control as

un+1(t) = un(t)− αnJ ′(un)(t),

where J ′(u) is the gradient of J at u and αn is chosen if
possible as

αn = arg minαJ(un − αJ ′(un)),

and stop if J(un+1) is not decreased by at least 2% with
respect to J(un).
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Consider

∂

∂t
T = 0.01∆T + b(x , y , a)η(t);

on 0 ≤ t ≤ 1, and x = (x , y) ∈ Ω ≡ (0, 1)× (0, 1). With

T (t, x)
∣∣∣
x∈∂Ω

= 0 and T (0, x) = T0(x).

In this example

b(x , y , a) = 10 + ae
−5

(
(x−0.1)2+(y−0.9)2

)
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2D Stationary Sensor Example
1D Mobile Sensor Example by Prof. Cliff
2D Mobile Sensors Example - A Gradient method

b(x , y , 0) = 10

(a) Initial Controls (b) Final Controls

Figure: Initial and Final controls (16 iterations and approximately 1 hour)
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b(x , y , 0) = 10

(a) Initial Trajectories (b) Final Trajectories

Figure: Initial and Final Iterations(16 iterations and approximately 1
hour)
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1D Stationary Sensor Example
2D Stationary Sensor Example
1D Mobile Sensor Example by Prof. Cliff
2D Mobile Sensors Example - A Gradient method

b(x , y , 10) = 10 + 10e
−5

(
(x−0.1)2+(y−0.9)2

)

(a) Initial Controls (b) Final Controls

Figure: Initial and Final controls (12 iterations and approximately 45
minutes)
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b(x , y , 10) = 10 + 10e
−5

(
(x−0.1)2+(y−0.9)2

)

(a) Initial Trajectories (b) Final Trajectories

Figure: Initial and Final Iterations(12 iterations and approximately 45
minutes)
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Future research is devoted to...

Make use of the mesh independence of the problem.

Develop approximation schemes to converge to the optimal
control...

...Infinite Dimensional Projected Gradient Method ?

...Penalty Functions?
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THANK YOU!
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