Optimal Filtering with Mobile Sensors

J.A. Burns, E. M. Cliff and C. N. Rautenberg

Interdisciplinary Center for Applied Mathematics Virginia Tech

February 21, 2009

J.A. Burns, E. M. Cliff and C. N. Rautenberg

Optimal Filtering with Mobile Sensors

イロト イポト イヨト イヨト

 $\begin{array}{c} \mbox{Problem statement} \\ \mbox{Trace ideal properties of } \Sigma \mbox{ and consequences} \\ \mbox{Some pictures and issues} \\ \mbox{Conclusions} \\ \mbox{Conclusions} \end{array}$

Table of contents

Problem statement

- The system
- Possible measurements
- Abstract statement of the problem
- 2 Trace ideal properties of Σ and consequences
 - A needed Theorem
 - Control problem on the Riccati equation
 - The main results
- 3 Some pictures and issues
 - An example by E. M. Cliff
- 4 Conclusions
 - We've proved that...
 - But the main goal is...

Trace ideal properties of Σ and consequences Some pictures and issues Conclusions

The system

Possible measurements Abstract statement of the problem What is our criteria?

・ 同 ト ・ ヨ ト ・ ヨ ト

Two dimensional parabolic problem

Consider the **convection-diffusion** process in $\Omega = [0,1] \times [0,1]$ and in $t \in [0,1]$

$$rac{\partial}{\partial t}T = (c^2\Delta + \mathbf{a}(x,y)\cdot
abla)T + B(t)\eta(t);$$

with η a Wiener process,

Trace ideal properties of Σ and consequences Some pictures and issues Conclusions

The system

Possible measurements Abstract statement of the problem What is our criteria?

・ 同 ト ・ ヨ ト ・ ヨ ト

Two dimensional parabolic problem

Consider the **convection-diffusion** process in $\Omega = [0,1] \times [0,1]$ and in $t \in [0,1]$

$$rac{\partial}{\partial t}T = (c^2\Delta + \mathbf{a}(x,y)\cdot \nabla)T + B(t)\eta(t);$$

with η a Wiener process, for each $t \in [0, 1]$ the operator B(t) is a little bit more than compact (Hilbert-Schmidt)

Trace ideal properties of Σ and consequences Some pictures and issues Conclusions

The system

Possible measurements Abstract statement of the problem What is our criteria?

イロト イポト イヨト イヨト

Two dimensional parabolic problem

Consider the **convection-diffusion** process in $\Omega = [0,1] \times [0,1]$ and in $t \in [0,1]$

$$\frac{\partial}{\partial t}T = (c^2\Delta + \mathbf{a}(x, y) \cdot \nabla)T + B(t)\eta(t);$$

with η a Wiener process, for each $t \in [0, 1]$ the operator B(t) is a little bit more than compact (Hilbert-Schmidt) and boundary and initial conditions

$$T(t,x,y)\Big|_{\partial\Omega} = 0,$$
 $T(0,x,y) = T_0(x).$

Trace ideal properties of Σ and consequences Some pictures and issues Conclusions

The system

Possible measurements Abstract statement of the problem What is our criteria?

▲圖▶ ▲屋▶ ▲屋▶

nan

Two dimensional parabolic problem

Consider the **convection-diffusion** process in $\Omega = [0,1] \times [0,1]$ and in $t \in [0,1]$

$$\frac{\partial}{\partial t}T = (c^2\Delta + \mathbf{a}(x, y) \cdot \nabla)T + B(t)\eta(t);$$

with η a Wiener process, for each $t \in [0, 1]$ the operator B(t) is a little bit more than compact (Hilbert-Schmidt) and boundary and initial conditions

$$T(t,x,y)\Big|_{\partial\Omega} = 0,$$
 $T(0,x,y) = T_0(x).$

The natural state space for the problem is $L^2(\Omega)$ and the domain of the differential operator in the right hand side is $H^2(\Omega) \cap H^1_0(\Omega)$.

Suppose that we can only "measure" $T(t, \mathbf{x})$ on some smooth trajectory $\hat{\mathbf{x}}(t)$, inside Ω .

・ロト ・回ト ・ヨト ・ヨト

E

DQC

Suppose that we can only "measure" $T(t, \mathbf{x})$ on some smooth trajectory $\hat{\mathbf{x}}(t)$, inside Ω . So, we may assume that the sensor measures an average value of $T(t, \mathbf{x})$ within a fixed range δ of the position of the sensor for each t = [0, 1]

イロト イポト イヨト イヨト

Problem statement TT Trace ideal properties of Σ and consequences Pe Some pictures and issues AI Conclusions W

The system Possible measurements Abstract statement of the problem What is our criteria?

イロト イポト イヨト イヨト

Suppose that we can only "measure" $T(t, \mathbf{x})$ on some smooth trajectory $\hat{\mathbf{x}}(t)$, inside Ω . So, we may assume that the sensor measures an average value of $T(t, \mathbf{x})$ within a fixed range δ of the position of the sensor for each t = [0, 1], in pictures it looks like this...

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ -

Э

▲ロト ▲圖ト ▲屋ト ▲屋ト

Э

▲ロト ▲圖ト ▲屋ト ▲屋ト

Э

Trace ideal properties of Σ and consequences Some pictures and issues Conclusions The system Possible measurements Abstract statement of the problem What is our criteria?

・ロト ・回ト ・ヨト ・ヨト

E

DQC

So, these type of measurements $h(t, \mathbf{x})$ have the form,

 $\begin{array}{c} \textbf{Problem statement} \\ \text{Trace ideal properties of } \Sigma \text{ and consequences} \\ \text{Some pictures and issues} \\ \text{Conclusions} \end{array}$

The system Possible measurements Abstract statement of the problem What is our criteria?

・ロト ・回ト ・ヨト ・ヨト

E

DQC

So, these type of measurements $h(t, \mathbf{x})$ have the form,

$$h(t, \mathbf{x}) = \chi(\mathbf{x}, \hat{\mathbf{x}}(t)) \int_{\Omega} \chi(\mathbf{y}, \hat{\mathbf{x}}(t)) T(t, \mathbf{y}) \, \mathrm{d}\mathbf{y} + \mathsf{noise},$$

 $\begin{array}{c} \label{eq:problem_statement} \\ \mbox{Trace ideal properties of } \Sigma \mbox{ and consequences} \\ \mbox{Some pictures and issues} \\ \mbox{Conclusions} \end{array}$

The system Possible measurements Abstract statement of the problem What is our criteria?

・ロト ・回ト ・ヨト ・ヨト

3

So, these type of measurements $h(t, \mathbf{x})$ have the form,

$$h(t, \mathbf{x}) = \chi(\mathbf{x}, \hat{\mathbf{x}}(t)) \int_{\Omega} \chi(\mathbf{y}, \hat{\mathbf{x}}(t)) T(t, \mathbf{y}) \, \mathrm{d}\mathbf{y} + \text{noise},$$

where $\chi(\mathbf{x}, \mathbf{y}) = 1$ if $\|\mathbf{x} - \mathbf{y}\| \le \delta$ and zero everywhere else...

 $\begin{array}{c} \textbf{Problem statement}\\ \textbf{Trace ideal properties of } \Sigma \text{ and consequences}\\ \textbf{Some pictures and issues}\\ \textbf{Conclusions} \end{array}$

The system Possible measurements Abstract statement of the problem What is our criteria?

イロト イポト イヨト イヨト

3

So, these type of measurements $h(t, \mathbf{x})$ have the form,

$$h(t, \mathbf{x}) = \chi(\mathbf{x}, \hat{\mathbf{x}}(t)) \int_{\Omega} \chi(\mathbf{y}, \hat{\mathbf{x}}(t)) T(t, \mathbf{y}) \, \mathrm{d}\mathbf{y} + \mathsf{noise},$$

where $\chi(\mathbf{x}, \mathbf{y}) = 1$ if $\|\mathbf{x} - \mathbf{y}\| \le \delta$ and zero everywhere else...but we can generalize this a little bit more...

Problem statement Trace ideal properties of Σ and consequences Some pictures and issues Conclusions

The system Possible measurements Abstract statement of the problem What is our criteria?

・ロト ・回ト ・ヨト ・ヨト

E

So, these type of measurements $h(t, \mathbf{x})$ have the form

$$h(t, \mathbf{x}) = \chi(\mathbf{x}, \hat{\mathbf{x}}(t)) \int_{\Omega} \chi(\mathbf{y}, \hat{\mathbf{x}}(t)) \mathcal{K}(t, \mathbf{y}) \mathcal{T}(t, \mathbf{y}) \, \mathrm{d}\mathbf{y} + \text{noise},$$

where $\chi(\mathbf{x}, \mathbf{y}) = 1$ if $\|\mathbf{x} - \mathbf{y}\| \le \delta$ and zero everywhere else.

Then, we may assume that the measurements (not only the ones along trajectories) are explicitly determined by

$$h(t, \mathbf{x}) = \int_{\Omega} k(t, \mathbf{x}, \mathbf{y}) T(t, \mathbf{y}) \,\mathrm{d}\mathbf{y} +
u(t),$$

for some other Wiener process ν (that is uncorrelated with η), and the possible kernels k correspond some admissible family.

(4 回) (4 回) (4 回)

Then, we may assume that the measurements (not only the ones along trajectories) are explicitly determined by

$$h(t, \mathbf{x}) = \int_{\Omega} k(t, \mathbf{x}, \mathbf{y}) T(t, \mathbf{y}) \,\mathrm{d}\mathbf{y} + \nu(t),$$

for some other Wiener process ν (that is uncorrelated with η), and the possible kernels k correspond some admissible family. By changing the admissible set of kernels, we may deal with

1) Stationary sensors, i.e., $k(t, \mathbf{x}, \mathbf{y}) = k(\mathbf{x}, \mathbf{y})$.

- 4 同下 4 日下 4 日下

Then, we may assume that the measurements (not only the ones along trajectories) are explicitly determined by

$$h(t, \mathbf{x}) = \int_{\Omega} k(t, \mathbf{x}, \mathbf{y}) T(t, \mathbf{y}) \,\mathrm{d}\mathbf{y} +
u(t),$$

for some other Wiener process ν (that is uncorrelated with η), and the possible kernels k correspond some admissible family. By changing the admissible set of kernels, we may deal with

1) Stationary sensors, i.e., $k(t, \mathbf{x}, \mathbf{y}) = k(\mathbf{x}, \mathbf{y})$.

2) Sensors with limited energy, i.e.,

$$\sup_{t\in[0,1]}\|k(t,\cdot,\cdot)\|_{L^2(\Omega\times\Omega)}<1.$$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Then, we may assume that the measurements (not only the ones along trajectories) are explicitly determined by

$$h(t, \mathbf{x}) = \int_{\Omega} k(t, \mathbf{x}, \mathbf{y}) T(t, \mathbf{y}) \,\mathrm{d}\mathbf{y} +
u(t),$$

for some other Wiener process ν (that is uncorrelated with η), and the possible kernels k correspond some admissible family. By changing the admissible set of kernels, we may deal with

1) Stationary sensors, i.e., $k(t, \mathbf{x}, \mathbf{y}) = k(\mathbf{x}, \mathbf{y})$.

2) Sensors with limited energy, i.e.,

$$\sup_{t\in[0,1]}\|k(t,\cdot,\cdot)\|_{L^2(\Omega\times\Omega)}<1.$$

3) Sensors with point wise limitations, i.e., $|k(t, \mathbf{x}, \mathbf{y})| < 1$ for all $\mathbf{x}, \mathbf{y} \in \Omega$ and $t \in [0, 1]$

Trace ideal properties of Σ and consequences Some pictures and issues Conclusions The system Possible measurements Abstract statement of the problem What is our criteria?

・ 同 ト ・ ヨ ト ・ ヨ ト

3

The general form for possible measurements

In order to make the measurements realistic, we should enforce that for each $t \in [0, 1]$,

 $\|k(t,\cdot,\cdot)\|_{L^2(\Omega\times\Omega)} < \infty.$

Trace ideal properties of Σ and consequences Some pictures and issues Conclusions The system Possible measurements Abstract statement of the problem What is our criteria?

イロト イポト イヨト イヨト

The general form for possible measurements

In order to make the measurements realistic, we should enforce that for each $t \in [0,1]$,

 $\|k(t,\cdot,\cdot)\|_{L^2(\Omega\times\Omega)}<\infty.$

This implies that for each $t \in [0, 1]$ the operator that represents the measurement is Hilbert-Schmidt since the integral representation with the square integrable kernel is a concrete realization of \mathscr{I}_2 over $L^2(\Omega)$.

Then, we can rewrite the problem as an abstract infinite dimensional model of the form

$$\dot{z}(t) = A(t)z(t) + B(t)\eta(t) \in L^2(\Omega),$$

・ロト ・回ト ・ヨト ・ヨト

1

DQC

Then, we can rewrite the problem as an abstract infinite dimensional model of the form

$$\dot{z}(t) = A(t)z(t) + B(t)\eta(t) \in L^2(\Omega),$$

with measured output

$$w(t) = C(t)z(t) + \nu(t),$$

where, for each $t \in [0, 1]$, C(t) belongs to a family \mathcal{F} of Hilbert -Schmidt operators and \mathcal{F} is determined by the nature of the measurements (stationary, along trajectories, etc...).

イロト イポト イヨト イヨト

Then, we can rewrite the problem as an abstract infinite dimensional model of the form

$$\dot{z}(t) = A(t)z(t) + B(t)\eta(t) \in L^2(\Omega),$$

with measured output

$$w(t) = C(t)z(t) + \nu(t),$$

where, for each $t \in [0, 1]$, C(t) belongs to a family \mathcal{F} of Hilbert -Schmidt operators and \mathcal{F} is determined by the nature of the measurements (stationary, along trajectories, etc...). **Question:** HOW ARE WE GOING TO CHOOSE C(t)?

イロト イポト イヨト イヨト

Problem statement	The system
Trace ideal properties of Σ and consequences	Possible measurements
Some pictures and issues	Abstract statement of the problem
Conclusions	What is our criteria?

If we construct a Kalman filter with the measured output $w(t) = C(t)z(t) + \nu(t)$, then the covariance operator $\Sigma(t)$ between the real state z(t) and the estimated one $\hat{z}(t)$ is the mild solution of the Riccati differential equation

$$\dot{\Sigma} = A(t)\Sigma + \Sigma A(t) + B(t)B^*(t) - \Sigma C^*(t)C(t)\Sigma,$$

with some $\Sigma(0) = \Sigma_0$, then...

Problem statement	The system
Trace ideal properties of Σ and consequences	Possible measurements
Some pictures and issues	Abstract statement of the problem
Conclusions	What is our criteria?

If we construct a Kalman filter with the measured output $w(t) = C(t)z(t) + \nu(t)$, then the covariance operator $\Sigma(t)$ between the real state z(t) and the estimated one $\hat{z}(t)$ is the mild solution of the Riccati differential equation

$$\dot{\Sigma} = A(t)\Sigma + \Sigma A(t) + B(t)B^*(t) - \Sigma C^*(t)C(t)\Sigma,$$

with some $\Sigma(0) = \Sigma_0$, then...

Answer: Then, as an analogy with the finite dimensional case, we would like minimize

$$J(C) = \int_0^1 \operatorname{Tr}(\Sigma(t; C)) \, \mathrm{d}t,$$

with C = C(t)...

Problem statement	The system
Trace ideal properties of Σ and consequences	Possible measurements
Some pictures and issues	Abstract statement of the problem
Conclusions	What is our criteria?

If we construct a Kalman filter with the measured output $w(t) = C(t)z(t) + \nu(t)$, then the covariance operator $\Sigma(t)$ between the real state z(t) and the estimated one $\hat{z}(t)$ is the mild solution of the Riccati differential equation

$$\dot{\Sigma} = A(t)\Sigma + \Sigma A(t) + B(t)B^*(t) - \Sigma C^*(t)C(t)\Sigma,$$

with some $\Sigma(0) = \Sigma_0$, then...

Answer: Then, as an analogy with the finite dimensional case, we would like minimize

$$J(C) = \int_0^1 \operatorname{Tr}(\Sigma(t; C)) \, \mathrm{d}t,$$

向下 イヨト イヨト

with C = C(t)...but we don't know if $\Sigma(t)$ is a trace class operator!!!!

A needed Theorem Control problem on the Riccati equation The main results

・ロン ・雪 と ・ ヨ と ・ ヨ と

Э

DQC

Theorem (PROPERTIES OF THE MAP $t \mapsto \Sigma(t)$)

J.A. Burns, E. M. Cliff and C. N. Rautenberg Optimal Filtering with Mobile Sensors

A needed Theorem Control problem on the Riccati equation The main results

イロト イヨト イヨト イヨト

E

Theorem (PROPERTIES OF THE MAP $t \mapsto \Sigma(t)$)

Since B(t) and C(t) are Hilbert-Schmidt, then if Σ₀ is trace class, then Σ(t) is trace class for every t.

A needed Theorem Control problem on the Riccati equation The main results

・ロト ・回ト ・ヨト ・ヨト

Theorem (PROPERTIES OF THE MAP $t \mapsto \Sigma(t)$)

- Since B(t) and C(t) are Hilbert-Schmidt, then if Σ₀ is trace class, then Σ(t) is trace class for every t.
- Even more, if the mappings t → B*(t)B(t) and t → C*(t)C(t) are trace norm continuous, then also is the mapping t → Σ(t) and Σ solves an integral version of the Riccati equation (but not strongly, uniformly in trace norm!)

A needed Theorem Control problem on the Riccati equation The main results

イロト イヨト イヨト イヨト

E

590

Finally our problem is the following:

A needed Theorem Control problem on the Riccati equation The main results

イロト イポト イヨト イヨト

E

Finally our problem is the following: Minimize (if possible) the functional

$$J(C) = \int_0^1 \operatorname{Tr}(\Sigma(t; C)) \, \mathrm{d}t,$$

where the family of operators C(t) belong some family \mathcal{F} of the Hilbert Schmidt operators for each $t \in [0, 1]$.

A needed Theorem Control problem on the Riccati equation The main results

イロト イポト イヨト イヨト

Under all our previous assumptions...

There are minimizers...

If the kernel of the family $\{C(t)\}$ of integral operators is uniformly bounded, i.e., $|k(t, x, y)| \leq M$, then there are minimizers $\hat{C}(t)$,

$$J(\hat{C}) = \inf_{C \in \mathcal{F}} J(C),$$

where $\hat{C} \in \mathcal{F}$, if...

A needed Theorem Control problem on the Riccati equation The main results

Under all our previous assumptions...

There are minimizers...

If the kernel of the family $\{C(t)\}$ of integral operators is uniformly bounded, i.e., $|k(t, x, y)| \leq M$, then there are minimizers $\hat{C}(t)$,

$$J(\hat{C}) = \inf_{C \in \mathcal{F}} J(C),$$

where $\hat{C} \in \mathcal{F}$, if...

 $\bullet \ \mathcal{F} \text{ is the family of stationary sensors.}$

A needed Theorem Control problem on the Riccati equation The main results

Under all our previous assumptions...

There are minimizers...

If the kernel of the family $\{C(t)\}$ of integral operators is uniformly bounded, i.e., $|k(t, x, y)| \leq M$, then there are minimizers $\hat{C}(t)$,

$$J(\hat{C}) = \inf_{C \in \mathcal{F}} J(C),$$

where $\hat{C} \in \mathcal{F}$, if...

 $\bullet \ \mathcal{F} \text{ is the family of stationary sensors.}$

2 \mathcal{F} is the family of time dependent sensors.

A needed Theorem Control problem on the Riccati equation The main results

Under all our previous assumptions...

There are minimizers...

If the kernel of the family $\{C(t)\}$ of integral operators is uniformly bounded, i.e., $|k(t, x, y)| \leq M$, then there are minimizers $\hat{C}(t)$,

$$J(\hat{C}) = \inf_{C \in \mathcal{F}} J(C),$$

where $\hat{C} \in \mathcal{F}$, if...

- $\bullet \ \mathcal{F} \text{ is the family of stationary sensors.}$
- **2** \mathcal{F} is the family of time dependent sensors.
- *F* is the family of sensors with fixed range δ that move along trajectories (under several restrictive hypothesis).

・ロト ・回ト ・ヨト ・ヨト

3

Consider the one dimensional convection diffusion

$$T_t = \epsilon T_{xx} - aT_x + b(x)\eta(t),$$

on $0 \le t \le 0.2$, and $0 \le x \le 1$. With $T_x(t,0) = T_x(t,1) = 0$ and $T(0,x) = T_0(x)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Consider the one dimensional convection diffusion

$$T_t = \epsilon T_{xx} - aT_x + b(x)\eta(t),$$

on $0 \le t \le 0.2$, and $0 \le x \le 1$. With $T_x(t,0) = T_x(t,1) = 0$ and $T(0,x) = T_0(x)$. Suppose that the family of sensors \mathcal{F} , correspond to those which move uniformly in time, from $x_0 \in [0,1]$ to $x_1 \in [0,1]$ and with range $\delta = 0.05$.

イロト イポト イヨト イヨト

3

Consider the one dimensional convection diffusion

$$T_t = \epsilon T_{xx} - aT_x + b(x)\eta(t),$$

on $0 \le t \le 0.2$, and $0 \le x \le 1$. With $T_x(t,0) = T_x(t,1) = 0$ and $T(0,x) = T_0(x)$. Suppose that the family of sensors \mathcal{F} , correspond to those which move uniformly in time, from $x_0 \in [0,1]$ to $x_1 \in [0,1]$ and with range $\delta = 0.05$. Then, we can parameterize $J(C) = \int_0^1 \operatorname{Tr}(\Sigma) \, \mathrm{d}t$, with x_0 and x_1 as $J(x_0, x_1)$...

An example by E. M. Cliff

Finite element approximation with n = 128

J.A. Burns, E. M. Cliff and C. N. Rautenberg

Optimal Filtering with Mobile Sensors

DQC

・ロト ・回ト ・ヨト ・ヨト

1

Then, it appears that we have to move the sensor uniformly along $x_0 + x_1 \simeq 1$ to minimize the functional.

3

Then, it appears that we have to move the sensor uniformly along $x_0 + x_1 \simeq 1$ to minimize the functional. Apparently the minimum is attained when $x_0 \simeq 0.592$ and $x_1 \simeq 0.590$... which is more or less stationary.

We've proved that... But the main goal is...

・ロト ・回ト ・ヨト ・ヨト

E

DQC

• The solution of the Riccati equation is trace class continuous and it is unique.

We've proved that... But the main goal is...

イロト イポト イヨト イヨト

E

- The solution of the Riccati equation is trace class continuous and it is unique.
- The minimization problem has a solution over the stationary sensors.

- 4 同下 4 日下 4 日下

- The solution of the Riccati equation is trace class continuous and it is unique.
- The minimization problem has a solution over the stationary sensors.
- The minimization problem has a solution over a wide range of dynamic sensors...

Problem statement Trace ideal properties of Σ and consequences Some pictures and issues **Conclusions**

We've proved that... But the main goal is...

(4 回) (4 回) (4 回)

The main goal for this project is:

• Try to prove that there are minimizers when the trajectories are prescribed by $\dot{x} = f(t, \mathbf{x}, u)$ and u belongs to some family of admissible controls (preferably $|u(t)| \leq 1$).

We've proved that... But the main goal is...

- 4 回 ト - 4 回 ト

The main goal for this project is:

- Try to prove that there are minimizers when the trajectories are prescribed by $\dot{x} = f(t, \mathbf{x}, u)$ and u belongs to some family of admissible controls (preferably $|u(t)| \le 1$).
- Develop approximation schemes to compute numerical solutions for the problem.

 $\begin{array}{c} \mbox{Problem statement}\\ \mbox{Trace ideal properties of Σ and consequences}\\ \mbox{Some pictures and issues}\\ \mbox{Conclusions}\end{array}$

We've proved that... But the main goal is...

・ロト ・回ト ・ヨト ・ヨト

E

DQC

THANK YOU!

J.A. Burns, E. M. Cliff and C. N. Rautenberg Optimal Filtering with Mobile Sensors