Optimization with ODE'S constraints and mesh independence

Problem Formulation

○ Minimize the following functional:

$$
\begin{aligned}
& \min _{(x, a)} f(x, a) \\
& C\left(x^{n}, x^{n-1}, \ldots, x, t, a\right)=0 \\
& t \in[0, T]
\end{aligned}
$$

Constructing the Lagrangian

○ Since the constraints are true for every $t \in[0, T]$
○ It holds

$$
L(x, a, \lambda)=f(x, a)-\sum_{i \in I} \int_{0}^{T} \lambda_{i}(t)^{*} C_{i}(x, a) d t
$$

Numerical Approximation

- After setting the Lagrangian we apply the KKT conditions and introduce an numerical algorithm. This algorithm varies from problem to problem.

○ Basically solving $\nabla L=0$ trough a numerical algorithm.

Mesh Independence Principle for a Newton Iteration (MIP)

○ Given a fixed staring point the number of iterations to reach a fixed tolerance is eventually independent of the size of the mesh, h.

Sufficient Conditions for MIP (E.L. Allgower and K. Bohmer):

○ If:

1) Let F be the infinite dimensional problem to solve $F(x)=0$
$F^{\prime}\left(z_{n}\right) c_{n}=-F\left(z_{n}\right)$
$z_{n+1}=c_{n}+z_{n}$
$n=0,1, \ldots$
$\left\|z_{n+1}-z_{n}\right\| \leq k\left\|z_{n}-z_{n-1}\right\|^{2}$

Sufficient Conditions for MIP (E.L. Allgower and K. Bohmer):

○ If:
2) The Lipchitz-continuity is verified for ϕ^{h} (discrete form of the problem)
3) Δ^{h} is equibounded (the mesh)
4) The scheme $\phi^{h}\left(\Delta^{h} z\right)$ is stable.
5) Consistency for $\mathrm{F}(z)$
6) And $\mathrm{F}^{\prime}(\mathrm{v})_{\mathrm{w}}$ smooth enough

We have mesh independence

Case Study

$$
\min _{(a, b)} \int_{0}^{T} g(\dot{x}) d t+\varepsilon_{1} * a^{2}+\varepsilon_{2} * b^{2}
$$

(1) $m \ddot{x}=f(x)$
$x(0)=a ;$
$x(T)=b ;$
$\varepsilon_{1}>0, \varepsilon_{2}>0$

Lagrangian Associated to the Problem

○ The correspondent Lagrangian is:

$$
\begin{aligned}
& L\left(x, y, a, b, \lambda_{1}, \lambda_{2}, \mu_{1}, \mu_{2}\right)=\int_{0}^{T} g(y) d t+\varepsilon_{1} * a^{2}+\varepsilon_{2} * b^{2}+ \\
& +\int_{0}^{T} \lambda_{1}(t) *(m \dot{y}-f(x)) d t+\int_{0}^{T} \lambda_{2}(t) *(y-\dot{x}) d t+\mu_{1}(x(0)-a)+\mu_{2} *(x(T)-b)
\end{aligned}
$$

KKT Conditions

○ It is obtained the next 12 equations:

$$
\begin{aligned}
& x(0)=a \\
& x(T)=b \\
& m \dot{y}=f(x) \\
& y=\dot{x} \\
& \lambda_{1}(0)=0 \\
& \lambda_{1}(T)=0 \\
& \dot{\lambda}_{2}(t)+\lambda_{1}(t) * f^{\prime}(x)=0 \\
& g^{\prime}(y)+\lambda_{2}(t)-m \dot{\lambda}_{1}(t)=0 \\
& \mu_{1}=-\lambda_{2}(0) \\
& \mu_{2}=\lambda_{2}(T) \\
& a=\mu_{1} /\left(2 \varepsilon_{1}\right) \\
& b=\mu_{2} /\left(2 \varepsilon_{2}\right)
\end{aligned}
$$

An Algorithm is Born

○ Looking carefully, a natural fix point algorithm is born:
○ Given an (a, b) it is possible to solve :

$$
\begin{aligned}
& x(0)=a \\
& x(T)=b \\
& m \dot{y}=f(x) \\
& y=\dot{x}
\end{aligned}
$$

○ which makes possible the resolution of:

$$
\begin{aligned}
& \lambda_{1}(0)=0 \\
& \lambda_{1}(T)=0 \\
& \dot{\lambda}_{2}(t)+\lambda_{1}(t) * f^{\prime}(x)=0 \\
& g^{\prime}(y)+\lambda_{2}(t)-m \dot{\lambda}_{1}(t)=0
\end{aligned}
$$

An Algorithm is Born

\bigcirc Then solving :
$\mu_{1}=-\lambda_{2}(0)$
$\mu_{2}=\lambda_{2}(T)$
$a=\mu_{1} /\left(2 \varepsilon_{1}\right)$
$b=\mu_{2} /\left(2 \varepsilon_{2}\right)$

○ We obtain the new pair (a, b), which it can be plugged again in the first system making an iterative procedure.

Convergence

The pair obtained is a descent direction
○ Proof:
○ The gradient of L is

$$
\nabla_{(a, b)} L=\left(2 a \varepsilon_{1}-\mu_{1}, 2 b \varepsilon_{2}-\mu_{2}\right)
$$

○ and the Hessian is given by :

$$
H_{(a, b)}=\left(\begin{array}{cc}
2 \varepsilon_{1} & 0 \\
0 & 2 \varepsilon_{2}
\end{array}\right)
$$

Convergence

○ So we have:

$$
H_{(a, b)}^{-1}=\left(\begin{array}{cc}
1 / 2 \varepsilon_{1} & 0 \\
0 & 1 / 2 b \varepsilon_{2}
\end{array}\right)
$$

○ Doing:

$$
-H_{(a, b)}^{-1} * \nabla_{(a, b)} L=\binom{\mu_{1} /\left(2 \varepsilon_{1}\right)-a}{\mu_{2} /\left(2 \varepsilon_{2}\right)-b}=\left(a_{k+1}, b_{k+1}\right)-\left(a_{k}, b_{k}\right)
$$

○ So it is a descendent direction. Another way to see it, is that H is define positive so will always be a descendent direction.

ODE'S Numerical Approximation

○ To solve the ODE'S systems was use the finite element method.

- Which approximates the solution by piecewise polynomials.

Numerical Results for the

 Example:$$
\begin{aligned}
& g(\dot{x})=\sqrt{1+\dot{x}^{2}} \\
& f(x)=x+1
\end{aligned}
$$

$$
\begin{aligned}
& \min _{(a, b)} \int_{0}^{T} \sqrt{1+\dot{x}^{2}} d t+\varepsilon_{1} * a^{2}+\varepsilon_{2} * b^{2} \\
& m \ddot{x}=x+1 \\
& x(0)=a \\
& x(T)=b
\end{aligned}
$$

Numerical Results

$$
\begin{aligned}
& a_{0}=-1 \\
& b_{0}=1 \\
& \varepsilon_{1}=3 \\
& \varepsilon_{2}=3
\end{aligned}
$$

control $=10^{-4}$
control $=\left\|\left(a_{k+1}, b_{k+1}\right)-\left(a_{k+1}, b_{k+1}\right)\right\|_{2}$

Numerical Results

h (mesh size)	0.1	0.02	0.01	0.001
Iterations	9	9	9	9
a	0.0146	0.0070	0.0062	0.0054
b	-0.0123	0.0018	0.0036	0.0052

Conclusions

○ The problem is very sensitive for the changing of the $\varepsilon^{\prime} s$.

○ The convergence, and its rate depends on the ε 's.
ค When the ε 's are very small the algorithm has difficulties to converge.

○ There is mesh independence.

OBRIGADO

Thanks

