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Goal

Investigate optimal control theory for integrodifference
equations
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Integrodifference Equations

Integrodifference
Discrete in time
Continuous in space

General equation

Nt+1(x) =
∫

Ω
k(x, y)f(Nt(y), y)dy

Compare to reaction-diffusion equations

Nt −D
∂2N

∂x2
= f(N)

Continuous in both space and time
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Why Use Integrodifference Equations

Can be used to model populations with discrete
non-overlapping generations and separate growth and
dispersal stages
Can include a variety of dispersal mechanisms
Can do a better job of estimating the speed of invasion
than reaction-diffusion equations (Mark Kot 2003)
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Generating the Integrodifference Model
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Dispersal Kernels

Laplace Kernel

k(x, y) =
1
2
α exp(−α |x− y|)

Normal Distribution

k(x, y) =
√
α

π
exp(−α(x− y)2)

Ballistic Dispersal

k(x, y) =
3a
2
|x− y|b−1 exp(−a |x− y|3)
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Example 1
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Example 3
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Particular case -Harvesting

State Variable (Population)

N = N(α) = (N0(x), N1(x), · · · , NT (x))

Control Variable (Harvesting Rate)

α = (α0(x), α1(x), · · · , αT−1(x))
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Goal

Objective Functional (To Be Maximized)

J(α) defined as total revenue minus total cost in T time steps

Seek for an Optimal Control to Maximize Objective Functional

J(α∗) = max
α∈U

J(α)

U =
{
α ∈

(
L∞(Ω)

)T |0 ≤ αt(x) ≤M, t = 0, 1, . . . , T − 1
}

for M < 1
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Two Ways to Do Harvesting-Order
Growth, Dispersal and Harvesting
Growth, Harvesting and Dispersal
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Growth, Dispersal and Harvesting

Linear growth & quadratic cost

Nt+1(x) = (1− αt(x))
∫

Ω
k(x, y)rNt(y)dy

J(α) =
T−1∑
t=0

∫
Ω
e−δt[Atαt

∫
Ω
k(x, y)rNt(y)dy − Bt

2
(αt(x))2]dx

Hem Raj Joshi, Suzanne Lenhart, Holly Gaff
Optimal Control Applications and Methods, 2005
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Growth, Harvesting and Dispersal (My Starting
Problem)

Linear growth & Quadratic cost

Nt+1(x) =
∫

Ω
k(x, y)(1− αt(y))rNt(y)dy

J(α) =
T−1∑
t=0

∫
Ω
e−δt[Atαt(y)rNt(y)− Bt

2
(αt(y))2]dy
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We Can Prove

Existence of an Optimal Control
Characterization of an Optimal Control
Uniqueness of an Optimal Control
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Adjoint and OC Characterization

Growth-Dispersal-Harvesting
Given an optimal control α∗ and corresponding state solution
N∗ = N(α∗), there exists a weak solution p ∈ (L∞(Ω))T

satisfying the adjoint system:

pt−1(x) =r
∫

Ω
(1− α∗t−1(y))pt(y)k(y, x)dy+

r

∫
Ω
At−1e

−δ(t−1)α∗t−1(y)k(y, x)dy

pT (x) =0

where t = T, · · · , 2, 1. Furthermore, for t = 0, 1, 2, · · · , T − 1,

α∗t (x) = min(max(
(−e−δtpt+1(x) +At)

∫
Ω rk(x, y)N∗t (y)dy

Bt
, 0),M)
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Adjoint and OC Characterization

Growth-Harvesting-Dispersal
Given an optimal control α∗ and corresponding state solution
N∗ = N(α∗), there exists a weak solution p ∈ (L∞(Ω))T

satisfying the adjoint system:

pt−1(x) = r(1− α∗t−1(x))
∫

Ω
pt(y)k(y, x)dy + e−δtrAt−1α

∗
t−1(x)

pT (x) = 0

where t = T, · · · , 2, 1. Furthermore, for t = 0, 1, 2, · · · , T − 1,

α∗t (x) = min(max(
[e−δt

∫
Ω−pt+1(y)k(y, x)dy +At]rN∗t (x)

Bt
, 0),M)
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Numerical approach

Idea of algorithm
Start with guess for controls and N0

Solve state equations for N forwards and adjoint equations
for p backwards
Update control with convex combination of old values and
values from control
Repeat until convergence of iterates
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Kernel

k (x, y) =


0, if x ≤ y −R

π

4R
cos
[ π

2R
|x− y|

]
, if y −R < x < y +R

0, if x ≥ y +R
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Optimal Harvesting Rates

Growth-Dispersal-
Harvesting

Growth-Harvesting-
Dispersal

Parameters

r = 1.8, Bt = 1000, δ = 0.2, At = 1, R = 0.8
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Future Work

Contribute to other applications in life sciences, besides
harvesting
Such as forestry management, invasive species, fishery and
disease spread
Derive optimal control results for a more general framework

Nt+1(x) = ht(
∫

Ω
k(x, y)f(Nt(y), y)dy, αt(x))

or
Nt+1(x) = ht(x,

∫
Ω
k(x, y)f(Nt(y), yαt(y))dy,)
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