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Fluid turbulent flows tend to generate noise. This differs from
sound produced by the vibration of solids. There’s an interest
in prediction of the noise in the following areas :

• Ground transportation such as cars and trains.

• Aircraft and jet planes. The fighter jets that are being
designed would produce about 148 decibels while 150
damage internal organs of pilots.

• Medicine of blood flows. Measuring sound from blood
flowing through a valve of the heart.

• Submarine detection.

• Consumer industry.
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The construction of the Lighthill’s model

Ω,Ω1 ⊂ Ω

Ω1 : turbulent flow generating the sound
Ω/Ω1 : the acoustic wave propagation in the unperturbed
media
The goal is to estimate sound intensity in Ω.

I The Navier-Stokes equations with unknowns u, p and ρ
hold in Ω1

I The homogeneous wave equation with fluctuations of
pressure p

′
hold in Ω/Ω1

I The main problem is coupling 1 and 2

I The final purpose is finding p′ and sound intensity I = p
′
u
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The construction of the Lighthill’s model

I The compressible NSE in Ω:

∂ρ

∂t
+∇ · (ρu) = 0

∂(ρu)

∂t
+∇ · (ρu⊗ u) +∇p = ∇ · S + ρf

I Mathematical consequence :

−∆p = ∇ · (∇ · (ρu⊗ u)−∇ · S− ρf)− ∂2ρ

∂t2

I Equivalently but only in unperturbed media :

1

a2
0

∂2p
′

∂t2
−∆p = ∇·(∇·(ρu⊗u)−∇·S−ρf)+

∂2

∂t2
(

p
′

a2
0

−ρ)
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The construction of the Lighthill’s model

In Ω/Ω1 this results in

1

a2
0

∂2p
′

∂t2
−∆p

′
= 0

Lighthill’s idea was to extend fluctuations p
′

and ρ
′

to the
turbulent region. Lighthill analogy describes the acoustic wave
propagation via the equation

1

a2
0

∂2p
′

∂t2
−∆p

′
= ∇ · (∇ · (ρu⊗ u)−∇ · S− ρf)

To solve this wave equation it’s necessary to know the RHS
which contains the information about the turbulent flow.
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Example of the physical problem

I Solve the incompressible NSE in Ω1 using Finite Element
Method on the mesh of size h1. The spaces of uh1 and ph1

must satisfy the inf-sup condition.

I Obtain the RHS of the wave equation with some error

I Solve the Lighthill analogy in the whole Ω with various
boundary conditions

I The numerical error consists of the error coming from
FEM approximation of the Lighthill analogy and the error
from computing the RHS of the analogy.
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Example of the physical problem

Lemma
If ∇ · u = 0 then ∇ · ∇ · S = 0

� Since ∇ · S = µ∆u then ∇ · ∇ · S = µ
∑3

i=0
∂2

∂x2
i

(∇ · u) = 0
N

Lemma
If ρ ≡ ρ0 and ∇ · u = 0 then ∇ · ∇ · (ρu⊗ u) = ρ0∇u : ∇ut

� ∇ · (ρu⊗ u) = ρ0u · ∇u
So ∇ · ∇ · (ρu⊗ u) = ρ0(uiuj ,i),j = ρ0ui ,juj ,i = ρ0∇u : ∇ut N
Thus

∇ · (∇ · (ρu⊗ u)−∇ · S− ρf) = ρ0∇u : ∇ut − ρ0∇ · f

Let Q(u, v) := ρ0∇u : ∇vt
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Example of the physical problem

An example with non-reflecting boundary conditions :

∂2p
′

∂t2
− a2

0∆p
′

= a2
0 · (Q(uh1 ,uh1)− ρ0 · ∇ · f) ∀(t, x) ∈ (0,T )× Ω1,

∂2p
′

∂t2
− a2

0∆p
′

= 0 ∀(t, x) ∈ (0,T )× Ω/Ω1,

p
′
(0, x) = q1(x),

∂p
′

∂t
(0, x) = q2(x) ∀x ∈ Ω

∇p
′ · n +

1

a0

∂p
′

∂t
= 0 ∀(t, x) ∈ (0,T )× ∂Ω
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Main theorem
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The variational formulation for this case is :
find p

′ ∈ L2(0,T ; H1(Ω)) such that ∂p
′

∂t
∈ L2(0,T ; H1(Ω)),

∂2p
′

∂t2 ∈ L2(0,T ; L2(Ω)) and(
∂2p

′

∂t2
, v

)
+ a2

0

(
∇p

′
,∇v

)
+a0

〈
∂p
′

∂t
, v

〉
=

= a2
0(Q(u,u)− ρ0∇ · f, v)Ω1

∀v ∈ H1(Ω), 0 < t < T ,

(p
′
(0, ·), v) = (q1(·), v) ∀v ∈ H1(Ω), (1)(

∂p
′

∂t
(0, ·), v

)
= (q2(·), v) ∀v ∈ H1(Ω). (2)
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Main theorem
The RHS error

Sk(Ω) is the finite dimensional space of continuous piecewise
polynomials of degree no more than k − 1. FEM
approximation is based on the formulation : find a twice
differentiable map p

′

h : [0,T ]→ Sk(Ω) such that(
∂2p

′
h

∂t2
, vh

)
+ a2

0

(
∇p

′
h,∇vh

)
+a0

〈
∂p
′
h

∂t
, vh

〉
=

= a2
0(Q(uh1 ,uh1)− ρ0∇ · f, vh)Ω1

∀vh ∈ Sk(Ω), 0 < t < T

p
′

h(0, ·) approximates q1(·) in Sk(Ω), (3)

∂p
′

h

∂t
(0, ·) approximates q2(·) in Sk(Ω). (4)
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Main theorem
The RHS error

Typically, the derivation of L2-estimates is based on the energy
method and was done by Dupont in 1973 and with some
improvement on regularity by Baker in 1976. In our case the RHS
is perturbed and requires more analysis.

Theorem
The FEM solution is stable.∥∥∥∥∥∂p

′
h

∂t

∥∥∥∥∥
2

+ a2
0‖∇p

′
h‖2 6

C

(
a4

0

∫ t

0
‖Q(uh1 ,uh1) −ρ0∇ · f‖2dτ +

∥∥∥∥∂ph

∂t
(0, ·)

∥∥∥∥2

+ a2
0‖∇ph(0, ·)‖2

)
,
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Main theorem
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Define H1-projection p̃ of the solution p
′

by the formula

a2
0(∇p

′
,∇vh) + (p

′
, vh) = a2

0(∇p̃,∇vh) + (p̃, vh) ∀vh ∈ Sk(Ω)

Theorem
Let the variational solution p

′
satisfy conditions :

p
′
, ∂p

′

∂t
∈ L∞(Hk(Ω)) and ∂2p

′

∂t2 ∈ L2(Hk(Ω)). If the initial
conditions are taken so that
‖(p

′

h − p̃)(0, ·)‖H1(Ω) +
∥∥ ∂

∂t
(p
′

h − p̃)(0, ·)
∥∥ 6 C1hk with some

posititve constant C1 independent of h, then the solution p
′

h

satisfies :

‖p′ − p
′

h‖L∞(L2(Ω))+

∥∥∥∥ ∂∂t
(p
′ − p

′

h)

∥∥∥∥
L∞(L2(Ω))

6

6C
(
hk + ‖Q(uh1 ,uh1)− Q(u,u)‖L2(L2(Ω1))

)
with some constant C > 0 independent of h and h1.
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Main theorem
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Calling ψ = p
′

h − p̃, η = p̃ − p
′

and using energy method, one
can obtain the following inequality :

d

dt

(∥∥∥∥∂ψ∂t

∥∥∥∥2

+ ‖ψ‖2 + a2
0‖∇ψ‖2

)
+ 2

∣∣∣∣√a0 ·
∂ψ

∂t

∣∣∣∣2
L2(∂Ω)

6

C

(∥∥∥∥∂ψ∂t

∥∥∥∥2

+ ‖ψ‖2 + ‖η‖2 +

∥∥∥∥∂2η

∂t2

∥∥∥∥2
)

+ 2a0

∣∣∣∣〈∂η∂t
,
ψ

∂t

〉∣∣∣∣+

+ a2
0‖Qh1 − Q‖2
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Integrating in time and using standard inequalities with
Gronwall’s inequality, it’s possible to obtain :∥∥∥∥∂ψ∂t

∥∥∥∥2

L∞(L2(Ω))

+ ‖ψ‖2
L∞(H1(Ω)) +

∥∥∥∥√a · ∂ψ
∂t

∥∥∥∥2

L2(L2(∂Ω))

6

C [

∥∥∥∥∂2η

∂t2

∥∥∥∥2

L2(L2(Ω))

+ ‖η‖2
L2(L2(Ω)) +

∥∥∥∥∂η∂t

∥∥∥∥2

L∞(H−
1
2 (∂Ω))

+

∥∥∥∥∂2η

∂t2

∥∥∥∥2

L2(H−
1
2 (∂Ω))

+

+

∥∥∥∥∂ψ∂t
(0, ·)

∥∥∥∥2

+ ‖ψ(0, ·)‖2
H1(Ω) +

∫ t

0

‖Qh1 − Q‖2dτ ],

where C = C (T ) grows exponentially fast.
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Main theorem
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Lemma
Let p

′
, ∂p

′

∂t
∈ L∞(Hk(Ω)) and ∂2p

′

∂t2 ∈ L2(Hk(Ω)). Then for
some constant C independent of h∥∥∥∥∂rη

∂t r

∥∥∥∥
Ls(Hk (Ω))

+

∥∥∥∥∂rη

∂t r

∥∥∥∥
Ls(H−

1
2 (Ω))

6 Chk ,

where s =∞,∞, 2 for r = 0, 1, 2 respectively.

The theorem follows from the previous lemma and the
previous inequality.
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Main theorem
The RHS error

The optimal estimate of the RHS L2(L2(Ω1))-error is still an
issue. Using inverse inequalities, we can end up with∫ t

0

‖Q(u,u)− Q(uh1 ,uh1)‖2dτ 6

Ch
− n

2
1 ·

∫ t

0

(h2m−2
1 ‖∂mu‖2

L4(Ω1) + ‖∇(u− uh1)‖2)dτ,

where n = 2 or n = 3 is the dimension of the physical space.
Depending on which finite elements are used, the rate of
convergence for ‖∇(u− uh1)‖2 may be obtained in the form
O(hs). But the regularity condition
u ∈ L∞(0,T ; W 1,4(Ω1)) ∩ L2(0,T ; W m,4(Ω1)) is required in
this case.
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The error analysis for negative norms has been done in case of
the homogeneous Neumann boundary condition ∇p

′ · n = 0.
Consider the solution operator T .

Tf = u solves

{
−a2

0∆u + u = f ,Ω

∇u · n = 0, ∂Ω

This operator is self-adjoint and positive definite and thus
generates an inner product and a norm by formulas :

(u, v)−1 = (Tu, v), ‖u‖−1 =
√

(Tu, u)
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If all the conditions of the main theorem are satisfied, then the
error estimate in negative norms is given by the inequality∥∥∥∥ ∂∂t

(p
′ − p

′
h)

∥∥∥∥
L∞(H−1(Ω))

+ ‖p′ − p
′
h‖L∞(L2(Ω)) 6

C
(
hk+1 + h‖Q(u,u)− Q(uh1 ,uh1)‖L2(L2(Ω1))+

+
1

h
‖∇(u− uh1)‖L2(L2(Ω1)) +

∥∥∥∥ ∂∂t
(p
′ − p

′
h)

∥∥∥∥
−1

(0) + ‖p′ − p
′
h‖(0)

)
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I Analysis of the fully discrete scheme.

I Estimating the intensity I = p
′
u · n and the sound power

A =
∫

S
p
′
u · ndS on the given surface S .

Either use a straightforward definition of intensity or use
duality approach. The last implies that we formulate a
dual problem to the given wave equation and make error
analysis for it.

I The Lighthill analogy for low Mach numbers also may be
written as

1

a2
0

∂2p
′

∂t2
−∆p

′
= −∆p

Pressure p comes from the incompressible NSE in the
turbulent region Ω1.
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analogy. Theoretical analysis and numerical schemes.
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Thanks for your attention !
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