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Application of Rigid Multi Body Dynamics

RMBD in diverse areas
? rock dynamics ? human motion
? robotic simulations ? nuclear reactors
? virtual reality ? haptics

VR or Virtual reality exposure (VRE) therapy
? fear of heights ? fear of public speaking
? telerehabilitation ? PTSD
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Trivial Simulation

Figure: Simple Simulation: Trivial Example
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Need to Define and Compute Depth of Penetration

To avoid infinitely small time steps, say from collisions, we need to
impose a minimum stepsize.

For methods with minimum time step, interpenetration may be
unavoidable, thus it needs to be quantified (to limit amount of
interpenetration)

Minimum Euclidean distance good for distance between objects,
but not for penetration
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Construction of a constraint-stabilized time-stepping approach for
piecewise smooth multibody dynamics

Ratio Metric

Constraints and Model

Algorithm

Numerical Results

Summary

Future Projects

xo

P

P(xo,2)
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Expansion/Contraction Map

Polyhedra and Expansion/Contraction Maps

Definition

We define CP(A, b, xo) to be the convex polyhedron P defined by the
linear inequalities Ax ≤ b with an interior point xo. We will often just
write P = CP(A, b, xo).

Definition
Let P = CP(A, b, xo). Then for any nonnegative real number t, the
expansion (contraction) of P with respect to the point xo is defined to be

P(xo, t) = {x |Ax ≤ tb + (1− t)Axo.}
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Polyhedral Ratio Metric

Minkowski Penetration Depth

Definition
Let Pi = CP(Ai ,bi , xi) be a convex polyhedron for i = 1,2. The
Minkowski Penetration Depth (MPD) between the two bodies P1 and
P2 is defined formally as

PD(P1,P2) = min{||d || |interior(P1 + d)
⋂

P2 = ∅}. (1)
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Polyhedral Ratio Metric

Ratio Metric Penetration Depth

Definition

Let Pi = CP(Ai ,bi , xi) be a convex polyhedron for i = 1,2. Then the
Ratio Metric between the two sets is given by

r(P1,P2) = min{t |P1(x1, t)
⋂

P2(x2, t) 6= ∅}, (2)

and the corresponding Ratio Metric Penetration Depth (RPD) is given
by

ρ(P1,P2, r) =
r(P1,P2)− 1

r(P1,P2)
. (3)
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Polyhedral Ratio Metric

Expansion/Contraction Again

Figure: Visual representation of double expansion or contraction
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Metric Equivalence Theorem

Metric Equivalence Theorem

Theorem (Metric Equivalence)

Let Pi = CP(Ai ,bi , xi) be a convex polyhedron for i = 1,2, s be the
MPD between the two bodies, D be the distance between x1 and x2, ε
be the maximum allowable Minkowski penetration between any two
bodies. Then the ratio metric penetration depth between the two sets
satisfies the relationship

s
D
≤ ρ(P1,P2, r) ≤ s

ε
, (4)

if P1 and P2 have disjoint interiors, and

− s
ε
≤ ρ(P1,P2, r) ≤ − s

D
(5)

if the interiors of P1 and P2 are not disjoint.
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Metric Equivalence Theorem

Significance of the Metric Equivalence Theorem

Let number of facets of two polyhedra be m1 and m2

Computing PD by using the Minkowski sums: O(m2
1 + m2

2)

Solving linear programming problem: O(m1 + m2)

∴ our metric provide us with a simple way to detect collision and
measure penetration of two convex polyhedral bodies bodies with
lower complexity and is equivalent, for small penetration, to the
classical measure

∴ for time step h, if the MPD is O(h2) then so is the RPD
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Basic Contact Unit

Perfect Contact

Definition
In n-dimensional space, a Basic Contact Unit (BCU) occurs when

two convex polyhedra are in perfect contact,
the contact region attached to a BCU is a point, and
exactly n+1 facets are involved at the contact.

The point where the contact occurs is called an event point, or more
simply, an event.

A CoF is always a BCU

In 2D: CoF In 3D: CoF, (nonparallel) EoE
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Basic Contact Unit

Basic Contact Unit

Figure:
Corner-on-Face

Figure: Edge-on-Edge Figure: Face-on-Face

Theorem

The intersection of two convex polyhedra in perfect contact is the
convex hull of the event points.
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Differentiability at an Event

Differentiability

Theorem: At any event E of perfect contact, then the restrictions
of Pi(xi , t) to E are infinitely differentiable with respect to the
translation vectors and rotation angles.

Associate mth event E (m) with component function Φ̂(m).

Theorem: RPD is the maximum of component distance functions.
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Construction of a constraint-stabilized time-stepping approach for
piecewise smooth multibody dynamics

Ratio Metric
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Numerical Results

Summary
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Physical Constraints

Noninterpenetration Constraints

Model noninterpenetration constraints by continuous piecewise
differentiable signed distance functions:

Φ(j)(q) ≥ 0, j = 1,2, · · · ,p. (6)

We will use RPD to compute Φ(j)

Figure: Noninterpenetration Constraint: Constraint not enforced

gdhart@pitt.edu (UPG) ICAM App. Math. Con. 2/20/2010 26 / 47



Introduction Ratio Metric Constraints and Model Algorithm Numerical Results ’Comps Future

Physical Constraints

Joint Constraints

Model joint constraints by sufficiently smooth
Θ(i)(q) = 0, i = 1,2, · · · ,nJ

Define ν(i)(q) = ∇qΘ(i)(q), i = 1,2, · · · ,nJ

Figure: Joint Constraint: Fixed distance between wheels
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Model

Linear Complementarity Model

Euler discretization of the equations of motion:

M(q(l))
(
v (l+1) − v (l)) = hlk

(
t(l),q(l), v (l))+

∑nJ
i=1 c(i)

ν ν(i)(q(l))

+
∑
m∈E

c(m)
n n(m)(q(l)) +

M(m)
C∑

i=1

β
(m)
i d (m)

i (q(l))

 .

(7)

Modified linearization of geometrical and noninterpenetration
constraints:

γΘ(i)(q(l)) + hlν
(i)T

(q(l))v (l+1) = 0, i = 1,2, · · · ,nJ ,

n(m)T
(q(l))v (l+1) + γ

hl
Φ(j)(q(l)) ≥ 0 ⊥ c(m)

n ≥ 0, m ∈ E .
(8)
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Model

Friction Model

Friction model (usual classical pyramid approximation of friction cone,
see Stewart & Trinkle 1995 or Anitescu & Hart 2004):

D(m)T
(q)v + λ(m)e(m) ≥ 0 ⊥ β(m) ≥ 0,

µc(m)
n − e(m)T

β(m) ≥ 0 ⊥ λ(m) ≥ 0.
(9)
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Model

Mixed Complementarity and QP Formulation

M(l)v −ñc̃n −D̃β̃ = −q(l)

ν̃T v = −Υ
ñT v −µ̃λ ≥ −Γ−∆ ⊥ cn ≥ 0
D̃T v +Ẽλ ≥ 0 ⊥ β̃ ≥ 0

µ̃cn −ẼT β̃ ≥ 0 ⊥ λ ≥ 0

(10)

Note (10) constitutes 1st -order optimality conditions of QP

min
v ,λ

1
2vT M(l)v + q(l)T

v

s.t. n(m)T
v − µ(m)λ(m) ≥ −Γ(m) −∆(m), m ∈ E

D(m)T
v + λ(m)e(m) ≥ 0, m ∈ E

νT
i v = −Υi , 1 ≤ i ≤ nJ
λ(m) ≥ 0 m ∈ E

(11)
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Construction of a constraint-stabilized time-stepping approach for
piecewise smooth multibody dynamics
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Assumptions

Assumption A1

A1: There exists εo > 0, Cd
1 > 0, and Cd

2 > 0 such that

Φ(j) for 1 ≤ j ≤ nB are piecewise continuous on their domains Ωε,
with piecewise components Φ̂(m)(q) which are twice continuously
differentiable in their respective open domains with first and second
derivatives uniformly bounded by Cd

1 > 0 and Cd
2 > 0, respectively,

and

Θ(i)(q) for i = 1,2, · · · ,m are twice continuously differentiable in Ωε

with first and second derivatives uniformly bounded by Cd
1 > 0 and

Cd
2 > 0, respectively.
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Assumptions

Using Assumption A1

Lemma

If Assumption A1 holds, then Φ(j) for 1 ≤ j ≤ nB is everywhere
directionally differentiable. Moreover, the generalized gradient of Φ(j) is
contained in the convex cover of the gradients of its component
functions which are active at q evaluated at q.

Note: We use Φ(j)o
(q; v) = lim sup

p→q,t↓0

Φ(j)(p + tv)− Φ(j)(p)

t

Lemma

If Assumption A1 holds, then for any j such that 1 ≤ j ≤ nB, then Φ(j)

satisfies a Lipschitz condition.

Note: We use Lebourg’s Mean Value Theorem in the proof
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Assumptions

Assumptions D1 - D3

D1: The mass matrix is constant. That is, M
(
q(l)) = M(l) = M.

D2: The norm growth parameter is constant: c(·, ·, ·) ≤ co

D3: The external force is continuous and increases at most linearly
with the pos. and vel., and unif. bdd in time:

k(t , v ,q) = ko(t , v ,q) + fc(v ,q) + k1(v) + k2(q)

and there is some constant cK ≥ 0 such that

||ko(t , v ,q)|| ≤ cK
||k1(v)|| ≤ cK ||v ||
||k2(q)|| ≤ cK ||q|| .

Also assume
vT fc(v ,q) = 0 ∀v ,q.
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Main Algorithm

Algorithm for Piecewise Smooth RMBD

Algorithm

Algorithm for piecewise smooth multibody dynamics
Step 1: Given q(l). v (l). and hl , calculate the active set A

(
q(l))

and active events E
(
q(l)).

Step 2: Compute v (l+1), the velocity solution of our mixed LCP .
Step 3: Compute q(l+1) = q(l) + hlv (l+1).
Step 4: IF finished, THEN stop ELSE set l = l + 1 and restart.
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Proof that Algorithm works

Main Result

Theorem

Assume that our algorithm is applied over a time interval [0, T], and

The active set A(q) and active events E(q) are properly defined
The time steps hl > 0 satisfy
N−1∑
l=0

hl = T and
hl−1

hl
= ch, l = 1,2, · · · ,N − 1

The system satisfies Assumptions (A1) and (D1) - (D3)
The system is initially feasible. That is, I(q(0)) = 0

Then, there exist H > 0, V > 0, and Cc > 0 such that∣∣∣∣v (l)
∣∣∣∣ ≤ V and I (q(l)) ≤ Cc

∣∣∣∣v (l)
∣∣∣∣2 h2

l−1, ∀l , 1 ≤ l ≤ N
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Consequences

Consequences of the Theorem

Algorithm achieves constraint stabilization because the
infeasibility is bounded above by the size of the solution. In
particular, v (l+1) = 0⇒ I(q(l+1)) = 0

Linear O(h) method yields quadratic O(h2) infeasibility

Velocity remains bounded

No need to change the step size to control infeasibility

Solve one linear complementarity problem per step
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Construction of a constraint-stabilized time-stepping approach for
piecewise smooth multibody dynamics
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Balance2

Six successive frames from Balance2
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Balance2

Smaller stepsize⇒ smaller average infeasibility
Constraint stabilization⇒ smaller average infeasibility
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Balance2

Average infeasibility shows quadratic O(h2) nature
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Pyramid1

Six successive frames from Pyramid1
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Accomplishments

Accomplishments

Successfully developed a computationally efficient signed
distance function, Ratio Metric

Successfully shown equivalence of RPM to MPD

Successfully developed and analyzed algorithm that achieves
constraint stabilization solving one LCP per step

Successfully calculated generalized gradients and showed that
infeasibility at step l is upper bounded by O(||hl−1||2

∣∣∣∣v (l)
∣∣∣∣2)

Successfully implemented this algorithm for several problems with
good results
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Future Projects

Goals

Successfully model other interesting problems.

Successfully model problem with joint constraints.

Complete proof for piecewise defined joint constraints.

Successfully model problem with piecewise joint constraints.
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Future Projects

Thank You!

Auburn University

Clemson University

North Carolina A T & T

University of Pittsburgh

University of South Carolina

Virginia Tech

SIAM Student Chapter at Virginia Tech

Virginia Tech Mathematics Department

Interdisciplinary Center for Applied Mathematics (ICAM)
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