The Discontinuous Galerkin Method for Hyperbolic Problems on tetrahedral meshes: A posteriori Error Estimation

Idir Mechai Advisor: Slimane Adjerid

SIAM Student Conference 2010 Virginia Tech

February 20, 2010

∃ ► < ∃</p>

Image: A image: A

æ

- Introduction.
- Present the problem and state the DG formulation with preliminary results.

- Introduction.
- Present the problem and state the DG formulation with preliminary results.
- Construct basis for the leading term of the local discretization error by using the finite element space P_p for the solution.

- Introduction.
- Present the problem and state the DG formulation with preliminary results.
- Construct basis for the leading term of the local discretization error by using the finite element space P_p for the solution.
- Oiscuss error estimation procedure and present numerical examples.

- Introduction.
- Present the problem and state the DG formulation with preliminary results.
- Construct basis for the leading term of the local discretization error by using the finite element space P_p for the solution.
- Oiscuss error estimation procedure and present numerical examples.
- Sonclusion: Summarize results and described future work.

• The success of the DG method is due to the following properties:

• Is locally conservative,

- The success of the DG method is due to the following properties:
 - Is locally conservative,
 - Is well suited to solve problems on locally refined meshes with hanging nodes and

- The success of the DG method is due to the following properties:
 - Is locally conservative,
 - Is well suited to solve problems on locally refined meshes with hanging nodes and
 - Exhibits strong superconvergence that can be used to estimate the discretization error.

- The success of the DG method is due to the following properties:
 - Is locally conservative,
 - Is well suited to solve problems on locally refined meshes with hanging nodes and
 - Exhibits strong superconvergence that can be used to estimate the discretization error.
 - Has a simple communication pattern between elements with a common face that makes it useful for parallel computation.

- The success of the DG method is due to the following properties:
 - Is locally conservative,
 - Is well suited to solve problems on locally refined meshes with hanging nodes and
 - Exhibits strong superconvergence that can be used to estimate the discretization error.
 - Has a simple communication pattern between elements with a common face that makes it useful for parallel computation.
 - Can handle problems with complex geometries to high order.
 - Does not require continuity across element boundaries
- A posteriori Error Estimation
 - $u U_h \approx E$
 - Asymptotic behavior of the error
 - Drive Adaptive refinement

A model problem

$$\begin{cases} a.\nabla u = f(x, y, z), \quad (x, y, z) \in \Omega = [0, 1]^{3} \\ u|_{\partial\Omega} = g(x, y, z) \end{cases}$$
(1)

A model problem

$$\begin{cases} a.\nabla u = f(x, y, z), \quad (x, y, z) \in \Omega = [0, 1]^{3} \\ u|_{\partial\Omega} = g(x, y, z) \end{cases}$$
(1)

where

f and g are selected such that the exact solution $u \in C^{\infty}(\Omega)$. a denote a constant non zero velocity vector. $\partial \Omega = \partial \Omega^+ \cup \partial \Omega^- \cup \partial \Omega^0$.

A model problem

$$\begin{cases} a.\nabla u = f(x, y, z), \quad (x, y, z) \in \Omega = [0, 1]^{3} \\ u|_{\partial\Omega} = g(x, y, z) \end{cases}$$
(1)

where

f and g are selected such that the exact solution $u \in C^{\infty}(\Omega)$. a denote a constant non zero velocity vector. $\partial \Omega = \partial \Omega^+ \cup \partial \Omega^- \cup \partial \Omega^0$,

$$\begin{array}{lll} \partial\Omega^{-} &=& \{(x,y,z)\in\partial\Omega|\,a.n<0\}\,, \text{is the inflow boundary,} \\ \partial\Omega^{+} &=& \{(x,y,z)\in\partial\Omega|\,a.n>0\}\,, \text{is the outflow boundary and} \\ \partial\Omega_{0} &=& \{(x,y,z)\in\partial\Omega|\,a.n=0\}, \text{is the characteristic boundary.} \end{array}$$

Class and Types of Elements

we partition the domain Ω into a regular mesh having N tetrahedra elements Δ_j , j = 1, ..., N of diameter h > 0, for simplicity We refer to an arbitrary element by Δ .

Classify tetrahedral elements as:

Class and Types of Elements

we partition the domain Ω into a regular mesh having N tetrahedra elements Δ_j , j = 1, ..., N of diameter h > 0, for simplicity We refer to an arbitrary element by Δ . Classify tetrahedral elements as:

 $T_{Class,Type} = T_{\# of Outflow, \# of Inflow}$

Class and Types of Elements

we partition the domain Ω into a regular mesh having N tetrahedra elements Δ_i , j = 1, ..., N of diameter h > 0, for simplicity We refer to an arbitrary element by Δ . Classify tetrahedral elements as:

$$T_{Class, Type} = T_{\# of Outflow, \# of Inflow}$$

Class and Types of elements						
Type I Type II Type III						
Class I	<i>T</i> ₁₁	<i>T</i> ₁₂	T ₁₃			
Class II	<i>T</i> ₂₁	T ₂₂				
Class III	<i>T</i> ₃₁					

Some examples for Class and Types of Elements

- ∢ ⊢⊒ →

• \mathcal{L}^2 Orthogonal basis functions

$$\varphi_{q,r}^{p}\left(\xi,\eta,\zeta\right) = \overline{P}_{p}^{0,0}\left(\xi,\eta,\zeta\right) \overline{P}_{q}^{2p+1,0}\left(\eta,\zeta\right) \overline{P}_{r}^{2p+2q+2,0}\left(\zeta\right),$$

• \mathcal{L}^2 Orthogonal basis functions

$$\varphi_{q,r}^{p}\left(\xi,\eta,\zeta\right) = \overline{P}_{p}^{0,0}\left(\xi,\eta,\zeta\right) \overline{P}_{q}^{2p+1,0}\left(\eta,\zeta\right) \overline{P}_{r}^{2p+2q+2,0}\left(\zeta\right),$$

where

$$\overline{P}_{p}^{0,0}(\xi,\eta,\zeta) = (1-\zeta-\eta)^{p} \hat{P}_{p}^{0,0}\left(\frac{2\xi}{1-\eta-\zeta}-1\right),$$

$$\overline{P}_{q}^{2p+1,0}(\eta,\zeta) = (1-\zeta)^{q} \hat{P}_{q}^{2p+1,0}\left(\frac{2\eta}{(1-\zeta)}-1\right),$$

$$\overline{P}_{r}^{2p+2q+2,0}(\zeta) = \hat{P}_{r}^{2p+2q+2,0}(2\zeta-1).$$

Image: Image:

э

• \mathcal{L}^2 Orthogonal basis functions

$$\varphi_{q,r}^{p}\left(\xi,\eta,\zeta\right)=\overline{P}_{p}^{0,0}\left(\xi,\eta,\zeta\right)\overline{P}_{q}^{2p+1,0}\left(\eta,\zeta\right)\overline{P}_{r}^{2p+2q+2,0}\left(\zeta\right),$$

where

$$\overline{P}_{p}^{0,0}(\xi,\eta,\zeta) = (1-\zeta-\eta)^{p} \hat{P}_{p}^{0,0}\left(\frac{2\xi}{1-\eta-\zeta}-1\right),$$

$$\overline{P}_{q}^{2p+1,0}(\eta,\zeta) = (1-\zeta)^{q} \hat{P}_{q}^{2p+1,0}\left(\frac{2\eta}{(1-\zeta)}-1\right),$$

$$\overline{P}_{r}^{2p+2q+2,0}(\zeta) = \hat{P}_{r}^{2p+2q+2,0}(2\zeta-1).$$

 $P_n^{\alpha,\beta}\left(x\right) = \frac{\left(-1\right)^n}{2^n n!} \left(1-x\right)^{-\alpha} \left(1+x\right)^{-\beta} \frac{d^n}{dx^n} \left[\left(1-x\right)^{\alpha+n} \left(1+x\right)^{\beta+n} \right], \ \alpha,\beta > -1.$ Satisfy \mathcal{L}^2 orthogonality and

• \mathcal{L}^2 Orthogonal basis functions

$$\varphi_{q,r}^{p}\left(\xi,\eta,\zeta\right) = \overline{P}_{p}^{0,0}\left(\xi,\eta,\zeta\right) \overline{P}_{q}^{2p+1,0}\left(\eta,\zeta\right) \overline{P}_{r}^{2p+2q+2,0}\left(\zeta\right),$$

where

$$\overline{P}_{p}^{0,0}(\xi,\eta,\zeta) = (1-\zeta-\eta)^{p} \hat{P}_{p}^{0,0}\left(\frac{2\xi}{1-\eta-\zeta}-1\right),$$

$$\overline{P}_{q}^{2p+1,0}(\eta,\zeta) = (1-\zeta)^{q} \hat{P}_{q}^{2p+1,0}\left(\frac{2\eta}{(1-\zeta)}-1\right),$$

$$\overline{P}_{r}^{2p+2q+2,0}(\zeta) = \hat{P}_{r}^{2p+2q+2,0}(2\zeta-1).$$

 $P_{n}^{\alpha,\beta}(x) = \frac{(-1)^{n}}{2^{n}n!} (1-x)^{-\alpha} (1+x)^{-\beta} \frac{d^{n}}{dx^{n}} \left[(1-x)^{\alpha+n} (1+x)^{\beta+n} \right], \ \alpha,\beta > -1.$ Satisfy \mathcal{L}^{2} orthogonality and is complete in the space \mathcal{P}_{p}

$$\int_0^1 \int_0^{1-\eta} \int_0^{1-\eta-\zeta} \varphi_{ij}^m \varphi_{kl}^n d\zeta d\eta d\xi = c_{ij,kl}^{mn} \delta_{ik} \delta_{jl} \delta_{mn},$$

Idir Mechai Advisor: Slimane Adjerid ()

Standard DG formulation

Multiply (1) by a test function v, integrate over an Δ , apply Stokes' theorem:

$$\int \int_{\Gamma^{-}} a.nuvd\sigma + \int \int_{\Gamma^{+}} a.nuvd\sigma + \int \int \int_{\Delta} (-a.\nabla v) \, udxdydz$$
$$= \int \int \int_{\Delta} fvdxdydz, \qquad (2)$$

Approximate u by a piecewise polynomial function U s.t $U|_{\Delta} \in \mathcal{P}_{p}$.

Standard DG formulation

Multiply (1) by a test function v, integrate over an Δ , apply Stokes' theorem:

$$\int \int_{\Gamma^{-}} a.nuvd\sigma + \int \int_{\Gamma^{+}} a.nuvd\sigma + \int \int \int_{\Delta} (-a.\nabla v) \, udxdydz$$
$$= \int \int \int_{\Delta} fvdxdydz, \qquad (2)$$

Approximate u by a piecewise polynomial function U s.t $U|_{\Delta} \in \mathcal{P}_p$. The discrete DG formulation consists of determining $U \in S^{N,p}$ such that

$$\int \int_{\Gamma^{-}} a.nU^{-}Vd\sigma + \int \int_{\Gamma^{+}} a.nUVd\sigma + \int \int \int_{\Delta} (-a.\nabla V) Udxdydz$$
$$= \int \int \int_{\Delta} fVdxdydz, \text{ for all } V \in \mathcal{P}_{p}$$
(3)

here $U^- \approx u$ in Γ^- .

Standard DG formulation

Multiply (1) by a test function v, integrate over an Δ , apply Stokes' theorem:

$$\int \int_{\Gamma^{-}} a.nuvd\sigma + \int \int_{\Gamma^{+}} a.nuvd\sigma + \int \int \int_{\Delta} (-a.\nabla v) \, udxdydz$$
$$= \int \int \int_{\Delta} fvdxdydz, \qquad (2)$$

Approximate u by a piecewise polynomial function U s.t $U|_{\Delta} \in \mathcal{P}_p$. The discrete DG formulation consists of determining $U \in S^{N,p}$ such that

$$\int \int_{\Gamma^{-}} a.nU^{-}Vd\sigma + \int \int_{\Gamma^{+}} a.nUVd\sigma + \int \int \int_{\Delta} (-a.\nabla V) Udxdydz$$
$$= \int \int \int_{\Delta} fVdxdydz, \text{ for all } V \in \mathcal{P}_{p}$$
(3)

here $U^- \approx u$ in Γ^- . Let Δ such that $\Gamma^- \subset \partial \Omega^-$, and subtract (3) from (2) with v = V to obtain the DG orthogonality conditions for the local error $\epsilon = \mu - U_{\text{solution}} U_{\text{solution}}$

DG formulation and preliminary results DG Orthogonality

$$\int \int_{\Gamma^{-}} a.n\epsilon^{-} V d\sigma + \int \int_{\Gamma^{+}} a.n\epsilon V d\sigma + \int \int \int_{\Delta} (-a.\nabla V) \epsilon dx dy dz = 0, \quad (4)$$

for all $V \in \mathcal{P}_p$. By the standard affine mapping

DG formulation and preliminary results • DG Orthogonality

$$\int \int_{\Gamma^{-}} a.n\epsilon^{-} V d\sigma + \int \int_{\Gamma^{+}} a.n\epsilon V d\sigma + \int \int \int_{\Delta} (-a.\nabla V) \epsilon dx dy dz = 0, \quad (4)$$

for all $V \in \mathcal{P}_p$. By the standard affine mapping

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} V_2 - V_1 & V_3 - V_1 & V_4 - V_1 \end{pmatrix} \begin{pmatrix} \xi \\ \eta \\ \zeta \end{pmatrix} + V_1$$

map Δ with vertices $V_i = (x_i, y_i, z_i)$, i = 1, 2, 3, 4 into the canonical tetrahedron $\hat{\Delta}$ with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1).

Then the local error satisfy these orthogonality conditions on the canonical element

DG formulation and preliminary results DG Orthogonality

$$\int \int_{\Gamma^{-}} a.n\epsilon^{-} V d\sigma + \int \int_{\Gamma^{+}} a.n\epsilon V d\sigma + \int \int \int_{\Delta} (-a.\nabla V) \epsilon dx dy dz = 0, \quad (4)$$

for all $V \in \mathcal{P}_p$. By the standard affine mapping

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} V_2 - V_1 & V_3 - V_1 & V_4 - V_1 \end{pmatrix} \begin{pmatrix} \xi \\ \eta \\ \zeta \end{pmatrix} + V_1$$

map Δ with vertices $V_i = (x_i, y_i, z_i)$, i = 1, 2, 3, 4 into the canonical tetrahedron $\hat{\Delta}$ with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1).

Then the local error satisfy these orthogonality conditions on the canonical element

$$\int \int_{\hat{\Gamma}^{-}} \hat{a} \cdot \hat{n} \hat{\epsilon}^{-} V d\hat{\sigma} + \int \int_{\hat{\Gamma}^{+}} \hat{a} \cdot \hat{n} \hat{\epsilon} \hat{V} d\sigma + \int \int \int_{\hat{\Delta}} \left(-\hat{a} \cdot \nabla \hat{V} \right) \hat{\epsilon} d\xi d\eta d\zeta = 0,$$
(5)

for all $\hat{V} \in \mathcal{P}_p$.

Preliminary results

If u is analytic, we can write the local error as a Maclaurin series

$$\epsilon(\xi,\eta,\zeta) = \sum_{k=0}^{\infty} Q_k(\xi,\eta,\zeta) h^k, \text{ where } Q_k \in \mathcal{P}_k$$
(6)

Preliminary results

If u is analytic, we can write the local error as a Maclaurin series

$$\epsilon\left(\xi,\eta,\zeta\right) = \sum_{k=0}^{\infty} Q_k\left(\xi,\eta,\zeta\right) h^k, \text{ where } Q_k \in \mathcal{P}_k \tag{6}$$

Lemma

If $Q_k \in \mathcal{P}_k$, k = 0, 1, ..., p satisfies

$$\int \int_{\Gamma^+} a.nQ_k V d\sigma + \int \int \int_{\Delta} (-a.\nabla V) Q_k d\xi d\eta d\zeta = 0, \ \forall V \in \mathcal{P}_p.$$
(7)

Then $Q_k = 0$, $0 \le k \le p$.

Then we obtain the following expression for the local error.

Asymptotic behavior of error

Theorem

Let $u \in C^{\infty}(\Delta)$ and $U \in \mathcal{P}_p(\Delta)$ be the solutions of (1), then the local finite element error can be written as

$$\epsilon(\xi,\eta,\zeta) = \sum_{k=p+1}^{\infty} h^k Q_k(\xi,\eta,\zeta), \qquad (8)$$

Basis for the leading term of the local discretization error

Basis functions of error I

The local finite element error on Δ_e approximated by its leading term in the space \mathcal{P}_p as

Basis for the leading term of the local discretization error Basis functions of error I

The local finite element error on Δ_e approximated by its leading term in the space \mathcal{P}_p as

i=0 *j*=0

$$u - U \approx E = Q_{p+1}h^{p+1} = \sum_{i=0}^{p+1} \sum_{j=0}^{p+1} \sum_{k=0}^{p+1} c_{j,k}^{i} \varphi_{j,k}^{i}$$
$$= \sum_{i=0}^{p+1} \sum_{j=0}^{p+1} C_{i-j,j}^{p+1} \chi_{i,j}^{p+1}$$

v

Basis for the leading term of the local discretization error Basis functions of error I

The local finite element error on Δ_e approximated by its leading term in the space \mathcal{P}_p as

$$u - U \approx E = Q_{p+1}h^{p+1} = \sum_{i=0}^{p+1} \sum_{j=0}^{p+1} \sum_{k=0}^{p+1} c_{j,k}^i \varphi_{j,k}^i$$

$$= \sum_{i=0}^{p+1} \sum_{j=0}^{p+1} C_{i-j,j}^{p+1} \chi_{i,j}^{p+1}$$

where we have the degree of freedom

$$\dim \left\{ \varphi_{j,k}^{i}, 0 \leq i, j, k \leq p+1 \right\} = \dim \mathcal{P}_{p+1}$$
$$= \frac{(p+2)(p+3)(p+4)}{6} = O\left(p^{3}\right)$$

and for for the second basis is

Basis for the leading term of the local discretization error Basis functions of error I

The local finite element error on Δ_e approximated by its leading term in the space \mathcal{P}_p as

$$u - U \approx E = Q_{p+1}h^{p+1} = \sum_{i=0}^{p+1} \sum_{j=0}^{p+1} \sum_{k=0}^{p+1} c_{j,k}^i \varphi_{j,k}^i$$

$$= \sum_{i=0}^{p+1} \sum_{j=0}^{p+1} C_{i-j,j}^{p+1} \chi_{i,j}^{p+1}$$

where we have the degree of freedom

$$\dim \left\{ \varphi_{j,k}^{i}, \ 0 \leq i, j, k \leq p+1 \right\} = \dim \mathcal{P}_{p+1}$$
$$= \frac{(p+2)(p+3)(p+4)}{6} = O\left(p^{3}\right)$$

and for for the second basis is

dim
$$\left\{\chi_{i,j}^{p+1}, 0 \le i, j \le p+1\right\} = \frac{(p+2)(p+3)}{2} = O(p^2)$$

Basis for the leading term of the local discretization error Basis functions of error II

The leading term E satisfy these orthogonality conditions

$$\int \int_{\Gamma^{-}} a.nE^{-}Vd\sigma + \int \int_{\Gamma^{+}} a.nEVd\sigma$$
$$+ \int \int \int_{\Delta_{e}} (a \cdot \nabla E) Vdxdydz = 0, \forall V \in \mathcal{P}_{p}$$

where $E^- = u - U^-$, we choose $U|_{\Gamma^-} = U^- = u$, then $E^-=0$, after mapping to the Canonical element we get

$$\int \int_{\hat{\Gamma}^+} \hat{a}.\hat{n}\hat{E}\,Vd\sigma + \int \int \int_{\hat{\Delta}} \left(\hat{a}\cdot\nabla\hat{E}\right)\,Vd\xi d\eta d\zeta = \mathsf{0},\,\forall V\in\mathcal{P}_p$$

Let $\lambda = \frac{\alpha}{\beta}$, $\mu = \frac{\gamma}{\beta}$ where $(\alpha, \beta, \gamma) = \hat{a}$.

Basis for the leading term of the local discretization error • Example of Basis functions for element of Class I, p = 0, 1

Then the function $\chi_{i,j}^{p+1}$ computed on the reference tetrahedra for each class of elements, using Mathematica, and are given in terms of $\varphi_{i,k}^{i}$ as:

Basis for the leading term of the local discretization error • Example of Basis functions for element of Class I, p = 0, 1

Then the function $\chi_{i,j}^{p+1}$ computed on the reference tetrahedra for each class of elements, using Mathematica, and are given in terms of $\varphi_{i,k}^{i}$ as:

• Class I (where we have one outflow)

Basis for the leading term of the local discretization error • Example of Basis functions for element of Class II and III, p = 0

• Class II (where we have two outflow)

$$\begin{array}{|c|c|c|c|c|c|} \hline p = 0 & \chi^1_{0,0} = \varphi^1_{0,0} + \frac{\lambda}{3\lambda+3}\varphi^0_{0,0} \\ \chi^0_{1,0} = \varphi^0_{1,0} + \frac{-\lambda+2}{3\lambda+3}\varphi^0_{0,0} \\ \chi^0_{0,1} = -\frac{1}{3}\varphi^0_{0,0} + \varphi^0_{0,1} \\ \hline \hline \mbox{Table 2: Basis functions for element of $Class II$} \end{array}$$

• Class III (where we have three outflow)

$$\begin{array}{|c|c|c|c|c|c|c|} \hline p = 0 & \chi^1_{0,0} = \varphi^1_{0,0} + \frac{\lambda}{3\lambda+3\mu+3}\varphi^0_{0,0} \\ \chi^0_{1,0} = \varphi^0_{1,0} - \frac{(\lambda-2)}{3\lambda+3\mu+3}\varphi^0_{0,0} \\ \chi^0_{0,1} = \varphi^0_{0,1} - \frac{\lambda-3\mu+1}{3\lambda+3\mu+3}\varphi^0_{0,0} \\ \hline \hline \mbox{Table 3: Basis functions for element of $Class III$} \end{array}$$

A posteriori error procedure

The DG solution U_e satisfy on the physical elementts Ω_e

$$\int \int_{\Gamma^{-}} a.n \left(\tilde{U}^{-} - U \right) V d\sigma + \int \int \int_{\Omega_{e}} \left(a \cdot \nabla U \right) V dx dy dz = \int \int \int_{\Omega_{e}} f V dx dy dz.$$

and the leading term E satisfy on

$$\int \int_{\Gamma^{-}} \mathbf{a}.\mathbf{n} \left(E^{-} - E \right) \, V d\sigma + \int \int \int_{\Omega_{e}} \left(\mathbf{a} \cdot \nabla E \right) \, V dx dy dz$$
$$= \int \int \int_{\Omega_{e}} \left(f - \mathbf{a} \cdot \nabla U \right) \, V dx dy dz.$$

In this analysis we use the local and global effectivity indices in the

A posteriori error procedure

The DG solution U_e satisfy on the physical elementts Ω_e

$$\int \int_{\Gamma^{-}} a.n \left(\tilde{U}^{-} - U \right) V d\sigma + \int \int \int_{\Omega_{e}} \left(a \cdot \nabla U \right) V dx dy dz = \int \int \int_{\Omega_{e}} f V dx dy dz.$$

and the leading term ${\it E}$ satisfy on

$$\int \int_{\Gamma^{-}} \mathbf{a}.\mathbf{n} \left(E^{-} - E \right) \, V d\sigma + \int \int \int_{\Omega_{e}} \left(\mathbf{a} \cdot \nabla E \right) \, V dx dy dz$$
$$= \int \int \int_{\Omega_{e}} \left(f - \mathbf{a} \cdot \nabla U \right) \, V dx dy dz.$$

In this analysis we use the local and global effectivity indices in the \mathcal{L}^2 norm

$$\theta_e = \frac{\|E\|_{\mathcal{L}^2(\Omega_e)}}{\|e\|_{\mathcal{L}^2(\Omega_e)}}, \text{ and } \theta = \frac{\|E\|_{\mathcal{L}^2(\Omega)}}{\|e\|_{\mathcal{L}^2(\Omega)}}$$

Under mesh refinement, the effectivity indices should approach unity.

Algorithms

Algorithms

 $\textbf{0} \ \ \mathsf{Partition} \ \ \mathsf{the} \ \mathsf{domain} \ \Omega \ \mathsf{into} \ \mathsf{a} \ \mathsf{regular} \ \mathsf{tetrahedral} \ \mathsf{meshes}$

Algorithms

- $\textbf{0} \ \ \mathsf{Partition} \ \ \mathsf{the} \ \mathsf{domain} \ \Omega \ \mathsf{into} \ \mathsf{a} \ \mathsf{regular} \ \mathsf{tetrahedral} \ \mathsf{meshes}$
- Pind the Class and Types of each elements

Algorithms

- $\textbf{0} \ \ \mathsf{Partition} \ \ \mathsf{the} \ \mathsf{domain} \ \Omega \ \mathsf{into} \ \mathsf{a} \ \mathsf{regular} \ \mathsf{tetrahedral} \ \mathsf{meshes}$
- Pind the Class and Types of each elements
- **③** Start from elements where U^- is know in all inflow boundary

Algorithms

- $\textbf{0} \quad \text{Partition the domain } \boldsymbol{\Omega} \text{ into a regular tetrahedral meshes}$
- Pind the Class and Types of each elements
- **③** Start from elements where U^- is know in all inflow boundary
- Compute the DG solution U_e in Ω_e

Algorithms

- $\textbf{0} \quad \text{Partition the domain } \boldsymbol{\Omega} \text{ into a regular tetrahedral meshes}$
- Pind the Class and Types of each elements
- **③** Start from elements where U^- is know in all inflow boundary
- Compute the DG solution U_e in Ω_e
- **(a)** Compute the error E_e in Ω_e

Algorithms

- $\textbf{0} \ \ \mathsf{Partition} \ \ \mathsf{the} \ \mathsf{domain} \ \Omega \ \mathsf{into} \ \mathsf{a} \ \mathsf{regular} \ \mathsf{tetrahedral} \ \mathsf{meshes}$
- Pind the Class and Types of each elements
- **③** Start from elements where U^- is know in all inflow boundary
- Compute the DG solution U_e in Ω_e
- **(a)** Compute the error E_e in Ω_e

$${f 0}~~e=e+1$$
 and take $ilde U^-_{e+1}=$

Algorithms

Algorithms

- **(**) Partition the domain Ω into a regular tetrahedral meshes
- Pind the Class and Types of each elements
- **③** Start from elements where U^- is know in all inflow boundary
- Compute the DG solution U_e in Ω_e
- **(a)** Compute the error E_e in Ω_e

$$old o \ e = e+1$$
 and take $ilde U^-_{e+1} =$

• Standard Method (without correction): $\tilde{U}_{e+1}^- = U_e$

Algorithms

- $\textbf{0} \ \ \mathsf{Partition} \ \ \mathsf{the} \ \mathsf{domain} \ \Omega \ \mathsf{into} \ \mathsf{a} \ \mathsf{regular} \ \mathsf{tetrahedral} \ \mathsf{meshes}$
- Pind the Class and Types of each elements
- **③** Start from elements where U^- is know in all inflow boundary
- Compute the DG solution U_e in Ω_e
- **(a)** Compute the error E_e in Ω_e
- ${old o}~e=e+1$ and take ${ ilde U}^-_{e+1}=$
 - Standard Method (without correction): $ilde{U}^-_{e+1} = U_e$
 - New Method (with correction): $\tilde{U}_{e+1}^- = U_e + E_e$

Algorithms

Algorithms

- $\textbf{0} \ \ \mathsf{Partition} \ \ \mathsf{the} \ \mathsf{domain} \ \Omega \ \mathsf{into} \ \mathsf{a} \ \mathsf{regular} \ \mathsf{tetrahedral} \ \mathsf{meshes}$
- Pind the Class and Types of each elements
- **③** Start from elements where U^- is know in all inflow boundary
- Compute the DG solution U_e in Ω_e
- **(a)** Compute the error E_e in Ω_e
- $oldsymbol{0}$ e=e+1 and take $ilde{U}^-_{e+1}=$
 - Standard Method (without correction): $ilde{U}^-_{e+1} = U_e$
 - New Method (with correction): $\tilde{U}_{e+1}^- = U_e + E_e$

go to (3)

Structured and Unstructured meshes

Remark

i) Structured meshes: This meshes obtained by partitioning the domain into n^3 cube for n = 1, 2, 3, 4, 5, 6, 7, 8 and dividing each cube into five tetrahedrons (where $h_{\max} = \frac{\sqrt{2}}{n}$). Thus, the meshes have $N = 5 \times n^3 = 40$, 135, 320, 625, 1080, 1715 and 2560 tetrahedra elements. ii) Unstructured meshes: These meshes obtained by COMSOL software for $h_{\max} = \frac{1}{n}$ (for n = 1, 2, 3, 4, 5, 6, 7, 8) with number of elements N = 24, 192, 476, 943, 2121, 3731, 5846 and 8713.

Example of Structured and Unstructured meshes

Solve Problem 1 in structured meshes

Example 1: We consider the following linear hyperbolic problem

$$-3u_x - 7u_y + 13u_z = 3e^{x+y+z}$$
, $(x, y, z) \in \Omega = [0, 1]^3$,

and select the initial and boundary conditions such that the exact solution is

$$u(x,y,z)=e^{x+y+z}$$

We solve this problem using \mathcal{P}_p , with the exact boundary condition i.e. $U^- = u$, on the first meshes and compar the two methods for p = 0, 1, 2, 3.

• Results of Problem 1 in structured meshes, p = 0

\mathcal{P}_{p} (Example 1)								
	With correction							
p	Ν	$\ u-U\ _{2,\Omega}$	Order	$\ u-U-E\ _{2,\Omega}$	Order	θ		
	40	1.0279	_	1.4619 <i>e</i> - 01	_	1.0249		
	320	5.2283 <i>e</i> - 01	1.0155	4.4524 <i>e</i> - 02	1.7651	1.0257		
0	1080	3.4927 <i>e</i> - 01	1.0031	2.1341 <i>e</i> - 02	1.8323	1.0215		
	2560	2.6212e - 01	1.0009	1.2524 <i>e</i> – 02	1.8594	1.0181		
	Without correction							
	40	1.1016	_	8.8975 <i>e</i> - 01	_	0.5326		
	320	5.8671 <i>e</i> - 01	0.9290	4.9958 <i>e</i> - 01	0.8104	0.4456		
0	1080	4.0105 <i>e</i> - 01	0.9432	3.4893 <i>e</i> - 01	0.8788	0.4097		
	2560	3.0492 <i>e</i> - 01	0.9549	2.6829 <i>e</i> - 01	0.9111	0.3901		

3

21 / 26

• Results of Problem 1 in structured meshes, p = 1

\mathcal{P}_p (Example 1)								
	With correction							
p	Ν	$\ u-U\ _{2,\Omega}$	Order	$\ u-U-E\ _{2,\Omega}$	Order	θ		
	40	1.6430e - 01	_	1.1208e - 02	_	1.0078		
1	320	2.9779 <i>e</i> - 02	2.0298	1.7188 <i>e</i> - 03	2.7045	1.0100		
	1080	1.3256 <i>e</i> - 02	2.0085	5.6092 <i>e</i> - 04	2.7975	1.0107		
	2560	7.4596 <i>e</i> – 03	2.0031	2.4287 <i>e</i> - 04	2.9433	1.0101		
	Without correction							
	40	1.4619 <i>e</i> - 01	_	1.2639 <i>e</i> - 01	_	0.3583		
1	320	4.4524 <i>e</i> - 02	1.7651	4.0626 <i>e</i> - 02	1.6926	0.2940		
	1080	2.1341 <i>e</i> - 02	1.8323	1.9748 <i>e</i> - 02	1.7993	0.2835		
	2560	1.2524e - 02	1.8594	1.1664 <i>e</i> - 02	1.8371	0.2794		

22 / 26

3

• Results of Problem 1 in structured meshes, p = 3

\mathcal{P}_{p} (Example 1)								
	With correction							
p	N	$\ u-U\ _{2,\Omega}$	Order	$\ u-U-E\ _{2,\Omega}$	Order	θ		
	40	5.6848 <i>e</i> - 04	_	3.5351 <i>e</i> – 05	_	1.0088		
3	320	3.6432 <i>e</i> - 05	4.0338	1.2754 <i>e</i> – 06	4.8473	1.0052		
	1080	7.2110 <i>e</i> - 06	4.0087	1.7850 <i>e</i> – 07	4.8463	1.0034		
	2560	2.2825 <i>e</i> - 06	4.0035	4.3753 <i>e</i> – 08	4.9049	1.0026		
	Without correction							
	40	7.1418 <i>e</i> - 04	_	6.2790 <i>e</i> - 04	3.7141	0.37205		
3	320	5.3016 <i>e</i> - 05	3.7605	4.8864 <i>e</i> - 05	3.6696	0.36086		
	1080	1.1461 <i>e</i> - 05	3.7898	1.0778 <i>e</i> – 05	3.7375	0.3509		
	2560	3.7927 <i>e</i> - 06	3.8634	3.6021 <i>e</i> - 06	3.8291	0.3505		

3

23 / 26

• Results of Problem 1 in Unstructured meshes, p = 2, 3

• Results for solving Example 1 on the second meshes are given in the following table for p = 0, 1, 2, 3 using the new method.

• Results of Problem 1 in Unstructured meshes, p = 2, 3

• Results for solving Example 1 on the second meshes are given in the following table for p = 0, 1, 2, 3 using the new method.

\mathcal{P}_p (Example 1 CM)						
p = 2						
N	$\ u-U\ _{2,\Omega}$	Order	$\ u-U-E\ _{2,\Omega}$	Order	θ	
192	1.6180e - 003	_	7.5291 <i>e</i> – 005	_	1.0161	
934	4.1263 <i>e</i> - 004	3.0445	1.4901 <i>e</i> - 005	3.6954	1.0024	
3731	1.0915e - 004	3.0376	2.6278 <i>e</i> - 006	3.8781	1.0021	
8713	4.6621 <i>e</i> - 005	3.2370	8.7999 <i>e</i> – 007	4.3913	1.0014	
p = 3						
24	8.3118 <i>e</i> - 04	—	5.2796 <i>e</i> – 05	—	1.0229	
192	5.1438 <i>e</i> - 05	4.0142	1.8696 <i>e</i> – 06	4.8196	1.0132	
934	9.2356 <i>e</i> - 06	4.3114	2.9574 <i>e</i> - 07	4.7873	1.0020	
2121	3.3315 <i>e</i> - 06	4.5695	8.7329 <i>e</i> – 08	5.4664	1.0020	

Idir Mechai Advisor: Slimane Adjerid ()

- Conclusion:
 - Investigated higher-order DGM for scalar first-order hyperbolic problems on tetrahedral meshes.
 - Construct asymptotically correct a posteriori error estimates for discontinuous finite element solutions
 - Write explicitly the basis functions for the error spaces corresponding to the finite element space \mathcal{P}_p .
 - These a posteriori error estimates tested on several linear problems to show their efficiency and accuracy under mesh refinement for smooth solutions.
- Future work

- Conclusion:
 - Investigated higher-order DGM for scalar first-order hyperbolic problems on tetrahedral meshes.
 - Construct asymptotically correct a posteriori error estimates for discontinuous finite element solutions
 - Write explicitly the basis functions for the error spaces corresponding to the finite element space \mathcal{P}_p .
 - These a posteriori error estimates tested on several linear problems to show their efficiency and accuracy under mesh refinement for smooth solutions.
- Future work
 - Nonlinear problem
 - Transit problem
 - System
 - Other spaces

Thanks!

∃ ► < ∃</p>

Image: A image: A

æ