The Discontinuous Galerkin Method for Hyperbolic

 Problems on tetrahedral meshes: A posteriori Error EstimationIdir Mechai
Advisor: Slimane Adjerid
SIAM Student Conference 2010 Virginia Tech

February 20, 2010

Outline

(1) Introduction.

Outline

(1) Introduction.
(2) Present the problem and state the DG formulation with preliminary results.

Outline

(1) Introduction.
(2) Present the problem and state the DG formulation with preliminary results.
(3) Construct basis for the leading term of the local discretization error by using the finite element space \mathcal{P}_{p} for the solution.

Outline

(1) Introduction.
(2) Present the problem and state the DG formulation with preliminary results.
(3) Construct basis for the leading term of the local discretization error by using the finite element space \mathcal{P}_{p} for the solution.
(1) Discuss error estimation procedure and present numerical examples.

Outline

(1) Introduction.
(2) Present the problem and state the DG formulation with preliminary results.
(3) Construct basis for the leading term of the local discretization error by using the finite element space \mathcal{P}_{p} for the solution.
(1) Discuss error estimation procedure and present numerical examples.
(5) Conclusion: Summarize results and described future work.

Introduction

- The success of the DG method is due to the following properties:
- Is locally conservative,

Introduction

- The success of the DG method is due to the following properties:
- Is locally conservative,
- Is well suited to solve problems on locally refined meshes with hanging nodes and

Introduction

- The success of the DG method is due to the following properties:
- Is locally conservative,
- Is well suited to solve problems on locally refined meshes with hanging nodes and
- Exhibits strong superconvergence that can be used to estimate the discretization error.

Introduction

- The success of the DG method is due to the following properties:
- Is locally conservative,
- Is well suited to solve problems on locally refined meshes with hanging nodes and
- Exhibits strong superconvergence that can be used to estimate the discretization error.
- Has a simple communication pattern between elements with a common face that makes it useful for parallel computation.

Introduction

- The success of the DG method is due to the following properties:
- Is locally conservative,
- Is well suited to solve problems on locally refined meshes with hanging nodes and
- Exhibits strong superconvergence that can be used to estimate the discretization error.
- Has a simple communication pattern between elements with a common face that makes it useful for parallel computation.
- Can handle problems with complex geometries to high order.
- Does not require continuity across element boundaries
- A posteriori Error Estimation
- $u-U_{h} \approx E$
- Asymptotic behavior of the error
- Drive Adaptive refinement

DG formulation and preliminary results

- A model problem

$$
\left\{\begin{array}{c}
a \cdot \nabla u=f(x, y, z), \quad(x, y, z) \in \Omega=[0,1]^{3} \tag{1}\\
\left.u\right|_{\partial \Omega}=g(x, y, z)
\end{array}\right.
$$

DG formulation and preliminary results

- A model problem

$$
\left\{\begin{array}{c}
a . \nabla u=f(x, y, z), \quad(x, y, z) \in \Omega=[0,1]^{3} \tag{1}\\
\left.u\right|_{\partial \Omega}=g(x, y, z)
\end{array}\right.
$$

where
f and g are selected such that the exact solution $u \in C^{\infty}(\Omega)$. a denote a constant non zero velocity vector.

$$
\partial \Omega=\partial \Omega^{+} \cup \partial \Omega^{-} \cup \partial \Omega^{0},
$$

DG formulation and preliminary results

- A model problem

$$
\left\{\begin{array}{c}
a . \nabla u=f(x, y, z), \quad(x, y, z) \in \Omega=[0,1]^{3} \tag{1}\\
\left.u\right|_{\partial \Omega}=g(x, y, z)
\end{array}\right.
$$

where
f and g are selected such that the exact solution $u \in C^{\infty}(\Omega)$. a denote a constant non zero velocity vector.

$$
\partial \Omega=\partial \Omega^{+} \cup \partial \Omega^{-} \cup \partial \Omega^{0},
$$

$$
\begin{aligned}
\partial \Omega^{-} & =\{(x, y, z) \in \partial \Omega \mid a . n<0\}, \text { is the inflow boundary, } \\
\partial \Omega^{+} & =\{(x, y, z) \in \partial \Omega \mid a . n>0\}, \text { is the outflow boundary and } \\
\partial \Omega_{0} & =\{(x, y, z) \in \partial \Omega \mid a . n=0\}, \text { is the characteristic boundary. }
\end{aligned}
$$

DG formulation and preliminary results

 - Class and Types of Elementswe partition the domain Ω into a regular mesh having N tetrahedra elements $\Delta_{j}, j=1, \ldots, N$ of diameter $h>0$, for simplicity We refer to an arbitrary element by Δ.
Classify tetrahedral elements as:

DG formulation and preliminary results

- Class and Types of Elements

we partition the domain Ω into a regular mesh having N tetrahedra elements $\Delta_{j}, j=1, \ldots, N$ of diameter $h>0$, for simplicity We refer to an arbitrary element by Δ.
Classify tetrahedral elements as:

$$
T_{\text {Class, Type }}=T_{\# \text { of Outflow, } \# \text { of Inflow }}
$$

DG formulation and preliminary results

. Class and Types of Elements

we partition the domain Ω into a regular mesh having N tetrahedra elements $\Delta_{j}, j=1, \ldots, N$ of diameter $h>0$, for simplicity We refer to an arbitrary element by Δ.
Classify tetrahedral elements as:

$$
T_{\text {Class, Type }}=T_{\# \text { of Outflow, } \# \text { of Inflow }}
$$

Class and Types of elements

	Type I	Type II	Type III
Class I	T_{11}	T_{12}	T_{13}
Class II	T_{21}	T_{22}	
Class III	T_{31}		

DG formulation and preliminary results

- Some examples for Class and Types of Elements

Figure: T_{11} : One Outflow, One Inflow and Two Characteristics
T_{12}

Figure: T_{12} : One Outflow, Two Inflow and One Characteristics

DG formulation and preliminary results

- \mathcal{L}^{2} Orthogonal basis functions

$$
\varphi_{q, r}^{p}(\xi, \eta, \zeta)=\bar{P}_{p}^{0,0}(\xi, \eta, \zeta) \bar{P}_{q}^{2 p+1,0}(\eta, \zeta) \bar{P}_{r}^{2 p+2 q+2,0}(\zeta),
$$

DG formulation and preliminary results

- \mathcal{L}^{2} Orthogonal basis functions

$$
\varphi_{q, r}^{p}(\xi, \eta, \zeta)=\bar{P}_{p}^{0,0}(\xi, \eta, \zeta) \bar{P}_{q}^{2 p+1,0}(\eta, \zeta) \bar{P}_{r}^{2 p+2 q+2,0}(\zeta)
$$

where

$$
\begin{aligned}
\bar{P}_{p}^{0,0}(\xi, \eta, \zeta) & =(1-\zeta-\eta)^{p} \hat{P}_{p}^{0,0}\left(\frac{2 \xi}{1-\eta-\zeta}-1\right) \\
\bar{P}_{q}^{2 p+1,0}(\eta, \zeta) & =(1-\zeta)^{q} \hat{P}_{q}^{2 p+1,0}\left(\frac{2 \eta}{(1-\zeta)}-1\right) \\
\bar{P}_{r}^{2 p+2 q+2,0}(\zeta) & =\hat{P}_{r}^{2 p+2 q+2,0}(2 \zeta-1) .
\end{aligned}
$$

DG formulation and preliminary results

- \mathcal{L}^{2} Orthogonal basis functions

$$
\varphi_{q, r}^{p}(\xi, \eta, \zeta)=\bar{P}_{p}^{0,0}(\xi, \eta, \zeta) \bar{P}_{q}^{2 p+1,0}(\eta, \zeta) \bar{P}_{r}^{2 p+2 q+2,0}(\zeta)
$$

where

$$
\begin{aligned}
\bar{P}_{p}^{0,0}(\xi, \eta, \zeta) & =(1-\zeta-\eta)^{p} \hat{P}_{p}^{0,0}\left(\frac{2 \xi}{1-\eta-\zeta}-1\right) \\
\bar{P}_{q}^{2 p+1,0}(\eta, \zeta) & =(1-\zeta)^{q} \hat{P}_{q}^{2 p+1,0}\left(\frac{2 \eta}{(1-\zeta)}-1\right), \\
\bar{P}_{r}^{2 p+2 q+2,0}(\zeta) & =\hat{P}_{r}^{2 p+2 q+2,0}(2 \zeta-1) .
\end{aligned}
$$

$$
P_{n}^{\alpha, \beta}(x)=\frac{(-1)^{n}}{2^{n} n!}(1-x)^{-\alpha}(1+x)^{-\beta} \frac{d^{n}}{d x^{n}}\left[(1-x)^{\alpha+n}(1+x)^{\beta+n}\right], \alpha, \beta>-1 .
$$

Satisfy \mathcal{L}^{2} orthogonality and

DG formulation and preliminary results

- \mathcal{L}^{2} Orthogonal basis functions

$$
\varphi_{q, r}^{p}(\xi, \eta, \zeta)=\bar{P}_{p}^{0,0}(\xi, \eta, \zeta) \bar{P}_{q}^{2 p+1,0}(\eta, \zeta) \bar{P}_{r}^{2 p+2 q+2,0}(\zeta),
$$

where

$$
\begin{aligned}
\bar{P}_{p}^{0,0}(\xi, \eta, \zeta) & =(1-\zeta-\eta)^{p} \hat{P}_{p}^{0,0}\left(\frac{2 \xi}{1-\eta-\zeta}-1\right) \\
\bar{P}_{q}^{2 p+1,0}(\eta, \zeta) & =(1-\zeta)^{q} \hat{P}_{q}^{2 p+1,0}\left(\frac{2 \eta}{(1-\zeta)}-1\right) \\
\bar{P}_{r}^{2 p+2 q+2,0}(\zeta) & =\hat{P}_{r}^{2 p+2 q+2,0}(2 \zeta-1) .
\end{aligned}
$$

$P_{n}^{\alpha, \beta}(x)=\frac{(-1)^{n}}{2^{n} n!}(1-x)^{-\alpha}(1+x)^{-\beta} \frac{d^{n}}{d x^{n}}\left[(1-x)^{\alpha+n}(1+x)^{\beta+n}\right], \alpha, \beta>-1$.
Satisfy \mathcal{L}^{2} orthogonality and is complete in the space \mathcal{P}_{p}

$$
\int_{0}^{1} \int_{0}^{1-\eta} \int_{0}^{1-\eta-\zeta} \varphi_{i j}^{m} \varphi_{k l}^{n} d \zeta d \eta d \xi=c_{i j, k l}^{m n} \delta_{i k} \delta_{j l} \delta_{m n}
$$

DG formulation and preliminary results

- Standard DG formulation

Multiply (1) by a test function v, integrate over an Δ, apply Stokes' theorem:

$$
\begin{align*}
& \iint_{\Gamma^{-}} a . n u v d \sigma+\iint_{\Gamma^{+}} a . n u v d \sigma+\iiint_{\Delta}(-a . \nabla v) u d x d y d z \\
= & \iiint_{\Delta} f v d x d y d z \tag{2}
\end{align*}
$$

Approximate u by a piecewise polynomial function U s.t $\left.U\right|_{\Delta} \in \mathcal{P}_{p}$.

DG formulation and preliminary results

- Standard DG formulation

Multiply (1) by a test function v, integrate over an Δ, apply Stokes' theorem:

$$
\begin{align*}
& \iint_{\Gamma^{-}} a . n u v d \sigma+\iint_{\Gamma^{+}} a . n u v d \sigma+\iiint_{\Delta}(-a . \nabla v) u d x d y d z \\
= & \iiint_{\Delta} f v d x d y d z \tag{2}
\end{align*}
$$

Approximate u by a piecewise polynomial function U s.t $\left.U\right|_{\Delta} \in \mathcal{P}_{p}$. The discrete DG formulation consists of determining $U \in S^{N, p}$ such that

$$
\begin{align*}
& \iint_{\Gamma^{-}} a \cdot n U^{-} V d \sigma+\iint_{\Gamma^{+}} a . n U V d \sigma+\iiint_{\Delta}(-a . \nabla V) U d x d y d z \\
& =\iiint_{\Delta} f V d x d y d z, \text { for all } V \in \mathcal{P}_{p} \tag{3}
\end{align*}
$$

here $U^{-} \approx u$ in Γ^{-}.

DG formulation and preliminary results

- Standard DG formulation

Multiply (1) by a test function v, integrate over an Δ, apply Stokes' theorem:

$$
\begin{align*}
& \iint_{\Gamma^{-}} a . n u v d \sigma+\iint_{\Gamma^{+}} a . n u v d \sigma+\iiint_{\Delta}(-a . \nabla v) u d x d y d z \\
= & \iiint_{\Delta} f v d x d y d z \tag{2}
\end{align*}
$$

Approximate u by a piecewise polynomial function U s.t $\left.U\right|_{\Delta} \in \mathcal{P}_{p}$. The discrete DG formulation consists of determining $U \in S^{N, p}$ such that

$$
\begin{align*}
& \iint_{\Gamma^{-}} a \cdot n U^{-} V d \sigma+\iint_{\Gamma^{+}} a \cdot n U V d \sigma+\iiint_{\Delta}(-a . \nabla V) U d x d y d z \\
& =\iiint_{\Delta} f V d x d y d z, \text { for all } V \in \mathcal{P}_{p} \tag{3}
\end{align*}
$$

here $U^{-} \approx u$ in Γ^{-}. Let Δ such that $\Gamma^{-} \subset \partial \Omega^{-}$, and subtract (3) from (2) with $v=V$ to obtain the DG orthogonality conditions for the local error $\epsilon=u-U$

DG formulation and preliminary results
. DG Orthogonality

$$
\begin{equation*}
\iint_{\Gamma^{-}} a . n \epsilon^{-} V d \sigma+\iint_{\Gamma^{+}} a . n \epsilon V d \sigma+\iiint_{\Delta}(-a . \nabla V) \epsilon d x d y d z=0 \tag{4}
\end{equation*}
$$

for all $V \in \mathcal{P}_{p}$. By the standard affine mapping

DG formulation and preliminary results

$$
\begin{equation*}
\iint_{\Gamma^{-}} a . n \epsilon^{-} V d \sigma+\iint_{\Gamma^{+}} a . n \epsilon V d \sigma+\iiint_{\Delta}(-a . \nabla V) \epsilon d x d y d z=0, \tag{4}
\end{equation*}
$$

for all $V \in \mathcal{P}_{p}$. By the standard affine mapping

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{lll}
V_{2}-V_{1} & V_{3}-V_{1} & V_{4}-V_{1}
\end{array}\right)\left(\begin{array}{l}
\xi \\
\eta \\
\zeta
\end{array}\right)+V_{1}
$$

map Δ with vertices $V_{i}=\left(x_{i}, y_{i}, z_{i}\right), i=1,2,3,4$ into the canonical tetrahedron $\hat{\Delta}$ with vertices $(0,0,0),(1,0,0),(0,1,0)$ and $(0,0,1)$.
Then the local error satisfy these orthogonality conditions on the canonical element

DG formulation and preliminary results

. DG Orthogonality

$$
\begin{equation*}
\iint_{\Gamma^{-}} a . n \epsilon^{-} V d \sigma+\iint_{\Gamma^{+}} a . n \epsilon V d \sigma+\iiint_{\Delta}(-a . \nabla V) \epsilon d x d y d z=0, \tag{4}
\end{equation*}
$$

for all $V \in \mathcal{P}_{p}$. By the standard affine mapping

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{lll}
V_{2}-V_{1} & V_{3}-V_{1} & V_{4}-V_{1}
\end{array}\right)\left(\begin{array}{l}
\xi \\
\eta \\
\zeta
\end{array}\right)+V_{1}
$$

map Δ with vertices $V_{i}=\left(x_{i}, y_{i}, z_{i}\right), i=1,2,3,4$ into the canonical tetrahedron
$\hat{\Delta}$ with vertices $(0,0,0),(1,0,0),(0,1,0)$ and $(0,0,1)$.
Then the local error satisfy these orthogonality conditions on the canonical element
$\iint_{\hat{r}^{-}} \hat{a} \cdot \hat{n} \hat{\epsilon}^{-} V d \hat{\sigma}+\iint_{\hat{r}^{+}} \hat{a} \cdot \hat{n} \hat{\epsilon} \hat{V} d \sigma+\iiint_{\hat{\Delta}}(-\hat{a} . \nabla \hat{V}) \hat{\epsilon} d \xi d \eta d \zeta=0$,
for all $\hat{V} \in \mathcal{P}_{p}$.

DG formulation and preliminary results

, Preliminary results

If u is analytic, we can write the local error as a Maclaurin series

$$
\begin{equation*}
\epsilon(\xi, \eta, \zeta)=\sum_{k=0}^{\infty} Q_{k}(\xi, \eta, \zeta) h^{k}, \text { where } Q_{k} \in \mathcal{P}_{k} \tag{6}
\end{equation*}
$$

DG formulation and preliminary results

. Preliminary results

If u is analytic, we can write the local error as a Maclaurin series

$$
\begin{equation*}
\epsilon(\xi, \eta, \zeta)=\sum_{k=0}^{\infty} Q_{k}(\xi, \eta, \zeta) h^{k}, \text { where } Q_{k} \in \mathcal{P}_{k} \tag{6}
\end{equation*}
$$

Lemma

If $Q_{k} \in \mathcal{P}_{k}, k=0,1, \ldots, p$ satisfies

$$
\begin{equation*}
\iint_{\Gamma^{+}} a \cdot n Q_{k} V d \sigma+\iiint_{\Delta}(-a . \nabla V) Q_{k} d \xi d \eta d \zeta=0, \forall V \in \mathcal{P}_{p} \tag{7}
\end{equation*}
$$

Then $Q_{k}=0,0 \leq k \leq p$.
Then we obtain the following expression for the local error.

DG formulation and preliminary results

- Asymptotic behavior of error

Theorem

Let $u \in \mathcal{C}^{\infty}(\Delta)$ and $U \in \mathcal{P}_{p}(\Delta)$ be the solutions of (1), then the local finite element error can be written as

$$
\begin{equation*}
\epsilon(\xi, \eta, \zeta)=\sum_{k=p+1}^{\infty} h^{k} Q_{k}(\xi, \eta, \zeta) \tag{8}
\end{equation*}
$$

Basis for the leading term of the local discretization error

- Basis functions of error I

The local finite element error on Δ_{e} approximated by its leading term in the space \mathcal{P}_{p} as

Basis for the leading term of the local discretization error

 - Basis functions of error IThe local finite element error on Δ_{e} approximated by its leading term in the space \mathcal{P}_{p} as

$$
\begin{aligned}
u-U & \approx E=Q_{p+1} h^{p+1}=\sum_{i=0}^{p+1} \sum_{j=0}^{p+1} \sum_{k=0}^{p+1} c_{j, k}^{i} \varphi_{j, k}^{i} \\
& =\sum_{i=0}^{p+1} \sum_{j=0}^{p+1} C_{i-j, j}^{p+1} \chi_{i, j}^{p+1}
\end{aligned}
$$

where we have the degree of freedom

Basis for the leading term of the local discretization error

 . Basis functions of error IThe local finite element error on Δ_{e} approximated by its leading term in the space \mathcal{P}_{p} as

$$
\begin{aligned}
u-U & \approx E=Q_{p+1} h^{p+1}=\sum_{i=0}^{p+1} \sum_{j=0}^{p+1} \sum_{k=0}^{p+1} c_{j, k}^{i} \varphi_{j, k}^{i} \\
& =\sum_{i=0}^{p+1} \sum_{j=0}^{p+1} C_{i-j, j}^{p+1} \chi_{i, j}^{p+1}
\end{aligned}
$$

where we have the degree of freedom

$$
\begin{gathered}
\operatorname{dim}\left\{\varphi_{j, k}^{i}, 0 \leq i, j, k \leq p+1\right\}=\operatorname{dim} \mathcal{P}_{p+1} \\
=\frac{(p+2)(p+3)(p+4)}{6}=O\left(p^{3}\right)
\end{gathered}
$$

and for for the second basis is

Basis for the leading term of the local discretization error

 - Basis functions of error IThe local finite element error on Δ_{e} approximated by its leading term in the space \mathcal{P}_{p} as

$$
\begin{aligned}
u-U & \approx E=Q_{p+1} h^{p+1}=\sum_{i=0}^{p+1} \sum_{j=0}^{p+1} \sum_{k=0}^{p+1} c_{j, k}^{i} \varphi_{j, k}^{i} \\
& =\sum_{i=0}^{p+1} \sum_{j=0}^{p+1} C_{i-j, j}^{p+1} \chi_{i, j}^{p+1}
\end{aligned}
$$

where we have the degree of freedom

$$
\begin{gathered}
\operatorname{dim}\left\{\varphi_{j, k}^{i}, 0 \leq i, j, k \leq p+1\right\}=\operatorname{dim} \mathcal{P}_{p+1} \\
=\frac{(p+2)(p+3)(p+4)}{6}=O\left(p^{3}\right)
\end{gathered}
$$

and for for the second basis is

$$
\operatorname{dim}\left\{\chi_{i, j}^{p+1}, 0 \leq i, j \leq p+1\right\}=\frac{(p+2)(p+3)}{2}=O\left(p^{2}\right)
$$

Basis for the leading term of the local discretization error

 - Basis functions of error IIThe leading term E satisfy these orthogonality conditions

$$
\begin{aligned}
& \iint_{\Gamma^{-}} a . n E^{-} V d \sigma+\iint_{\Gamma^{+}} a . n E V d \sigma \\
& +\iiint_{\Delta_{e}}(a \cdot \nabla E) V d x d y d z=0, \forall V \in \mathcal{P}_{p}
\end{aligned}
$$

where $E^{-}=u-U^{-}$, we choose $\left.U\right|_{\Gamma^{-}}=U^{-}=u$, then $E^{-}=0$, after mapping to the Canonical element we get

$$
\iint_{\hat{\Gamma}^{+}} \hat{a} \cdot \hat{n} \hat{E} V d \sigma+\iiint_{\hat{\Delta}}(\hat{a} \cdot \nabla \hat{E}) V d \xi d \eta d \zeta=0, \forall V \in \mathcal{P}_{p}
$$

Let $\lambda=\frac{\alpha}{\beta}, \mu=\frac{\gamma}{\beta}$ where $(\alpha, \beta, \gamma)=\hat{a}$.

Basis for the leading term of the local discretization error

 . Example of Basis functions for element of Class I, $p=0,1$Then the function $\chi_{i, j}^{p+1}$ computed on the reference tetrahedra for each class of elements, using Mathematica, and are given in terms of $\varphi_{j, k}^{i}$ as:

Basis for the leading term of the local discretization error

 - Example of Basis functions for element of Class I, $p=0,1$Then the function $\chi_{i, j}^{p+1}$ computed on the reference tetrahedra for each class of elements, using Mathematica, and are given in terms of $\varphi_{j, k}^{i}$ as:

- Class I (where we have one outflow)

$p=0$	$\chi_{0,0}^{1}=\varphi_{0,0}^{1}$
	$\chi_{1,0}^{0}=\frac{2}{3} \varphi_{0,0}^{0}+\varphi_{1,0}^{0}$
	$\chi_{0,1}^{0}=-\frac{1}{3} \varphi_{0,0}^{0}+\varphi_{0,1}^{0}$
	$\chi_{0,0}^{2}=\varphi_{0,0}^{2}$
	$\chi_{1,0}^{1}=\frac{4}{5} \varphi_{0,0}^{1}+\varphi_{1,0}^{1}$
	$\chi_{0,1}^{1}=-\frac{1}{5} \varphi_{0,0}^{1}+\varphi_{0,1}^{1}$
	$\chi_{2,0}^{0}=\frac{1}{10} \varphi_{0,1}^{0}+\frac{4}{5} \varphi_{1,0}^{0}+\varphi_{2,0}^{0}$
	$\chi_{1,1}^{0}=\frac{3}{5} \varphi_{0,1}^{0}-\frac{1}{5} \varphi_{1,0}^{0}+\varphi_{1,1}^{0}$
	$\chi_{0,2}^{0}=-\frac{1}{2} \varphi_{0,1}^{0}+\varphi_{0,2}^{0}$

Table 1: Basis functions for element of Class I

Basis for the leading term of the local discretization error

- Example of Basis functions for element of Class II and III, $p=0$
- Class II (where we have two outflow)

$$
\begin{array}{l|l}
\hline & \chi_{0,0}^{1}=\varphi_{0,0}^{1}+\frac{\lambda}{3 \lambda+3} \varphi_{0,0}^{0} \\
p=0 & \chi_{1,0}^{0}=\varphi_{1,0}^{0}+\frac{-\lambda+2}{3 \lambda+3} \varphi_{0,0}^{0} \\
& \chi_{0,1}^{0}=-\frac{1}{3} \varphi_{0,0}^{0}+\varphi_{0,1}^{0} \\
\hline
\end{array}
$$

Table 2: Basis functions for element of Class II

- Class III (where we have three outflow)

$p=0$	$\chi_{0,0}^{1}=\varphi_{0,0}^{1}+\frac{\lambda}{3 \lambda+3 \mu+3} \varphi_{0,0}^{0}$
	$\chi_{1,0}^{0}=\varphi_{1,0}^{0}-\frac{\lambda-2)}{3 \lambda+3 \mu+3} \varphi_{0,0}^{0}$
	$\chi_{0,1}^{0}=\varphi_{0,1}^{0}-\frac{\lambda-3 \mu+1}{3 \lambda+3 \mu+3} \varphi_{0,0}^{0}$

Table 3: Basis functions for element of Class III

Computational Examples

- A posteriori error procedure

The DG solution U_{e} satisfy on the physical elementts Ω_{e}
$\iint_{\Gamma_{-}^{-}} a \cdot n\left(\tilde{U}^{-}-U\right) V d \sigma+\iiint_{\Omega_{e}}(a \cdot \nabla U) V d x d y d z=\iiint_{\Omega_{e}} f V d x d y d z$.
and the leading term E satisfy on

$$
\begin{aligned}
& \iint_{\Gamma^{-}} a \cdot n\left(E^{-}-E\right) V d \sigma+\iiint_{\Omega_{e}}(a \cdot \nabla E) V d x d y d z \\
& =\iiint_{\Omega_{e}}(f-a \cdot \nabla U) V d x d y d z
\end{aligned}
$$

In this analysis we use the local and global effectivity indices in the

Computational Examples

- A posteriori error procedure

The DG solution U_{e} satisfy on the physical elementts Ω_{e}
$\iint_{\Gamma^{-}} a \cdot n\left(\tilde{U}^{-}-U\right) V d \sigma+\iiint_{\Omega_{e}}(a \cdot \nabla U) V d x d y d z=\iiint_{\Omega_{e}} f V d x d y d z$.
and the leading term E satisfy on

$$
\begin{aligned}
& \iint_{\Gamma^{-}} a \cdot n\left(E^{-}-E\right) V d \sigma+\iiint_{\Omega_{e}}(a \cdot \nabla E) V d x d y d z \\
& =\iiint_{\Omega_{e}}(f-a \cdot \nabla U) V d x d y d z
\end{aligned}
$$

In this analysis we use the local and global effectivity indices in the \mathcal{L}^{2} norm

$$
\theta_{e}=\frac{\|E\|_{\mathcal{L}^{2}\left(\Omega_{e}\right)}}{\|e\|_{\mathcal{L}^{2}\left(\Omega_{e}\right)}} \text {, and } \theta=\frac{\|E\|_{\mathcal{L}^{2}(\Omega)}}{\|e\|_{\mathcal{L}^{2}(\Omega)}}
$$

Under mesh refinement, the effectivity indices should approach unity.

Computational Examples

- Algorithms

Algorithms

(1) Partition the domain Ω into a regular tetrahedral meshes

Computational Examples

- Algorithms

Algorithms

(1) Partition the domain Ω into a regular tetrahedral meshes
(2) Find the Class and Types of each elements

Computational Examples

\author{

- Algorithms
}

Algorithms

(1) Partition the domain Ω into a regular tetrahedral meshes
(2) Find the Class and Types of each elements
(3) Start from elements where U^{-}is know in all inflow boundary

Computational Examples

\author{

- Algorithms
}

Algorithms

(1) Partition the domain Ω into a regular tetrahedral meshes
(2) Find the Class and Types of each elements
(3) Start from elements where U^{-}is know in all inflow boundary
(9) Compute the DG solution U_{e} in Ω_{e}

Computational Examples

\author{

- Algorithms
}

Algorithms

(1) Partition the domain Ω into a regular tetrahedral meshes
(2) Find the Class and Types of each elements
(3) Start from elements where U^{-}is know in all inflow boundary
(9) Compute the DG solution U_{e} in Ω_{e}
(5) Compute the error E_{e} in Ω_{e}

Computational Examples

\author{

- Algorithms
}

Algorithms

(1) Partition the domain Ω into a regular tetrahedral meshes
(2) Find the Class and Types of each elements
(3) Start from elements where U^{-}is know in all inflow boundary
(9) Compute the DG solution U_{e} in Ω_{e}
(5) Compute the error E_{e} in Ω_{e}
(6) $e=e+1$ and take $\tilde{U}_{e+1}^{-}=$

Computational Examples

- Algorithms

Algorithms

(1) Partition the domain Ω into a regular tetrahedral meshes
(2) Find the Class and Types of each elements
(3) Start from elements where U^{-}is know in all inflow boundary
(9) Compute the DG solution U_{e} in Ω_{e}
(5) Compute the error E_{e} in Ω_{e}
(6) $e=e+1$ and take $\tilde{U}_{e+1}^{-}=$

- Standard Method (without correction): $\tilde{U}_{e+1}^{-}=U_{e}$

Computational Examples

- Algorithms

Algorithms

(1) Partition the domain Ω into a regular tetrahedral meshes
(2) Find the Class and Types of each elements
(3) Start from elements where U^{-}is know in all inflow boundary
(9) Compute the DG solution U_{e} in Ω_{e}
(5) Compute the error E_{e} in Ω_{e}
(6) $e=e+1$ and take $\tilde{U}_{e+1}^{-}=$

- Standard Method (without correction): $\tilde{U}_{e+1}^{-}=U_{e}$
- New Method (with correction): $\tilde{U}_{e+1}^{-}=U_{e}+E_{e}$

Computational Examples

- Algorithms

Algorithms

(1) Partition the domain Ω into a regular tetrahedral meshes
(2) Find the Class and Types of each elements
(3) Start from elements where U^{-}is know in all inflow boundary
(9) Compute the DG solution U_{e} in Ω_{e}
(5) Compute the error E_{e} in Ω_{e}
(6) $e=e+1$ and take $\tilde{U}_{e+1}^{-}=$

- Standard Method (without correction): $\tilde{U}_{e+1}^{-}=U_{e}$
- New Method (with correction): $\tilde{U}_{e+1}^{-}=U_{e}+E_{e}$
© go to (3)

Computational Examples

Remark

i) Structured meshes: This meshes obtained by partitioning the domain into n^{3} cube for $n=1,2,3,4,5,6,7,8$ and dividing each cube into five tetrahedrons (where $h_{\max }=\frac{\sqrt{2}}{n}$). Thus, the meshes have $N=5 \times n^{3}=40$, 135, 320, 625, 1080, 1715 and 2560 tetrahedra elements.
ii) Unstructured meshes: These meshes obtained by COMSOL software for $h_{\max }=\frac{1}{n}$ (for $n=1,2,3,4,5,6,7,8$) with number of elements $N=24,192,476,943,2121,3731,5846$ and 8713.

Computational Examples

- Example of Structured and Unstructured meshes

Structured meshes

Figure: Tetrahedral mesh with $N=5 \times 8^{2}=320$ elements

Unstructured meshes

Figure: TTetrahedral meshes obtained by COMSOL with $N=953$ elements

Computational Examples

\author{

- Solve Problem 1 in structured meshes
}

Example 1: We consider the following linear hyperbolic problem

$$
-3 u_{x}-7 u_{y}+13 u_{z}=3 e^{x+y+z},(x, y, z) \in \Omega=[0,1]^{3}
$$

and select the initial and boundary conditions such that the exact solution is

$$
u(x, y, z)=e^{x+y+z}
$$

We solve this problem using \mathcal{P}_{p}, with the exact boundary condition i.e. $U^{-}=u$, on the first meshes and compar the two methods for $p=0,1,2,3$.

Computational Examples

. Results of Problem 1 in structured meshes, $p=0$

\mathcal{P}_{p} (Example 1)										
With correction										
N	N	$\\|u-U\\|_{2, \Omega}$	Order	$\\|u-U-E\\|_{2, \Omega}$	Order	θ				
	40	1.0279	-	$1.4619 e-01$	-	1.0249				
	320	$5.2283 e-01$	1.0155	$4.4524 e-02$	1.7651	1.0257				
0	1080	$3.4927 e-01$	1.0031	$2.1341 e-02$	1.8323	1.0215				
	2560	$2.6212 e-01$	1.0009	$1.2524 e-02$	1.8594	1.0181				
Without correction										
	40	1.1016	-	$8.8975 e-01$	-	0.5326				
	320	$5.8671 e-01$	0.9290	$4.9958 e-01$	0.8104	0.4456				
0	1080	$4.0105 e-01$	0.9432	$3.4893 e-01$	0.8788	0.4097				
	2560	$3.0492 e-01$	0.9549	$2.6829 e-01$	0.9111	0.3901				

Computational Examples

. Results of Problem 1 in structured meshes, $p=1$

\mathcal{P}_{p} (Example 1)											
With correction											
p	N	$\\|u-U\\|_{2, \Omega}$	Order	$\\|u-U-E\\|_{2, \Omega}$	Order	θ					
	40	$1.6430 e-01$	-	$1.1208 e-02$	-	1.0078					
1	320	$2.9779 e-02$	2.0298	$1.7188 e-03$	2.7045	1.0100					
	1080	$1.3256 e-02$	2.0085	$5.6092 e-04$	2.7975	1.0107					
	2560	$7.4596 e-03$	2.0031	$2.4287 e-04$	2.9433	1.0101					
Without correction											
	40	$1.4619 e-01$	-	$1.2639 e-01$	-	0.3583					
1	320	$4.4524 e-02$	1.7651	$4.0626 e-02$	1.6926	0.2940					
	1080	$2.1341 e-02$	1.8323	$1.9748 e-02$	1.7993	0.2835					
	2560	$1.2524 e-02$	1.8594	$1.1664 e-02$	1.8371	0.2794					

Computational Examples

. Results of Problem 1 in structured meshes, $p=3$

\mathcal{P}_{p} (Example 1)											
With correction											
N	N	$\\|u-U\\|_{2, \Omega}$	Order	$\\|u-U-E\\|_{2, \Omega}$	Order	θ					
	40	$5.6848 e-04$	-	$3.5351 e-05$	-	1.0088					
3	320	$3.6432 e-05$	4.0338	$1.2754 e-06$	4.8473	1.0052					
	1080	$7.2110 e-06$	4.0087	$1.7850 e-07$	4.8463	1.0034					
	2560	$2.2825 e-06$	4.0035	$4.3753 e-08$	4.9049	1.0026					
Without correction											
	40	$7.1418 e-04$	-	$6.2790 e-04$	3.7141	0.37205					
3	320	$5.3016 e-05$	3.7605	$4.8864 e-05$	3.6696	0.36086					
	1080	$1.1461 e-05$	3.7898	$1.0778 e-05$	3.7375	0.3509					
	2560	$3.7927 e-06$	3.8634	$3.6021 e-06$	3.8291	0.3505					

Computational Examples

- Results of Problem 1 in Unstructured meshes, $p=2,3$
- Results for solving Example 1 on the second meshes are given in the following table for $p=0,1,2,3$ using the new method.

Computational Examples

- Results of Problem 1 in Unstructured meshes, $p=2,3$
- Results for solving Example 1 on the second meshes are given in the following table for $p=0,1,2,3$ using the new method.

\mathcal{P}_{p} (Example 1 CM)

$$
p=2
$$

N	$\\|u-U\\|_{2, \Omega}$	Order	$\\|u-U-E\\|_{2, \Omega}$	Order	θ
192	$1.6180 e-003$	-	$7.5291 e-005$	-	1.0161
934	$4.1263 e-004$	3.0445	$1.4901 e-005$	3.6954	1.0024
3731	$1.0915 e-004$	3.0376	$2.6278 e-006$	3.8781	1.0021
8713	$4.6621 e-005$	3.2370	$8.7999 e-007$	4.3913	1.0014

$p=3$						
24	$8.3118 e-04$	-	$5.2796 e-05$	-	1.0229	
192	$5.1438 e-05$	4.0142	$1.8696 e-06$	4.8196	1.0132	
934	$9.2356 e-06$	4.3114	$2.9574 e-07$	4.7873	1.0020	
2121	$3.3315 e-06$	4.5695	$8.7329 e-08$	5.4664	1.0020	

Conclusion and future work

- Conclusion:
- Investigated higher-order DGM for scalar first-order hyperbolic problems on tetrahedral meshes.
- Construct asymptotically correct a posteriori error estimates for discontinuous finite element solutions
- Write explicitly the basis functions for the error spaces corresponding to the finite element space \mathcal{P}_{p}.
- These a posteriori error estimates tested on several linear problems to show their efficiency and accuracy under mesh refinement for smooth solutions.
- Future work

Conclusion and future work

- Conclusion:
- Investigated higher-order DGM for scalar first-order hyperbolic problems on tetrahedral meshes.
- Construct asymptotically correct a posteriori error estimates for discontinuous finite element solutions
- Write explicitly the basis functions for the error spaces corresponding to the finite element space \mathcal{P}_{p}.
- These a posteriori error estimates tested on several linear problems to show their efficiency and accuracy under mesh refinement for smooth solutions.
- Future work
- Nonlinear problem
- Transit problem
- System
- Other spaces

Thanks!

