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Pattern formation in morphogenesis
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Schnakenberg Model



ut +∇ · (au) = γ(α− u + u2v) + Du∇2u in Q

vt +∇ · (av) = γ(β − u2v) + Dv∇2v in Q

u(x,0) = u0(x), v(x,0) = v0(x) in Ω

∂u

∂ν
(x, t) =

∂v

∂ν
(x, t) = 0 on ∂Ω× (0, T )

(1)

u, v : morphogen concentration.

α, β : source density.

The Controllability Problem

Given a state (u∗, v∗) and fixed time T ,

Find α, β such that u(T ) = u∗, v(T ) = v∗,
where u, v are solutions of (1)?
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Main result

Theorem 1 Let (u∗, v∗) ∈ H2(Ω) × H2(Ω) be any steady-state

solution to

∇ · (au∗) = γ(a∗ − u∗ + (u∗)2v∗) + Du∇2u∗ in Ω

∇ · (av∗) = γ(b∗ − (u∗)2v∗) + Dv∇2v∗ in Ω

∂u∗

∂ν
=

∂v∗

∂ν
= 0 on ∂Ω

(2)

Then ∃ δ > 0 such that ∀(u0, v0) ∈ H1(Ω)×H1(Ω) satisfying

‖u∗ − u0‖α0(n) + ‖v∗ − v0‖H1
0(Ω) ≤ δ,

∃α, β ∈ R∗+ such that

uα,β(T ) = u∗, vα,β(T ) = v∗.

3Exact controllability of the Schnakenberg model for Pattern Formation
Hoang Tran and Catalin Trenchea
Department of Mathematics
University of Pittsburgh



Linearized system

Let y = u− u∗, z = v − v∗.

Our problem now is to prove the null controllability for

yt +∇ · (ay) = γa + a1y + a2y
2 + a3z + a4yz + a5y

2z + Dy∇2y

zt +∇ · (az) = γb + b1y + b2y
2 + b3z + b4yz + b5y

2z + Dz∇2z

Initial condition: y(0) = y0 ≡ u0 − u∗, z(0) = z0 ≡ v0 − v∗

Linearized system:

yt+∇ · (ay) = γa + y(a1 + a2ξ︸ ︷︷ ︸
=µ1

) + z(a3 + a4ξ + a5ξ
2︸ ︷︷ ︸

=µ2

) + Dy∇2y

zt+∇ · (az) = γb + y(b1 + b2ξ︸ ︷︷ ︸
=η1

) + z(b3 + b4ξ + b5ξ
2︸ ︷︷ ︸

=η2

) + Dz∇2z
(3)

where ξ ∈ L∞(Q).
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Null controllability

Lemma 1 ∃ a, b > 0 such that yξ(T ) = zξ(T ) = 0, and

a2 + b2 ≤
|Ω|
γ2

(
‖y0‖2 + ‖z0‖2

)
e

∫ T

0
Φ(t)dt

(4)

where

Φ(t) = max{‖µ1‖L∞(Ω)+
‖η1‖∞

2
+
‖µ2‖∞

2
, ‖η2‖∞+

‖η1‖∞
2

+
‖µ2‖∞

2
}.

Proof of Theorem 1. We use Kakutani’s fixed point theorem with

K = {ξ ∈ L∞(Q); ‖ξ‖∞ ≤ R}
Φ(ξ) = {yξ ∈ L2(Q)| (yξ, zξ) solution of (3), yξ(T ) = zξ(T ) = 0, a, b < M}

�
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Null controllability of the linear system

Proof of Lemma 1.

Consider the optimal control problem

min
a,b

{
a2 + b2

2
+

1

ε

∫
Ω

(
‖y(T )‖2 + ‖z(T )‖2

)
dt

}
subject to (3)

which has a unique solution (aε, bε) and (yε, zε).
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Null controllability of the linear system

By the Pontryagin maximum principle we have

aε = γ
∫ T

0

∫
Ω

pε dxdt, bε = γ
∫ T

0

∫
Ω

qε dxdt,

where (pε, qε) is the solution to

−pt − µ1p− η1q + a · ∇p−Du∆p = 0,

−qt − µ2p− η2q + a · ∇q −Dv∆q = 0,
(5)

with final conditions

p(T ) = −
1

ε
yε(T ), q(T ) = −

1

ε
zε(T ), (6)

and boundary conditions

pa · n−Du∇p · n = 0, qa · n−Dv∇q · n = 0.
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Null controllability of the linear system

Then (3), (5) and (6) imply

γ2
∫ T

0

∫
Ω

(
p2
ε + q2ε

)
dxdt +

1

ε

∫
Ω

(
y2
ε (T ) + z2

ε (T )
)

dx

=
∫
Ω

(y0pε(0) + z0qε(0)) dx

≤
γ2

2C(T )

∫
Ω

(
p2
ε(0) + q2ε (0)

)
dx +

C(T )

2γ2

∫
Ω

(
y2
0 + z2

0

)
dx

≤
γ2

2

∫ T

0

∫
Ω

(
p2
ε + q2ε

)
dxdt +

C(T )

2γ2

∫
Ω

(
y2
0 + z2

0

)
dx

where

C(T ) =
1

T
e

∫ T

0
Φ(t)dt

.
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Null controllability of the linear system

Hence

γ2
∫ T

0

∫
Ω

(
p2
ε + q2ε

)
dxdt +

2

ε

∫
Ω

(
y2
ε (T ) + z2

ε (T )
)

dx ≤
C(T )

γ2

∫
Ω

(
y2
0 + z2

0

)
dx

On a subsequence we have

aε → a, bε → b in R,

yε → y, zε → z weakly in L2(0, T ;H2(Ω)) ∩W1,2([0, T ], L2(Ω))

where (y, z) satisfy (3) and y(T ) = 0, z(T ) = 0.

Moreover, a, b satisfy the estimate (4).

This completes the proof of Lemma 1. �
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Further research

The exact controllability for other Turing-type reaction-diffusion

systems when initial condition is close to the desired state

• Gierer-Meinhardt Model

• Thomas Model

• Chemotaxis Model

Can this method be applied successfully for the reaction-diffusion

system with quite general condition?
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Thank you for your attention!
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