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Overview
• Model and problem formulation

• LQR control

• Abstract and weak formulation for heat equation

• Approximations and convergence

• Optimal sensor placement

• Numerical results
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Model and Problem Formulation
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Hilbert-Schmidt

kernal function ( )

aprroximated by quadrature (CVT)

LQR feedback operator 
integral representation
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LQR Control

Find a control u that minimizes

(4)

subject to
(5)
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When the optimal control exists, it is given in feedback
form

(6)
K  is called  feedback operator.  In particular, 
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where P is the non-negative definite solution to the

Algebraic Riccati Equation (ARE)
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Abstract and Weak Formulation for Heat Equation

Define the operator       on the domain 
(9)

by
(10)

is Laplacian operator and generates an analytic 
semigroup on state space          , denoted as H. is 
exponentially stable, which guarantees the existence of a 
solution to the LQR problem. 
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Let W be the space                          with graph norm           
(11)

It follows that the injections 
(12)

are all continuous and dense. Now we lift the operator A to 
an operator                        by

(13)         
for all             By semi-group theory ( [1], p159, Alain 
Bensoussan, etc.), we can prove that
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Let                   Operator denotes the
Dirichlet map,

(15)
Where      is the solution of the Dirichlet problem

(16)       

Then  D is bounded from      into
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Further, if one defines                      by  
(17)

B is unbounded operator from control space U to state 
space H. Then the control problem can be formulated as
the well-posed system in 

(very weak form)  (18)

Therefore, system (1)-(3) allows for a unique very weak
solution.
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Solving ARE (8) yields
(20)

Based on the numerical results (see [4,5,6]), we conjecture 
that there is a kernel                                    such that

(21)
Here the kernel                   is called the functional gain. Its
exact regularity is unknown. 
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A Variational Form of the Problem

By [2], p.27, we know that 

(22)  
is well-defined for any                   and                        
Therefore, based on (22), we use standard bilinear finite
elements with uniform meshes on      and “hat” function
as defined on       to approximate our system (18). 
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Convergence of the Approximating System
Now, system (18) can be replaced by an approximation
system:

(23)

Notes: we select the approximating space complying with
the usual approximation properties:

(24)        
where                                is the orthogonal projection. 
Then, we have the following convergence results (see[1], 

p.129 and p.133, I. Lasiecka, R.Triggiani):
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(1) (25)      

(2) (26)

(3) (27)
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Optimal Sensor Placement
Solving the approximate finite element LQR problem
produces a feed back operator       with representation

(28)

Where functional                               for each N . And
is where we put sensor. The discretization yields

N-1 discrete actuator locations along
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In order to use Centroidal Voronoi tessellation yielding
the optimal sensor place (see [9]), we apply the singular
value decomposition (SVD) to determine the best appro-
ximation, denoted as                   to the set of functional 
gains. 
Let                      then CVT yields

(29)
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Numerical Results
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M_sensors=6                                                         M_sensors=10
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T=10s                                    M_sensors=6. Closed-Loop reduced order simulation  
Close-Loop full order simulation

Comparison: reduced order – full order system
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T=100s. Closed-loop full order simulation                                    M_sensors=6. Closed-loop reduced order simulation

Comparison: reduced order – full order system
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M_sensors=6, random distribution

M_sensors=6.
Closed-loop reduced system simulation        Comparison: reduced order- full order system
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Future Work

1. Is feedback operator K Hilbert- Schmidt, when B is 
unbounded ? How about the regularity of the kernel 
function                  ?

2. Any other methods to approximate the representation 
for feedback operator and hence give the optimal 
sensor locations?

( , , )k x y



23

Reference
[1] Alain Bensoussan, etc.Representation and Control of Infinte Dimensional 

System, Second  Edition, Boston : Birkhäuser, 2007 ;
[2] I.Lasiecka, R.Triggiani, Differential and Algebraic Riccati Equations with 

Application to Boundary/Point Problems: Contnuous Theory and Approximation 
Theory.

[3] Diana Rubio, Distributed Parameter Control of Thermal Fluids, 1997.
[4] B. B. King, Existence of Functional Gains for Parabolic Control Systems, Proc. 

Computation and Control IV, Birkhäuser, 1995. MR 8:32e;
[5] B. B. King, Representation of feedback operators for parabolic control

problem, Proc. of  AMS, Vol 128, No.5,P. 1339-1346.
[6]   J. A. Burns, D. Rubio and B. B. King, Regularity of Feedback Operators for  

Boundary Control of Thermal Processes, Proc. First International Conference 
on Nonlinear Problems in Aviation and Aerospace, Florida, USA. May, 1996.

[7] J. Wloka, Partial Differential Equations, Cambriage University Press, Cambriage, 
1987.

[8] I. G. Rosen, Convergence of Galerkin Approximations for Operator Riccati 
Equations-A Nonlinear Evolution Equation Approach, JMAA, 155,226-248 
(1991).



24

[9] Q. Du, Vance Faber, M. Gunzburger,  Centroidal Voronoi Tessellations: 
Application and Algorithms, SIAM Review, Vol. 41 No.4, p.637-676;

[10]  L. J. Lions and E. Magenes.  Non-homogenous Boundary Value Problems 
and Applications, volume 1, 1972;

[11] J. Burns, D. Rubio, A Distributed Parameter Control Approach to Sensor 
Location for Optimal Feedback Control of Thermal Process, Proc. of the 36th 
Conference on Decision & Control, San Diego, California, USA, Dec. 1997;

[12] J. A. Atwell, B. B, King, Reduced Order Controller for Spatially Distributed 
Systems via Proper Orthogonal Decomposition, ICAM Report 99-07-01, 
Vriginia Tech;

[13] Anthony L. Faulds, B. B. King, Sensor Location in Feedback Control of 
Partial Differential Equation Systems, Proc. of the 2000 IEEE, International 
Conference on Control Applications, Anchorage, Alaska, UAS, Sep. 25- 
27,2000;



25

[14] J. L. Lions. Translated by S. K. Mitter. Optimal control of systems governed 
by partial differential equations, Berlin, New York, Springer-Verlag, 1971. 

[15] A. V. Balakrishnan, Applied functional analysis, New York : Springer-Verlag, 
1976.

[16] Joseph E. Flaherty, Finite Element Analysis Lecture Notes: Spring 2000, 
p.33-34; 



26

Thank you!
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