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Introduction

An ill-posed problem is one that

has no solution,

if it has a solution, it isn’t unique, or

the solution does not depend continuously on the data.

A forward (or classical) problem is one where given model
parameters, you can find a solution.

An inverse problem is one where you have the data, but not the
parameters that gave the data.

Examples of ill posed inverse problems would be:

Medical Imaging

Stream Pollution

Parameter Identification
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Parameter Identification

You’re given the autonomous initial value problem

y ′(t) = f (y(t), x , x̃)

y(0) = y0.

You have observed measurements y and some known
parameters x̃
Some questions to ask are:

Can you find what parameters x are needed to obtain that
data?

Now what if those measurements have noise?
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Benchmark Problem

A nonlinear problem of the type above was considered by
Moles was a biochemical three-step pathway.
The problem was then used as a benchmark for local and
global optimization methods by Moles, Mendes and Banga.
The problem was then considered by Müller, Lu, Kügler
and Engl using methods from control theory.
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Benchmark Problem

Examples of the equations are as follows:

dG2

dt
=

V2

1 + ( P
Ki2

)ni2 + (Ka2
M1

)na2
− k2 · G2

dE1

dt
=

V4 · G1

K4 + G1
− k4 · E1

dM2

dt
=

kcat2 · E2 · 1
· Km3 · (M1 −M2)

1 + M1
Km3

+ M2
Km4

−
kcat3 · E3 · 1

· Km5 · (M2 − P)

1 + M2
Km5

+ P
Km6

There are 36 parameters, 2 fixed parameters and 8 ODE
variables in this system.
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Tikhonov regularization

For the differential equation given previously

y ′(t) = f (y(t), x , x̃)

y(0) = y0.

We can define a forward operator

F : Ux → Uy

F (x) = y(t)

Then we define xδ
α = argmin ‖F (x)− y δ‖2 + α‖x − x0‖2

This is the x0-least squares solution to the problem.
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Iterated Tikhonov regularization

In the previous slide, x0 is a guess at the solution you want.
Since xδ

α should be a better solution than x0 we can look at an
iteration:

x0 = 0;

xδ
α,i = argmin ‖F (x)− y δ‖2 + α‖x − xδ

α,i−1‖2

This process is called Iterated Tikhonov regularization.

Assuming that xtrue is smooth enough and an appropriate
choice of α, we have convergence of iterated Tikhonov of

‖xtrue − xδ
α,i‖ = O(δ

2i
2i+1 ).

Nathaniel Mays Inverse problems in biological systems



Inverse
problems in
biological
systems

Nathaniel
Mays

Introduction

Benchmark
Problem

Tikhonov
Regularization

Gradient
approach

Conclusion

Cost Gradient

To solve the Tikhonov problem, we need a minimization
algorithm. Many algorithms use the gradient of the cost
functional J.

To estimate the gradient, one way would be to choose ε << 1
and compute

(∇J(x))i =
J(x + εei )− J(x)

ε

This requires solving the forward problem 37 times to get 1
estimate of the gradient.
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Cost Gradient

Theorem:
Let y(t) = f (y(t), x , x̃), and F : Ux → Uy be the forward
operator of the ODE. Also let
J(x) = ‖F (x)− y δ‖2 + α‖x − xδ

α,i‖2. Then we have

∇J =

∫ T

0
(2α(x − xδ) + ψT fx)dt,

where ψ solves the final value problem

ψ′(t) = −f T
y ψ + 2(y − y δ)T

ψ(T ) = 0
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Cost Gradient (proof)

To find the gradient of J(x), we start by introducing a
Lagrange multiplier ψ, and note that L(F (x), x) = J(x)

L(y , x) =

∫ T

0
(y − y δ)2 dt + Tα(x − xδ

α,i )
2

+

∫ T

0
ψT (y ′(t)− f (y , x , x̃)) dt

L(y , x) =

∫ T

0
(y − y δ)2 dt + Tα(x − xδ

α,i )
2 + ψT y/T

0

−
∫ T

0
(ψ′)T y dt −

∫ T

0
ψT − f (y , x , x̃) dt
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Cost Gradient (proof)

Taking small variations δx and δy and collecting like terms:

δL =

∫ T

0
(2(y − y δ)− ψ′(t)T − ψT fy )δy dt

+

∫ T

0
(2α(x − xδ

α,i )ψ
T fx)δx dt + ψ(T )T δy(T )

Therefore if ψ satisfies the final value problem:

ψ′(t) = −f T
y ψ + 2(y − y δ)T

ψ(T ) = 0

Then for y = F (x), δL = ∇Jδx , you get

∇J =

∫ T

0
(2α(x − xδ) + ψT fx)dt.

Nathaniel Mays Inverse problems in biological systems



Inverse
problems in
biological
systems

Nathaniel
Mays

Introduction

Benchmark
Problem

Tikhonov
Regularization

Gradient
approach

Conclusion

Algorithm

An algorithm for solving this type of problem follows:

1 Choose x0

2 Apply Tikhonov regularization using the forward problem.

1 Solve the minimization using a gradient approach
2 Use the adjoint method to find the gradient

3 Set x0 = xδ
α and iterate.
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Conclusion

We can find the gradient with 2 ODE solves.

This method gives us an algorithm for finding local
solutions.

Iterated Tikhonov removes the coupling of stability and
accuracy.

Future Work:

Add a global search function and use this to refine to
global minimum

Use other methods and compare accuracy/time results

Include a parameter selection rule for a larger robustness
of code
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