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Problem Formulation 

   Minimize the following functional: 

  

min
( x ,a)

f (x,a)

C(xn , xn−1,..., x,t,a) = 0

t ∈ 0,T⎡⎣ ⎤⎦



Constructing the Lagrangian 

   Since the constraints are true for every   

   It holds 



Numerical Approximation 

   After setting the Lagrangian we apply the KKT conditions 
and introduce an numerical  algorithm. This algorithm  
varies from problem to problem. 

   Basically solving                 trough a numerical algorithm. ∇L = 0



Mesh Independence Principle 
for a Newton Iteration  (MIP) 

   Given a fixed staring point the number of iterations to 
reach a fixed tolerance is eventually independent of the 
size of the mesh, h. 



Sufficient Conditions for MIP (E.L. Allgower 
and K. Bohmer): 

   If: 

1)  Let F be the infinite dimensional problem to solve 
F(x)=0  

 

F '(zn )cn = −F(zn )
zn+1 = cn + zn
n = 0,1,...
 zn+1 − zn ≤ k  zn − zn−1 
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Sufficient Conditions for MIP (E.L. Allgower 
and K. Bohmer): 

   If : 

2) The Lipchitz-continuity is verified for        ( discrete form of 
the problem)   

3)     is equibounded ( the mesh) 

4)  The scheme              is stable. 

5)  Consistency for F(z) 

6)  And F’(v)w smooth enough  

We have mesh independence     

φ h

Δh

φ h '(Δhz)



Case Study 

   

min
(a,b)

g( x)
0

T

∫ dt + ε1 * a2 + ε2 * b2

mx = f (x)
x(0) = a;
x(T ) = b;

ε1 > 0,ε2 > 0



Lagrangian Associated to the 
Problem 

   The correspondent Lagrangian is : 

   

 L(x, y,a,b,λ 1 ,λ 2 ,µ1,µ2 ) = g( y)
0

T

∫ dt + ε1 * a2 + ε2 * b2 +

+ λ 1(t) * (my − f (x)) dt
0

T

∫ + λ 2(t) * ( y − x) dt
0

T

∫ + µ1(x(0) − a) + µ2 * (x(T ) − b)



KKT Conditions 

   It is obtained the next 12 equations: 

   

x(0) = a
x(T ) = b
my = f (x)
y = x
λ 1(0) = 0
λ1(T ) = 0
λ 2(t) + λ 1(t) * f '(x) = 0

g '( y) + λ 2(t) − m λ 1(t) = 0
µ1 = −λ2 (0)
µ2 = λ2 (T )
a = µ1 / (2ε1)
b = µ2 / (2ε2 )



An Algorithm is Born 
   Looking carefully, a natural fix point algorithm is born: 

   Given an (a,b) it is possible to solve : 

   which makes possible the resolution of: 

   

λ 1(0) = 0
λ1(T ) = 0
λ 2(t) + λ 1(t) * f '(x) = 0

g '( y) + λ 2(t) − m λ 1(t) = 0



An Algorithm is Born 

   Then solving : 

   We obtain the new pair (a,b), which it can be 
plugged again in the first system making an 
iterative procedure. 



Convergence 

   The pair obtained is a descent direction 

   Proof: 

   The gradient of L is 

    and the Hessian is given by : 



Convergence 
   So we have : 

   Doing : 

   So it is a descendent direction. Another way to see it, 
is that H is define positive so will always be a 
descendent direction. 



ODE’S Numerical 
Approximation 

   To solve the ODE’S systems was use the finite element 
method. 

   Which approximates the solution by piecewise 
polynomials. 



Numerical Results for the 
Example:  

 

g( x) = 1+ x2

f (x) = x +1



Numerical Results 

  

a0 = −1
b0 = 1
ε1 = 3
ε2 = 3

control = 10−4

control =|| (ak+1,bk+1) − (ak+1,bk+1) ||2



Numerical Results 

h (mesh 
size) 0.1 0.02 0.01 0.001 

Iterations 9 9 9 9 

a  0.0146  0.0070 0.0062  0.0054 

b  -0.0123 0.0018  0.0036  0.0052 



Conclusions  

   The problem is very sensitive for the changing of 
the       .  

   The convergence, and its rate depends on  the      . 

   When the      are very small the algorithm has 
difficulties to converge. 

   There is mesh independence. 



                                   OBRIGADO 

                                       Thanks 


