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Introduction

The success of the DG method is due to the following properties:

Is locally conservative,

Is well suited to solve problems on locally refined meshes with hanging
nodes and
Exhibits strong superconvergence that can be used to estimate the
discretization error.
Has a simple communication pattern between elements with a common
face that makes it useful for parallel computation.
Can handle problems with complex geometries to high order.
Does not require continuity across element boundaries

A posteriori Error Estimation

u − Uh ≈ E
Asymptotic behavior of the error
Drive Adaptive refinement
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DG formulation and preliminary results
A model problem

{
a.∇u = f (x , y , z) , (x , y , z) ∈ Ω = [0, 1]3

u|∂Ω = g (x , y , z)
(1)

where
f and g are selected such that
the exact solution u ∈ C∞ (Ω).
a denote a constant non zero
velocity vector.
∂Ω = ∂Ω+ ∪ ∂Ω− ∪ ∂Ω0,

 

n

∂− ∂Ω
 

a  

∂Ω− = {(x , y , z) ∈ ∂Ω| a.n < 0} , is the inflow boundary,

∂Ω+ = {(x , y , z) ∈ ∂Ω| a.n > 0} , is the outflow boundary and

∂Ω0 = {(x , y , z) ∈ ∂Ω| a.n = 0}, is the characteristic boundary.
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DG formulation and preliminary results
Class and Types of Elements

we partition the domain Ω into a regular mesh having N tetrahedra
elements ∆j , j = 1, ...,N of diameter h > 0, for simplicity We refer to an
arbitrary element by ∆.
Classify tetrahedral elements as:

TClass,Type = T# of Outflow , # of Inflow

Class and Types of elements

Type I Type II Type III

Class I T11 T12 T13

Class II T21 T22

Class III T31
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DG formulation and preliminary results
Some examples for Class and Types of Elements

T11

Figure: T11: One Outflow, One
Inflow and Two Characteristics

T12

Figure: T12: One Outflow, Two
Inflow and One Characteristics
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DG formulation and preliminary results
L2 Orthogonal basis functions

ϕp
q,r (ξ, η, ζ) = P

0,0
p (ξ, η, ζ) P

2p+1,0
q (η, ζ) P

2p+2q+2,0
r (ζ) ,

where

P
0,0
p (ξ, η, ζ) = (1− ζ − η)p P̂0,0

p

(
2ξ

1− η − ζ
− 1

)
,

P
2p+1,0
q (η, ζ) = (1− ζ)q P̂2p+1,0

q

(
2η

(1− ζ)
− 1

)
,

P
2p+2q+2,0
r (ζ) = P̂2p+2q+2,0

r (2ζ − 1) .

Pα,β
n (x) =

(−1)n

2nn!
(1− x)−α (1 + x)−β

dn

dxn

[
(1− x)α+n (1 + x)β+n

]
, α, β > −1.

Satisfy L2 orthogonality and is complete in the space Pp∫ 1

0

∫ 1−η

0

∫ 1−η−ζ

0

ϕm
ij ϕ

n
kl dζdηdξ = cmn

ij,klδikδjlδmn,
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DG formulation and preliminary results
Standard DG formulation

Multiply (1) by a test function v , integrate over an ∆, apply Stokes’ theorem:∫ ∫
Γ−

a.nuvdσ +

∫ ∫
Γ+

a.nuvdσ +

∫ ∫ ∫
∆

(−a.∇v) udxdydz

=

∫ ∫ ∫
∆

fvdxdydz , (2)

Approximate u by a piecewise polynomial function U s.t U|∆ ∈ Pp.

The discrete

DG formulation consists of determining U ∈ SN,p such that∫ ∫
Γ−

a.nU−Vdσ +

∫ ∫
Γ+

a.nUVdσ +

∫ ∫ ∫
∆

(−a.∇V ) Udxdydz

=

∫ ∫ ∫
∆

fVdxdydz , for all V ∈ Pp (3)

here U− ≈ u in Γ−. Let ∆ such that Γ− ⊂ ∂Ω−, and subtract (3) from (2) with

v = V to obtain the DG orthogonality conditions for the local error ε = u − U

Idir Mechai Advisor: Slimane Adjerid () Virginia Tech February 20, 2010 8 / 26
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DG formulation and preliminary results
DG Orthogonality

∫ ∫
Γ−

a.nε−Vdσ +

∫ ∫
Γ+

a.nεVdσ +

∫ ∫ ∫
∆

(−a.∇V ) εdxdydz = 0, (4)

for all V ∈ Pp. By the standard affine mapping

 x
y
z

 =
(

V2 − V1 V3 − V1 V4 − V1

) ξ
η
ζ

+ V1

map ∆ with vertices Vi = (xi , yi , zi ), i = 1, 2, 3, 4 into the canonical tetrahedron
∆̂ with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1).
Then the local error satisfy these orthogonality conditions on the canonical
element∫ ∫

Γ̂−
â.n̂ε̂−Vd σ̂ +

∫ ∫
Γ̂+

â.n̂ε̂V̂ dσ +

∫ ∫ ∫
∆̂

(
−â.∇V̂

)
ε̂dξdηdζ = 0, (5)

for all V̂ ∈ Pp.

Idir Mechai Advisor: Slimane Adjerid () Virginia Tech February 20, 2010 9 / 26



DG formulation and preliminary results
DG Orthogonality

∫ ∫
Γ−

a.nε−Vdσ +

∫ ∫
Γ+

a.nεVdσ +

∫ ∫ ∫
∆

(−a.∇V ) εdxdydz = 0, (4)

for all V ∈ Pp. By the standard affine mapping x
y
z

 =
(

V2 − V1 V3 − V1 V4 − V1

) ξ
η
ζ

+ V1

map ∆ with vertices Vi = (xi , yi , zi ), i = 1, 2, 3, 4 into the canonical tetrahedron
∆̂ with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1).
Then the local error satisfy these orthogonality conditions on the canonical
element

∫ ∫
Γ̂−
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DG formulation and preliminary results
Preliminary results

If u is analytic, we can write the local error as a Maclaurin series

ε (ξ, η, ζ) =
∞∑

k=0

Qk (ξ, η, ζ) hk , where Qk ∈ Pk (6)

Lemma

If Qk ∈ Pk , k = 0, 1, ..., p satisfies∫ ∫
Γ+

a.nQkVdσ +

∫ ∫ ∫
∆

(−a.∇V ) Qkdξdηdζ = 0, ∀V ∈ Pp. (7)

Then Qk = 0, 0 ≤ k ≤ p.

Then we obtain the following expression for the local error.
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DG formulation and preliminary results
Asymptotic behavior of error

Theorem

Let u ∈ C∞ (∆) and U ∈ Pp (∆) be the solutions of (1), then the local
finite element error can be written as

ε (ξ, η, ζ) =
∞∑

k=p+1

hk Qk (ξ, η, ζ) , (8)
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Basis for the leading term of the local discretization error
Basis functions of error I

The local finite element error on ∆e approximated by its leading term in the
space Pp as

u − U ≈ E = Qp+1hp+1 =

p+1∑
i=0

p+1∑
j=0

p+1∑
k=0

c i
j,kϕ

i
j,k

=

p+1∑
i=0

p+1∑
j=0

C p+1
i−j,jχ

p+1
i,j

where we have the degree of freedom

dim
{
ϕi

j,k , 0 ≤ i , j , k ≤ p + 1
}

= dimPp+1

=
(p + 2) (p + 3) (p + 4)

6
= O

(
p3
)

and for for the second basis is

dim
{
χp+1

i,j , 0 ≤ i , j ≤ p + 1
}

=
(p + 2) (p + 3)

2
= O

(
p2
)
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Basis for the leading term of the local discretization error
Basis functions of error I
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Basis for the leading term of the local discretization error
Basis functions of error II

The leading term E satisfy these orthogonality conditions∫ ∫
Γ−

a.nE−Vdσ +

∫ ∫
Γ+

a.nEVdσ

+

∫ ∫ ∫
∆e

(a · ∇E ) Vdxdydz = 0, ∀V ∈ Pp

where E− = u − U−, we choose U|Γ− = U− = u, then E−=0, after
mapping to the Canonical element we get∫ ∫

Γ̂+

â.n̂Ê Vdσ +

∫ ∫ ∫
∆̂

(
â · ∇Ê

)
Vdξdηdζ = 0, ∀V ∈ Pp

Let λ = α
β , µ = γ

β where (α, β, γ) = â.
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Basis for the leading term of the local discretization error
Example of Basis functions for element of Class I, p = 0, 1

Then the function χp+1
i ,j computed on the reference tetrahedra for each

class of elements, using Mathematica, and are given in terms of ϕi
j ,k as:

Class I (where we have one outflow)

p = 0

χ1
0,0 = ϕ1

0,0

χ0
1,0 = 2

3ϕ
0
0,0 + ϕ0

1,0

χ0
0,1 = −1

3ϕ
0
0,0 + ϕ0

0,1

p = 1

χ2
0,0 = ϕ2

0,0

χ1
1,0 = 4

5ϕ
1
0,0 + ϕ1

1,0

χ1
0,1 = −1

5ϕ
1
0,0 + ϕ1

0,1

χ0
2,0 = 1

10ϕ
0
0,1 + 4

5ϕ
0
1,0 + ϕ0

2,0

χ0
1,1 = 3

5ϕ
0
0,1 − 1

5ϕ
0
1,0 + ϕ0

1,1

χ0
0,2 = −1

2ϕ
0
0,1 + ϕ0

0,2

Table 1: Basis functions for element of Class I
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Basis for the leading term of the local discretization error
Example of Basis functions for element of Class II and III, p = 0

Class II (where we have two outflow)

p = 0

χ1
0,0 = ϕ1

0,0 + λ
3λ+3ϕ

0
0,0

χ0
1,0 = ϕ0

1,0 + −λ+2
3λ+3 ϕ

0
0,0

χ0
0,1 = −1

3ϕ
0
0,0 + ϕ0

0,1

Table 2: Basis functions for element of Class II

Class III (where we have three outflow)

p = 0

χ1
0,0 = ϕ1

0,0 + λ
3λ+3µ+3ϕ

0
0,0

χ0
1,0 = ϕ0

1,0 −
(λ−2)

3λ+3µ+3ϕ
0
0,0

χ0
0,1 = ϕ0

0,1 −
λ−3µ+1

3λ+3µ+3ϕ
0
0,0

Table 3: Basis functions for element of Class III
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Computational Examples
A posteriori error procedure

The DG solution Ue satisfy on the physical elementts Ωe∫ ∫
Γ−

a.n
(

Ũ− − U
)

Vdσ +

∫ ∫ ∫
Ωe

(a · ∇U) Vdxdydz =

∫ ∫ ∫
Ωe

fVdxdydz .

and the leading term E satisfy on∫ ∫
Γ−

a.n
(
E− − E

)
Vdσ +

∫ ∫ ∫
Ωe

(a · ∇E ) Vdxdydz

=

∫ ∫ ∫
Ωe

(f − a · ∇U) Vdxdydz .

In this analysis we use the local and global effectivity indices in the

L2 norm

θe =
‖E‖L2(Ωe )

‖e‖L2(Ωe )

, and θ =
‖E‖L2(Ω)

‖e‖L2(Ω)

Under mesh refinement, the effectivity indices should approach unity.
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Ũ− − U
)

Vdσ +

∫ ∫ ∫
Ωe

(a · ∇U) Vdxdydz =

∫ ∫ ∫
Ωe

fVdxdydz .

and the leading term E satisfy on∫ ∫
Γ−

a.n
(
E− − E

)
Vdσ +

∫ ∫ ∫
Ωe

(a · ∇E ) Vdxdydz

=

∫ ∫ ∫
Ωe

(f − a · ∇U) Vdxdydz .

In this analysis we use the local and global effectivity indices in the L2 norm

θe =
‖E‖L2(Ωe )

‖e‖L2(Ωe )

, and θ =
‖E‖L2(Ω)

‖e‖L2(Ω)

Under mesh refinement, the effectivity indices should approach unity.

Idir Mechai Advisor: Slimane Adjerid () Virginia Tech February 20, 2010 16 / 26



Computational Examples
Algorithms

Algorithms

1 Partition the domain Ω into a regular tetrahedral meshes

2 Find the Class and Types of each elements

3 Start from elements where U− is know in all inflow boundary

4 Compute the DG solution Ue in Ωe

5 Compute the error Ee in Ωe

6 e = e + 1 and take Ũ−e+1 =

Standard Method (without correction): Ũ−e+1 = Ue

New Method (with correction): Ũ−e+1 = Ue + Ee

7 go to (3)
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7 go to (3)

Idir Mechai Advisor: Slimane Adjerid () Virginia Tech February 20, 2010 17 / 26



Computational Examples
Algorithms

Algorithms

1 Partition the domain Ω into a regular tetrahedral meshes

2 Find the Class and Types of each elements

3 Start from elements where U− is know in all inflow boundary

4 Compute the DG solution Ue in Ωe

5 Compute the error Ee in Ωe

6 e = e + 1 and take Ũ−e+1 =
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7 go to (3)

Idir Mechai Advisor: Slimane Adjerid () Virginia Tech February 20, 2010 17 / 26



Computational Examples
Algorithms

Algorithms

1 Partition the domain Ω into a regular tetrahedral meshes

2 Find the Class and Types of each elements

3 Start from elements where U− is know in all inflow boundary

4 Compute the DG solution Ue in Ωe

5 Compute the error Ee in Ωe

6 e = e + 1 and take Ũ−e+1 =
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Computational Examples
Structured and Unstructured meshes

Remark

i) Structured meshes: This meshes obtained by partitioning the domain
into n3 cube for n = 1, 2,3, 4, 5, 6, 7,8 and dividing each cube into five

tetrahedrons (where hmax =
√

2
n ). Thus, the meshes have N = 5×n3 = 40,

135, 320, 625, 1080, 1715 and 2560 tetrahedra elements.
ii) Unstructured meshes: These meshes obtained by COMSOL software

for hmax =
1

n
(for n = 1, 2, 3, 4, 5, 6, 7, 8) with number of elements

N = 24, 192, 476, 943, 2121, 3731, 5846 and 8713.
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Computational Examples
Example of Structured and Unstructured meshes

Structured meshes

and the global e ectivity index

=
k kL2( )

k kL2( )

(6.108)

Under mesh refinement, the e ectivity indices should approach unity.

Remark 16 We will use in these examples two di erent meshe refinement:

i) Uniform meshe: This meshes obtained by partitioning the domain into 3( = 2,3, 4,

5, 6, 7,8) cube and dividing each cube into five tetrahedrons (where max =
2). Thus, the

meshes have = 5× 3 = 40, 135, 320, 625, 1080, 1715 and 2560 tetrahedra elements.

Figure 1: Thetrahedra mesh with = 5× 82 = 320 elements.

ii) Unconstructed meshes: These meshes obtained by COMSOL software for max =
1

(for = 1 2 3 4 5 6 7 8) with number of elements = 24 192, 476, 943, 2121, 3731,

5846 and 8713.

30

Figure: Tetrahedral mesh with
N = 5× 82 = 320 elements

Unstructured meshes

We solve also (11) on a uniform thetrahedra meshes obtained by COMSOL for hmax = 1
2
,

1
4
, 1
8
, 1
16
with number of elements N = 192, 943, 8713, 70617.

Figure 2: Thetrahedral meshes obtained by COMSOL with N = 953 elements.

Pp

p N kek2,Ω Order kecrk2,Ω Order θ∆,min θ∆,max θ

192 3.4745 − 3.1181e− 01 − 0.9238 1.1619 1.0425

0 943 4.6847 −0.431 15 2.5427e− 01 0.294 31 0.8808 1.1882 1.0051

8713

192 2.1633e− 01 − 1.3457e− 02 − 0.9455 1.1219 1.0200

1 943 1.8087e− 01 0.258 29 7.6782e− 03 0.809 52 0.8649 1.2019 1.0035

8713

Tasks:

I. Solve the problem an a given regular mesh of the cube Ω = [0, 1]3, let partition the

domain Ω into a regular mesh having N tetrahedra elements Ωe, e = 1, ..., N

for e = 1 : N

1. Solve the problem on the element Ωe,

i- Compute:

- The DG finite element solution Ue

- The local finite element error estimation ee and Ee

xxiii

Figure: TTetrahedral meshes
obtained by COMSOL with
N = 953 elements
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Computational Examples
Solve Problem 1 in structured meshes

Example 1: We consider the following linear hyperbolic problem

−3ux − 7uy + 13uz = 3ex+y+z , (x , y , z) ∈ Ω = [0, 1]3 ,

and select the initial and boundary conditions such that the exact solution
is

u (x , y , z) = ex+y+z .

We solve this problem using Pp, with the exact boundary condition i.e.
U− = u, on the first meshes and compar the two methods for
p = 0, 1, 2, 3.
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Computational Examples
Results of Problem 1 in structured meshes, p = 0

Pp (Example 1)

With correction

p N ‖u − U‖2,Ω Order ‖u − U − E‖2,Ω Order θ

40 1.0279 − 1.4619e − 01 − 1.0249

320 5.2283e − 01 1.0155 4.4524e − 02 1.7651 1.0257

0 1080 3.4927e − 01 1.0031 2.1341e − 02 1.8323 1.0215

2560 2.6212e − 01 1.0009 1.2524e − 02 1.8594 1.0181

Without correction

40 1.1016 − 8.8975e − 01 − 0.5326

320 5.8671e − 01 0.9290 4.9958e − 01 0.8104 0.4456

0 1080 4.0105e − 01 0.9432 3.4893e − 01 0.8788 0.4097

2560 3.0492e − 01 0.9549 2.6829e − 01 0.9111 0.3901
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Computational Examples
Results of Problem 1 in structured meshes, p = 1

Pp (Example 1)

With correction

p N ‖u − U‖2,Ω Order ‖u − U − E‖2,Ω Order θ

40 1.6430e − 01 − 1.1208e − 02 − 1.0078

1 320 2.9779e − 02 2.0298 1.7188e − 03 2.7045 1.0100

1080 1.3256e − 02 2.0085 5.6092e − 04 2.7975 1.0107

2560 7.4596e − 03 2.0031 2.4287e − 04 2.9433 1.0101

Without correction

40 1.4619e − 01 − 1.2639e − 01 − 0.3583

1 320 4.4524e − 02 1.7651 4.0626e − 02 1.6926 0.2940

1080 2.1341e − 02 1.8323 1.9748e − 02 1.7993 0.2835

2560 1.2524e − 02 1.8594 1.1664e − 02 1.8371 0.2794
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Computational Examples
Results of Problem 1 in structured meshes, p = 3

Pp (Example 1)

With correction

p N ‖u − U‖2,Ω Order ‖u − U − E‖2,Ω Order θ

40 5.6848e − 04 − 3.5351e − 05 − 1.0088

3 320 3.6432e − 05 4.0338 1.2754e − 06 4.8473 1.0052

1080 7.2110e − 06 4.0087 1.7850e − 07 4.8463 1.0034

2560 2.2825e − 06 4.0035 4.3753e − 08 4.9049 1.0026

Without correction

40 7.1418e − 04 − 6.2790e − 04 3.7141 0.37205

3 320 5.3016e − 05 3.7605 4.8864e − 05 3.6696 0.36086

1080 1.1461e − 05 3.7898 1.0778e − 05 3.7375 0.3509

2560 3.7927e − 06 3.8634 3.6021e − 06 3.8291 0.3505
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Computational Examples
Results of Problem 1 in Unstructured meshes, p = 2, 3

Results for solving Example 1 on the second meshes are given in the following

table for p = 0, 1, 2, 3 using the new method.

Pp (Example 1 CM)

p = 2

N ‖u − U‖2,Ω Order ‖u − U − E‖2,Ω Order θ

192 1.6180e − 003 − 7.5291e − 005 − 1.0161

934 4.1263e − 004 3.0445 1.4901e − 005 3.6954 1.0024

3731 1.0915e − 004 3.0376 2.6278e − 006 3.8781 1.0021

8713 4.6621e − 005 3.2370 8.7999e − 007 4.3913 1.0014

p = 3

24 8.3118e − 04 − 5.2796e − 05 − 1.0229

192 5.1438e − 05 4.0142 1.8696e − 06 4.8196 1.0132

934 9.2356e − 06 4.3114 2.9574e − 07 4.7873 1.0020

2121 3.3315e − 06 4.5695 8.7329e − 08 5.4664 1.0020
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Conclusion and future work

Conclusion:

Investigated higher-order DGM for scalar first-order hyperbolic
problems on tetrahedral meshes.
Construct asymptotically correct a posteriori error estimates for
discontinuous finite element solutions
Write explicitly the basis functions for the error spaces corresponding
to the finite element space Pp.
These a posteriori error estimates tested on several linear problems to
show their efficiency and accuracy under mesh refinement for smooth
solutions.

Future work

Nonlinear problem
Transit problem
System
Other spaces
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.

Thanks!
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