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Two dimensional parabolic problem

Consider the convection-diffusion process in Ω = [0, 1]× [0, 1]
and in t ∈ [0, 1]

∂

∂t
T = (c2∆ + a(x , y) · ∇)T + B(t)η(t);

with η a Wiener process,

for each t ∈ [0, 1] the operator B(t) is a
little bit more than compact (Hilbert-Schmidt) and boundary and
initial conditions

T (t, x , y)
∣∣∣
∂Ω

= 0, T (0, x , y) = T0(x).

The natural state space for the problem is L2(Ω) and the domain of
the differential operator in the right hand side is H2(Ω) ∩ H1

0 (Ω).
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Suppose that we can only “measure” T (t, x) on some smooth
trajectory x̂(t), inside Ω.

So, we may assume that the sensor
measures an average value of T (t, x) within a fixed range δ of the
position of the sensor for each t = [0, 1], in pictures it looks like
this...
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So, these type of measurements h(t, x) have the form,

h(t, x) = χ(x, x̂(t))

∫
Ω

χ(y, x̂(t))T (t, y) dy + noise,

where χ(x, y) = 1 if ‖x− y‖ ≤ δ and zero everywhere else...but we
can generalize this a little bit more...
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Then, we may assume that the measurements (not only the ones
along trajectories) are explicitly determined by

h(t, x) =

∫
Ω

k(t, x, y)T (t, y) dy + ν(t),

for some other Wiener process ν (that is uncorrelated with η), and
the possible kernels k correspond some admissible family.

By changing the admissible set of kernels, we may deal with

1) Stationary sensors, i.e., k(t, x, y) = k(x, y).

2) Sensors with limited energy, i.e.,

sup
t∈[0,1]

‖k(t, ·, ·)‖L2(Ω×Ω) < 1.

3) Sensors with point wise limitations, i.e., |k(t, x, y)| < 1 for all
x, y ∈ Ω and t ∈ [0, 1]
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The general form for possible measurements

In order to make the measurements realistic, we should enforce
that for each t ∈ [0, 1],

‖k(t, ·, ·)‖L2(Ω×Ω) < ∞.

This implies that for each t ∈ [0, 1] the operator that represents
the measurement is Hilbert-Schmidt since the integral
representation with the square integrable kernel is a concrete
realization of I2 over L2(Ω).
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Then, we can rewrite the problem as an abstract infinite
dimensional model of the form

ż(t) = A(t)z(t) + B(t)η(t) ∈ L2(Ω),

with measured output

w(t) = C (t)z(t) + ν(t),

where, for each t ∈ [0, 1], C (t) belongs to a family F of Hilbert -
Schmidt operators and F is determined by the nature of the
measurements (stationary, along trajectories, etc...).
Question: HOW ARE WE GOING TO CHOOSE C (t)?
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If we construct a Kalman filter with the measured output
w(t) = C (t)z(t) + ν(t), then the covariance operator Σ(t)
between the real state z(t) and the estimated one ẑ(t) is the mild
solution of the Riccati differential equation

Σ̇ = A(t)Σ + ΣA(t) + B(t)B∗(t)− ΣC ∗(t)C (t)Σ,

with some Σ(0) = Σ0, then...

Answer: Then, as an analogy with the finite dimensional case, we
would like minimize

J(C ) =

∫ 1

0
Tr(Σ(t;C )) dt,

with C = C (t)...but we don’t know if Σ(t) is a trace class
operator!!!!
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A needed Theorem
Control problem on the Riccati equation
The main results

Theorem (properties of the map t 7→ Σ(t))

1 Since B(t) and C (t) are Hilbert-Schmidt, then if Σ0 is trace
class, then Σ(t) is trace class for every t.

2 Even more, if the mappings t 7→ B∗(t)B(t) and
t 7→ C ∗(t)C (t) are trace norm continuous, then also is the
mapping t 7→ Σ(t) and Σ solves an integral version of the
Riccati equation (but not strongly, uniformly in trace norm!)
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A needed Theorem
Control problem on the Riccati equation
The main results

Finally our problem is the following:

Minimize (if possible) the
functional

J(C ) =

∫ 1

0
Tr(Σ(t;C )) dt,

where the family of operators C (t) belong some family F of the
Hilbert Schmidt operators for each t ∈ [0, 1].
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A needed Theorem
Control problem on the Riccati equation
The main results

Under all our previous assumptions...

There are minimizers...

If the kernel of the family {C (t)} of integral operators is uniformly
bounded, i.e., |k(t, x , y)| ≤ M, then there are minimizers Ĉ (t),

J(Ĉ ) = inf
C∈F

J(C ),

where Ĉ ∈ F , if...

1 F is the family of stationary sensors.

2 F is the family of time dependent sensors.

3 F is the family of sensors with fixed range δ that move along
trajectories (under several restrictive hypothesis).
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An example by E. M. Cliff

Consider the one dimensional convection diffusion

Tt = εTxx − aTx + b(x)η(t),

on 0 ≤ t ≤ 0.2, and 0 ≤ x ≤ 1. With Tx(t, 0) = Tx(t, 1) = 0 and
T (0, x) = T0(x).

Suppose that the family of sensors F , correspond to those which
move uniformly in time, from x0 ∈ [0, 1] to x1 ∈ [0, 1] and with
range δ = 0.05.
Then, we can parameterize J(C ) =

∫ 1
0 Tr(Σ) dt, with x0 and x1 as

J(x0, x1)...
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Consider the one dimensional convection diffusion

Tt = εTxx − aTx + b(x)η(t),

on 0 ≤ t ≤ 0.2, and 0 ≤ x ≤ 1. With Tx(t, 0) = Tx(t, 1) = 0 and
T (0, x) = T0(x).
Suppose that the family of sensors F , correspond to those which
move uniformly in time, from x0 ∈ [0, 1] to x1 ∈ [0, 1] and with
range δ = 0.05.
Then, we can parameterize J(C ) =

∫ 1
0 Tr(Σ) dt, with x0 and x1 as

J(x0, x1)...
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Finite element approximation with n = 128
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Then, it appears that we have to move the sensor uniformly along
x0 + x1 ' 1 to minimize the functional.

Apparently the minimum is attained when x0 ' 0.592 and
x1 ' 0.590... which is more or less stationary.
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We’ve proved that...
But the main goal is...

1 The solution of the Riccati equation is trace class continuous
and it is unique.

2 The minimization problem has a solution over the stationary
sensors.

3 The minimization problem has a solution over a wide range of
dynamic sensors...
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We’ve proved that...
But the main goal is...

The main goal for this project is:

Try to prove that there are minimizers when the trajectories
are prescribed by ẋ = f (t, x, u) and u belongs to some family
of admissible controls (preferably |u(t)| ≤ 1).

Develop approximation schemes to compute numerical
solutions for the problem.
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We’ve proved that...
But the main goal is...

THANK YOU!
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