The Collocation Solution of BVP for a System of ODEs in Photosynthetic Carbon Metabolism Ultimately for Parameter Estimation

EUN CHANG
VIRGINIA TECH
FEBRUARY 20, 2010
2010 SIAM STUDENT CONFERENCE
CHANGER@VT.EDU

Collaborators

- Advisor: Dr. Eric de Sturler

Department of Mathematics
Virginia Tech
sturler@vt.edu
-Dr. Xin-guang Zhu
Principle Investigator
Chinese Academy of Sciences
Research Scientist
Department of Physiological Molecular Plant Biology
University of Illinois at Urbana-Champaign
Zhu3@uiuc.edu

WHY
 PHOTOSYNTHETIC CARBON METABOLISM?

1. THE MOST IMPORTANT BIOLOGICAL PROCESS ON EARTH

- SURVIVE! Food, hospitable environment \& Energy
* Generate Carbohydrate and oxygen.
- Photosynthesis Output of Carbohydrate: 160 billion metric tons yearly. $=3532000000000$ pounds.

2. Photorespiration: Not understood completely[26]
3. Extended photosynthetic carbon metabolism[20]

- No current dynamic model of photosynthetic carbon metabolism includes all the reactions in the following.

1. Calvin cycle
2. Photorespiratory metabolism
3. Starch synthesis
4. Suc synthesis

K-12 Photosynthesis: Light Reactions and the Calvin Cycle.

WHAT PARAMETERS?

- Enzymes for improved crop yield Or increased photosynthetic rate [de Sturler, Zhu, Long]

1. Biotechnology can engineer each enzyme to alter resource allocation between the enzymes
2. 38 enzymes involved in extended photosynthetic carbon metabolism
3. Given a fixed resource of total protein-nitrogen, $\mathbf{1 0}^{\mathbf{9}}$ testing choices for optimal distribution of protein nitrogen into different enzymes.

* WHICH ENZYMES? MNEED TO IDENTIFY
- The Maximum Rate of some reactions or of all Enzymes in the Photosynthetic Carbon Metabolism
- 7 Proteins that are not necessary for photosynthesis but are required for photorespiration
- Initial Conditions
- Kinetic Constants Used in Rate Equations of each Metabolite[21]

PHOTOSYNTHESIS AND ENERGY

- 2010 The State of the Union

- "...Continued investment in advanced biofuel..." Increase Crop Yield \rightarrow More Biofuel
- Ethanol Fuel: Fermented sugars from sugar cane, wheat, corn (C4 plants) etc. E10: Mandatory
in 10 States.

- E85: is used in Sweden. 7 stations in VA (2 open to public), normally 30\% cost less than gasoline.
- E100 is widely used in Brazil.

A SYSTEM OF ODES.

$$
\begin{aligned}
& \frac{\mathrm{d}[\mathrm{RuBP}]}{\mathrm{dt}}=\mathrm{v}_{13}-\mathrm{v}_{1}-\mathrm{v}_{111} ; \\
& \frac{\mathrm{d}[\mathrm{PGA}]}{\mathrm{dt}}=2 \mathrm{v}_{1}-\mathrm{v}_{2}-\mathrm{v}_{32}+\mathrm{v}_{111}+\mathrm{v}_{113} ; \\
& \frac{\mathrm{d}[\mathrm{DPGA}]}{\mathrm{dt}}=\mathrm{v}_{2}-\mathrm{v}_{3} ; \\
& \frac{\mathrm{d}[\mathrm{~T} 3 \mathrm{P}]}{\mathrm{dt}}=\mathrm{v}_{3}-2 \mathrm{v}_{5}-\mathrm{v}_{7}-\mathrm{v}_{8}-\mathrm{v}_{10}-\mathrm{v}_{31}-\mathrm{v}_{33} ; \\
& \frac{\mathrm{d}[\mathrm{FBP}]}{\mathrm{dt}}=\mathrm{v}_{5}-\mathrm{v}_{6} ; \\
& \frac{\mathrm{d}[\mathrm{E} 4 \mathrm{P}]}{\mathrm{dt}}=\mathrm{v}_{7}-\mathrm{v}_{8} ; \\
& \frac{\mathrm{d}[\mathrm{~S} 7 \mathrm{P}]}{\mathrm{dt}}=\mathrm{v}_{9}-\mathrm{v}_{10} ; \\
& \frac{\mathrm{d}[\mathrm{SBP}]}{\mathrm{dt}}=\mathrm{v}_{8}-\mathrm{v}_{9} ; \\
& \frac{\mathrm{d}[\mathrm{ATP}]}{\mathrm{dt}}=\mathrm{v}_{16}-\mathrm{v}_{2}-\mathrm{v}_{23}-\mathrm{v}_{13}-\mathrm{v}_{113} ; \\
& \frac{\mathrm{d}[\mathrm{HexP}]}{\mathrm{dt}}=\mathrm{v}_{6}-\mathrm{v}_{7}-\mathrm{v}_{23} ; \\
& \frac{\mathrm{d}[\mathrm{PenP}]}{\mathrm{dt}}=\mathrm{v}_{7}+2 \mathrm{v}_{10}-\mathrm{v}_{13} ;
\end{aligned}
$$

Where

$$
\begin{aligned}
& v_{13}=\frac{V_{13}(A T P \times R u 5 P)}{\left(A T P\left(1+\frac{A D P}{K_{I 134}}\right)+K_{M 132}\left(1+\frac{A D P}{K_{I 135}}\right)\right) \times\left(R u 5 P+K_{M 131}\left(1+\frac{G A P}{K_{I 131}}+\frac{R u B P}{K_{I 132}}+\frac{P i}{K_{I 133}}\right)\right)} \\
& v_{1}=\frac{R u B P \times W_{C} \times \min \left(1, \frac{R u B P}{E_{t}}\right)}{\left(R u B P+K_{r}\left(1+\frac{P G A}{K_{I 11}}+\frac{F B P}{K_{I 12}}+\frac{S B P}{K_{I 13}}+\frac{P i}{K_{I 14}}+\frac{N A D P H}{K_{I 15}}\right)\right)} ; W_{C}=\frac{V_{C \max } \times C O_{2}}{C O_{2}+K_{M 11}\left(1+\frac{O_{2}}{K_{M 12}}\right)} \\
& \left.v_{111}=\frac{R u B P \times W_{O} \times \min \left(1, \frac{R u B P}{E_{t}}\right)}{\left(R u B P+K_{r}\left(1+\frac{P G A}{K_{I 11}}+\frac{F B P}{K_{I 12}}+\frac{S B P}{K_{I 13}}+\frac{P I}{K_{I 14}}+\frac{N A D P H}{K_{I 15}}\right)\right)} ; W_{O}=\frac{V_{111} \times O_{2}}{O_{2}+K_{o}\left(1+\frac{C O_{2}}{K_{C}}\right)}\right)
\end{aligned}
$$

Stiffness of ODEs

- Large negative real part of eigenvalues along with others normal magnitude.
- Local J acobian, $\frac{\partial f}{\partial y}$, has large eigenvalues.
- Need A-Stability Solver or extremely small time steps.
- IRK_s (Better Stability with the higher order)=Collocation Method
« Simple One-Step scheme
Note that ODE stiff is not related stiffness in parameters as in "Stiff" parameter \& "Sloppy" parameter in Gutenkunst[7] and Ashyraliyev[3]

Implicit S-Stage Runge-Kutta (IRK)

$$
\begin{aligned}
& y_{i+1}=y_{i}+h_{i} \sum_{s=1}^{s} \beta_{s} f_{i s} ; \quad 1 \leq i \leq K . \\
& f_{i s}=f\left(t_{i s}, y_{i}+h_{i} \sum_{l=1}^{s} \alpha_{s l} f_{i l}\right) \cdot 1 \leq s \leq S \\
& t_{i s}=t_{i}+h_{i} \rho_{s} ; \quad 1 \leq s \leq S, \quad 1 \leq i \leq K \\
& f_{i s}=f\left(t_{i s}, y_{i s}\right) ; y_{i s}:=y_{i}+h_{i} \sum_{l=1}^{s} \alpha_{s l} f_{i l}=\text { appr of } y\left(t_{i s}\right)
\end{aligned}
$$

$$
\text { with } 0 \leq \rho_{1}<\rho_{2}<\cdots<\rho_{s} \leq 1 \text {. }
$$

The points ρ_{s} are distinct.
IRK_s := This special case of IRK

Construction of Weight For IRK_s

where aggregate α and β are
$\sum_{l=1}^{S} \alpha_{s l}=\rho_{s}$. And $\sum_{l=1}^{s} \beta_{l}=1 . \quad 1 \leq s \leq S$
The Butcher Diagram.

Collocation Method : ODE Solver

1. Discretization

- Time domain $t_{0}<t_{1}<\ldots<t_{k}<\ldots<t_{N}, I_{k}=\left[t_{k-1}, t_{k}\right]$.

2. Choose Basis Function:

- Lagrange Polynomial (for each metabolite and each interval)

$$
\begin{aligned}
\tilde{y}_{k, j}(t) & =f\left(l_{k}\right) \frac{\left(t-m_{k}\right)\left(t-r_{k}\right)}{\left(l_{k}-m_{k}\right)\left(l_{k}-r_{k}\right)}+f\left(m_{k}\right) \frac{\left(t-l_{k}\right)\left(t-r_{k}\right)}{\left(m_{k}-l_{k}\right)\left(m_{k}-r_{k}\right)} \\
& +f\left(r_{k}\right) \frac{\left(t-l_{k}\right)\left(t-m_{k}\right)}{\left(r_{k}-l_{k}\right)\left(r_{k}-m_{k}\right)} \\
& :=A_{k, j} \frac{\left(t-m_{k}\right)\left(t-r_{k}\right)}{\left(l_{k}-m_{k}\right)\left(l_{k}-r_{k}\right)}+B_{k, j} \frac{\left(t-l_{k}\right)\left(t-r_{k}\right)}{\left(m_{k}-l_{k}\right)\left(m_{k}-r_{k}\right)}+C_{k, j} \frac{\left(t-l_{k}\right)\left(t-m_{k}\right)}{\left(r_{k}-l_{k}\right)\left(r_{k}-m_{k}\right)}
\end{aligned}
$$

Where $A_{k, j}=f\left(l_{k}\right), B_{k, j}=f\left(m_{k}\right) \& \mathrm{C}_{k, j}=f\left(r_{k}\right), l, m, r$ are timesteps, and $f(\cdot)$ is a function value at the time.

$$
A_{k, j}, B_{k, j}, C_{k, j} \text { are unknowns } \rightarrow 3 \cdot K \cdot J \text { unknowns }
$$

Need $3 \cdot K \cdot J$ Equations

1. Left Continuity Condition: $K \cdot J$
2. Right Differentiability Condition:K $\cdot J$
3. Collocation Condition:K•J

- Satisfy the given model
$■$ Highly Nonlinear Equations
$■$ Need J acobian
$\longrightarrow 3 \cdot K \cdot J$ algebraic equations

Left Continuity Condition

$\tilde{y}_{k-1, j}\left(l_{k}\right)-\tilde{y}_{k, j}\left(l_{k}\right)=A_{k-1, j} \frac{\left(l_{k}-m_{k-1}\right)\left(l_{k}-r_{k-1}\right)}{\left(l_{k-1}-m_{k-1}\right)\left(l_{k-1}-r_{k-1}\right)}+B_{k-1, j} \frac{\left(l_{k}-l_{k-1}\right)\left(l_{k}-r_{k-1}\right)}{\left(m_{k-1}-l_{k-1}\right)\left(m_{k-1}-r_{k-1}\right)}$
$+C_{k-1, j} \frac{\left(l_{k}-l_{k-1}\right)\left(l_{k}-m_{k-1}\right)}{\left(r_{k-1}-l_{k-1}\right)\left(r_{k-1}-m_{k-1}\right)}-A_{k, j} \frac{\left(l_{k}-m_{k}\right)\left(l_{k}-r_{k}\right)}{\left(l_{k}-m_{k}\right)\left(l_{k}-r_{k}\right)}$
$-B_{k, j} \frac{\left(l_{k}-l_{k}\right)\left(l_{k}-r_{k}\right)}{\left(m_{k}-l_{k}\right)\left(m_{k}-r_{k}\right)}-C_{k, j} \frac{\left(l_{k}-l_{k}\right)\left(l_{k}-m_{k}\right)}{\left(r_{k}-l_{k}\right)\left(r_{k}-m_{k}\right)}=0$.
Note that $l_{k}=r_{k-1}$

$$
\Rightarrow \tilde{y}_{k-1, j}\left(l_{k}\right)-\tilde{y}_{k, j}\left(l_{k}\right)=C_{k-1, j}-A_{k, j}
$$

$\Rightarrow(K-1) J$ equations

Right Differentiability Condition

$\tilde{y}_{k, j}^{\prime}\left(r_{k}\right)-\tilde{y}_{k+1, j}^{\prime}\left(r_{k}\right)=A_{k, j} \frac{\left(r_{k}-m_{k}\right)+\left(r_{k}-r_{k}\right)}{\left(l_{k}-m_{k}\right)\left(l_{k}-r_{k}\right)}+B_{k, j} \frac{\left(r_{k}-l_{k}\right)+\left(r_{k}-r_{k}\right)}{\left(m_{k}-l_{k}\right)\left(m_{k}-r_{k}\right)}$
$+C_{k, j} \frac{\left(r_{k}-l_{k}\right)+\left(r_{k}-m_{k}\right)}{\left(r_{k}-l_{k}\right)\left(r_{k}-m_{k}\right)}-A_{k+1, j} \frac{\left(r_{k}-m_{k+1}\right)+\left(r_{k}-r_{k+1}\right)}{\left(l_{k+1}-m_{k+1}\right)\left(l_{k+1}-r_{k+1}\right)}$
$-B_{k+1, j} \frac{\left(r_{k}-l_{k+1}\right)+\left(r_{k}-r_{k+1}\right)}{\left(m_{k+1}-l_{k+1}\right)\left(m_{k+1}-r_{k+1}\right)}-C_{k+1, j} \frac{\left(r_{k}-l_{k+1}\right)+\left(r_{k}-m_{k+1}\right)}{\left(r_{k+1}-l_{k+1}\right)\left(r_{k+1}-m_{k+1}\right)}=0$.
Since $r_{k}=l_{k+1}$ and let $h_{k}=r_{k}-l_{k}$
$\Rightarrow \tilde{y}_{k, j}^{\prime}\left(r_{k}\right)-\tilde{y}_{k+1, j}^{\prime}\left(r_{k}\right)=\frac{A_{k, j}-4 B_{k, j}+3 C_{k, j}}{h_{k}}+\frac{3 A_{k+1, j}-4 B_{k+1, j}+C_{k, j}}{h_{k+1}}$

Boundary Conditions

$\Rightarrow 2 J$ equations

- LBC

$$
\begin{aligned}
& \tilde{y}_{1, j}\left(l_{1}\right)-I C=A_{1, j} \frac{\left(l_{1}-m_{1}\right)\left(l_{1}-r_{1}\right)}{\left(l_{1}-m_{1}\right)\left(l_{1}-r_{1}\right)}+B_{1, j} \frac{\left(l_{1}-l_{1}\right)\left(l_{1}-r_{1}\right)}{\left(m_{1}-l_{1}\right)\left(m_{1}-r_{1}\right)} \\
& +C_{1, j} \frac{\left(l_{1}-l_{1}\right)\left(l_{1}-m_{1}\right)}{\left(r_{1}-l_{1}\right)\left(r_{1}-m_{1}\right)}-I C_{j}
\end{aligned}
$$

$$
=A_{1, j}-I C_{j}=0 \text { where IC represents initial conditions. }
$$

- RBC

$$
\begin{aligned}
\tilde{y}_{k, j}\left(r_{k}\right)-E C_{j} & =A_{k, j} \frac{\left(r_{k}-m_{k}\right)\left(r_{k}-r_{k}\right)}{\left(l_{k}-m_{k}\right)\left(l_{k}-r_{k}\right)}+B_{k, j} \frac{\left(r_{k}-l_{k}\right)\left(r_{k}-r_{k}\right)}{\left(m_{k}-l_{k}\right)\left(m_{k}-r_{k}\right)} \\
& +C_{k, j} \frac{\left(r_{k}-l_{k}\right)\left(r_{k}-m_{k}\right)}{\left(r_{k}-l_{k}\right)\left(r_{k}-m_{k}\right)}-E C_{j} \\
& =C_{k, j}-E C_{j}=0 \text { where } E C \text { represents end conditions. }
\end{aligned}
$$

Collocation Condition

$\Rightarrow K J$ equations

$$
\begin{aligned}
\tilde{y}_{k, j}^{\prime}\left(m_{k}\right)= & A_{k, j} \frac{\left(m_{k}-m_{k}\right)+\left(m_{k}-r_{k}\right)}{\left(l_{k}-m_{k}\right)\left(l_{k}-r_{k}\right)}+B_{k, j} \frac{\left(m_{k}-l_{k}\right)+\left(m_{k}-r_{k}\right)}{\left(m_{k}-l_{k}\right)\left(m_{k}-r_{k}\right)} \\
& +C_{k, j} \frac{\left(m_{k}-l_{k}\right)+\left(m_{k}-m_{k}\right)}{\left(r_{k}-l_{k}\right)\left(r_{k}-m_{k}\right)}=f\left(m_{k}, \tilde{y}\left(m_{k}\right)\right) \\
\Rightarrow & \dot{\tilde{y}}_{k, j}\left(m_{k}\right)-f\left(m_{k}, \tilde{y}\left(m_{k}\right)\right)=0
\end{aligned}
$$

For example: (Equidistance Case)

$$
\begin{aligned}
& \tilde{y}_{k, j}^{\prime}\left(m_{k}\right)=A_{k, j} \frac{\left(-\frac{h_{k}}{2}\right)}{\left(-\frac{h_{k}}{2}\right) \cdot\left(-h_{k}\right)}+B_{k, j} \frac{\left(\frac{h_{k}}{2}\right)+\left(-\frac{h_{k}}{2}\right)}{\left(\frac{h_{k}}{2}\right) \cdot\left(-\frac{h_{k}}{2}\right)}+C_{k, j} \frac{\left(\frac{h_{k}}{2}\right)}{\left(h_{k}\right) \cdot\left(\frac{h_{k}}{2}\right)} \\
& \tilde{y}_{k, j}^{\prime}\left(m_{k}\right)=A_{k, j} \frac{1}{\left(-h_{k}\right)}+C_{k, j} \frac{1}{\left(h_{k}\right)}=\frac{-A_{k, j}+C_{k, j}}{h_{k}}=f\left(m_{k}, \tilde{y}\left(m_{k}\right)\right)
\end{aligned}
$$

Automatic Differentiation (AD)

- Systematic application of the chain rule.
- "NUMERICALLY EXACT evaluation of derivatives" Shampine, Kierzenka, Forth (2005)
- Accurate to within roundoff.
- No Discretization or Cancellation errors Unlike FD
- ADMAT/ADMIT: Verma, Coleman
- MAD AD: Forward Mode AD [Forth, 2006].
« Quicker w/ AD than w/ o AD for vectorized cases*.
- ADIMAT: Vehreschild [18]
r Forward AD: Directional derivatives and its Value calculated
*More efficient than other AD [Forth, 2006]

Data VS Collocation Solutions ($\mathrm{K}=3$)

Data VS Collocation Solutions I ($\mathrm{K}=20$)

(27)

Solving Non-Linear K=3000

Error Control and Adaptive Refinement

1.Order p : Truncation error $\tau_{i+1}(h)=\varnothing\left(h^{p}\right)$
2. Order $p+1$: Truncation error $\hat{\tau}_{i+1}(h)=O\left(h^{p+1}\right)$

Assume $\tilde{y}_{i} \approx y\left(t_{i}\right) \approx \hat{y}_{i}$.

$$
\begin{aligned}
\tau_{i+1}\left(h_{i}\right) & =\frac{y\left(t_{i+1}\right)-y\left(t_{i}\right)}{h_{i}}-\phi\left(t_{i}, y\left(t_{i}\right), h\right)=\frac{y\left(t_{i+1}\right)-\tilde{y}_{i}}{h_{i}}-\frac{h_{i} \phi\left(t_{i}, y\left(t_{i}\right), h\right)}{h_{i}} \\
& =\frac{y\left(t_{i+1}\right)-\left[\tilde{y}_{i}+h_{i} \phi\left(t_{i}, y\left(t_{i}\right), h\right)\right]}{h_{i}}=\frac{y\left(t_{i+1}\right)-\tilde{y}_{i+1}}{h_{i}}
\end{aligned}
$$

Similarly, $\hat{\tau}_{i+1}\left(h_{i}\right)=\frac{y\left(t_{i+1}\right)-\hat{y}_{i+1}}{h_{i}}$, but $\tau_{i+1}\left(h_{i}\right)=\frac{y\left(t_{i+1}\right)-\tilde{y}_{i+1}}{h_{i}}=\frac{y\left(t_{i+1}\right)-\hat{y}_{i+1}}{h_{i}}$
$=\frac{y\left(t_{i+1}\right)-\hat{y}_{i+1}+\left(\hat{y}_{i+1}-\tilde{y}_{i+1}\right)}{h_{i}}=\hat{\tau}_{i+1}(h)+\frac{\hat{y}_{i+1}-\tilde{y}_{i+1}}{h_{i}} \approx \frac{\left[\hat{y}_{i+1}-\tilde{y}_{i+1}\right]}{h_{i}}=h_{i}^{-1}\left[\hat{y}_{i+1}-\tilde{y}_{i+1}\right]$
3. Given Step Size h_{i}, accept the step if $\left|\hat{y}_{i+1}-\tilde{y}_{i+1}\right| \leq h_{i}$ Tol

Nonlinear Least-Squares Problem

1. Collocation Approximation Solution.
2. Data
3. Minimize the Residual (Discrepancy btn $1 \& 2$).

- The Gauss-Newton Method.
- The Levenberg-Marquardt Method
\longrightarrow Optimized Parameters.

Why Difficult? Issues?

- J acobians : Solving nonlinear equation \& optimization.
- Exploit Structures of J acobians:
r Banded FD, Block FD.
\star Coll Cond : ADiMat.
- Vectorization is used for J acobian build for speed.
- Ill-Conditioned J acobian.
* Used different basis functions
- Stiffness of ODE:
- Sloppiness of Parameters.
- A Few Unstable Metabolites \rightarrow Error \uparrow
- Adaptive Step Size Refinement.

What To Do

- More efficient \& robust algorithm
- as a method of parameter estimation for broader practical applications.
- Acceleration techniques to improve the accuracy:
- Parameter Correlation
- Assumed zero parameter correlation now
- Combining deterministic and stochastic parameter estimation for the same model

References

[1] Ascher,U.,Mattheij,R., and Russell, R. Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, SIAM, Philadelphia, PA,1995.
[2] Ashyraliyev, M., Jaeger, J., Blom, J. Parameter estimation and determinability analysis applied to Drosophila gap circuits. 2008, BMC Systems Biology 2008 2:83
[3] Ashyraliyev, M.,Fomekong-Nanfack, Y., Kaandorp, J,, Blom, J. Systems biology: parameter estimation for biochemical models. 2009 , FEBS Journal 276 ,2009.
886-902.
[4] Burden, R. Faires, J. Numerical Analysis, 7th Edition, Brooks Cole, 1997.
[5] Campbell,N.,Reece,J. Biology, Benjamin Cummings, 2002,pp176-196.
[6] Gautschi, w. Numerical analysis: an introduction, Birkhäuser, Boston, 1997.
[7] Gunkunst, R., Waterfall,J.,Casey,F. Brown, K.,Myers,C.m,Sethna,J., Universally Sloppy Parameter Sensitivities in Systems Biology Models. PLOS computational Biology. 2007
[8] Heath, M. Scientific Computing Second Edition, McGraw Hill. New York, 2002.
[9] Iserles, A. Numerical Analysis of Differential Equations. Cambridge. 1996
[10] Landis, F. Runge-Kutta and Collocation Methods. On-line notes.
[11] Ljung, L., Perspectives on System Identification,2008
[12] Mendes, P,Kell, D. Non-linear Optimization of Biochemical Pathways: applications to metabolic engineering and parameter estimation Bioinformatics. 1998
[13] Nocedal, J., Wright, S., Numerical Optimization, Springer, 1999, pp
[14] Shampine,L.,Kierzenka,J., and Forth,S., Using AD to Solve BVPs in MATLAB. ACM Transactions on Mathematical Software.V31,No.1, 79-94. 2005
[15] Shampine,L.,Kierzenka,J., and Reichelt,M., Solving Boundary Value Problems for Ordinary Differential Equations in MATLAB with bvp4c. ACM Transactions on
Mathematical Software. V31,No.1,79-94. 2000
[16] Stoer, J., Bulirsch, R., Introduction to Numerical Analysis, 2nd Edition, Springer. 1993.
[17] Tarantola, A., Inverse Problem Theory, Methods for Data Fitting and Model Parameter Estimation. Elsevier, 1987
[18] Vehreschild,A., ADiMAT.
[19] Zhu, X, Govindjee, Baker, N., de Sturler, E., Ort, D., Long, S., Chlorophyll a fluorescence induction kinetics in leaves predicted from a model describing each discrete step of excitation energy and electron transfer associated with Photosystem II, Planta 223(1), pages 114-133, 2005
[20] Zhu, X., de Sturler,E., Long,S. Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: A numerical simulation using an evolutionary algorithm. Plant Physiology,145(2007):513-526.
[21] Zhu, X., de Sturler,E. ,Fettig,J. Impacts of Different Metabolite Measurement Protocols on Estimating Parameters in Complex Kinetic Metabolism models [22] Zhu, X., de Sturler,E., Alba,R. A Simple Model of the Calvin Cycle has Only One Physiologically Feasible Steady State Under the Same External Conditions. Nonlinear Analysis: Real World Application, 2008.
[23] Burns, J. Class note for Sensitivity Analysis, Virginia Tech, 2008.
[24] Stortelder, W., Parameter Estimation in Nonlinear Dynamical Systems. PhD thesis. University of Amsterdam. Mathematics and Computer Science. 1998.
[25] Science Daily "Scientists Successfully Simulate Photosynthesis And Design A Better Leaf." 11 November 2007. <http://www.sciencedaily.com-
releases/2007/11/071109123201.htm>.
[26] Sharkey T. Photorespiration, John Wiley \& Sons, 2001.
[27] Im
Image $1 \mathrm{http://www.cam.k12.il.us/hs/teachers/caplingerd/photosynthesis.gif}$
28. Image 2 http://www.cosmosmagazine.com/files/imagecache/news/files/20070817_biofuel.jpg.
[29] Image $3 \mathrm{http}: / / /$ lovingthebigisland.files.wordpress.com/2009/04/eferal-sugar-cane.jpg
[30] Image 4 http://www.blogcdn.com/green.autoblog.com/media/2009/05/mobil-e85-sign-a.png
[31] E85 http://www.e85refueling.com/

