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Optimal Control of Discrete Systems

Goal: Adjust a control (coefficient or source term) in a system to
achieve a desired goal.
Pontryagin’s Maximum Principle handles optimal control of
systems of ODEs.
Extension to discrete time models
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Control Problem

Given a control u = (u0, u1, . . . , uT−1) and initial state x0, the
state equation is given by the
difference equation

xk+1 = g(xk , uk , k)

for k = 0, 1, 2, . . . ,T − 1. Note that the state has one more
component than the control

x = (x0, x1, . . . , xT ),
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Goal

J(u) = φ(xT ) +

T−1
∑

k=0

f (xk , uk , k)
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Hamiltonian

Hk = f (xk , uk , k) + λk+1g(xk , uk , k), for k = 0, 1, . . . ,T − 1.

Notice the indexing on the adjoint.
Necessary conditions

λk =
∂Hk

∂xk

λT = φ′(x∗

T )

∂Hk

∂uk

= 0 at u∗.
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Motivation - CPR work
Each year, more than 250,000 people die from cardiac arrest in the
USA alone. Despite widespread use of cardiopulmonary
resuscitation, the survival of patients recovering from cardiac arrest
remains poor.

The rate of survival for CPR performed out of the hospital is 3%,
while for patients who have cardiac arrest in the hospital, the rate
of survival is 10-15%.
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The standard and various alternative CPR techniques such as
interposed abdominal compression IAC, active
compression-decompression, and Lifestick CPR have been
represented in various models. Here, we consider a model for CPR
allowing chest and abdomen compression and decompression.

We apply the optimal control strategy for improving resuscitation
rates to a validated circulation model developed by Babbs.

In his model, heart and blood vessels are represented as
resistance-capacitive networks, pressures in the chest and in the
vascular components as voltages, blood flow as electric current,
and cardiac and venous valves as diodes (devices w/ flow in only 1
direction).
Reference: Babbs, Circulation 1999.
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Diagram of Circulation Model
← Thoracic aorta → Abdominal aorta
↓

Carotid Artery ↑ ↓
↓

Thoracic pump ↓

↓

Jugular vein ↑ ↓

↓
→ Right heart, superior vena cava → Inferior vena cava
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State Variables
As controls, we choose the the pattern of the external pressure on
the chest and on the abdomen. The pressure state variables are as
follows:
P1 pressure in abdominal aorta
P2 pressure in inferior vena aorta
P3 pressure in carotid artery
P4 pressure in jugular vein
P5 pressure in thoracic aorta
P6 pressure in rt. heart,superior vena cava
P7 pressure in thoracic pump and left heart.
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The chosen CPR model consists of seven difference equations, with
time as the discrete underlying variable.
At the step n, when time is n∆t , the pressure vector is denoted by:

P(n) = (P1(n),P2(n), ...,P7(n)).

We assume that the initial pressure values are known, when n = 0.
To make the chest pressure profiles medically reasonable, assume
i.e., ui (0) = ui (N − 1).

u1 = (u1(0), u1(1), ..., u1(N − 2), u1(0)),

u2 = (u2(0), u2(1), ..., u2(N − 2), u2(0)),
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Difference Equations Model for n = 1, 2, ...,N − 1 (in vector
notation)

P(1) = P(0) + T1(u1(0)) + T2(u2(0)) + ∆tF (P(0)), (1)

P(n + 1) = P(n) + T1(u1(n)− u1(n − 1)) (2)

+T2(u2(n)− u2(n − 1)) + ∆tF (P(n)), (3)

T1(u1(n)) = (0, 0, 0, 0, tpu1(n), tpu1(n), u1(n)),

T2(u2(n)) = (u2(n), u2(n), 0, 0, 0, 0, 0).
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Note that the pressure vector depends on the control, P = P(u),
and the calculation of the pressures at the next time step requires
the values of the controls at the current and previous time steps.
We use extension of the discrete version of Pontryagin’s Maximum
Principle.
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Show function F (P(n)) by some of its seven components:

1

caa

[

1

Ra

(P5(n)− P1(n))−
1

Rs

(P1(n)− P2(n))

]

1

civc

[

1

Rs

(P1(n)− P2(n))−
1

Rv

(P2(n)− P6(n)

]

1

ccar

[

1

Rc

(P5(n)− P3(n))−
1

Rh

(P3(n)− P4(n))

]
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continued

1

cjug

[

1

Rh

(P3(n)− P4(n))−
1

Rj

V (P4(n)− P6(n))

]

1

cao

[

1

Ro

V (P7(n)− P5(n))−
1

Rc

(P5(n)− P3(n))

]

+
1

Ra

(P5(n)− P1(n))−
1

Rht

V (P5(n)− P6(n))

]

where the valve function is defined by
V (s) = s if s ≥ 0
V (s) = 0 if s ≤ 0.

Three valves: between compartments 4 - 6 AND 5 - 7 AND 5 - 6.
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Goal
Choose the control set U ⊂ ℜ2N , defined as:

U = {(u1, u2)|ui (0) = ui(N − 1)

−Ki ≤ ui (n) ≤ Li , i = 1, 2, n = 0, 1, . . . ,N − 2}.

We define the objective functional J(u1, u2) to be maximized

N
∑

n=1

[P5(n)− P6(n)]−

N−2
∑

n=0

[
B1

2
u2
1(n) +

B2

2
u2
2(n)] (4)
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Adjoint and OC Characterization
Given an optimal control (u∗

1u∗

2) and the corresponding state
solution, P∗ = P(u∗

1 , u
∗

2), there exists a solution of the adjoint
system:

λ(n − 1) (5)

= λ(n) + ∆tMτ (n − 1)λ(n) + (0, 0, 0, 0, 1,−1, 0)τ , (6)

λ(N) = (0, 0, 0, 0, 1,−1, 0)τ , (7)

for n = N, . . . 2, where Mτ denotes the transpose of M, with
M(n) = ∂F (P(n))

∂P
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continued

u∗

1(n) =
1

B1
[tp(λ5(n + 1) + λ6(n + 1)− λ5(n + 2)

−λ6(n + 2)) + λ7(n + 1)− λ7(n + 2)]

u∗

2(n) =
1

B2
[λ1(n + 1) + λ2(n + 1)− λ1(n + 2) (8)

−λ2(n + 2)] (9)

and similar formulas for n = 0.
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Idea
Use derivative of the map from controls-to-states to form the
sensitivity operator and equations. Use the sensitivity operator and
the form of the objective functional to find the adjoint system.

Use the adjoint system to simplify the quotient below and obtain
OC characterizations

0 ≤ lim
ǫ→0+

J(u∗ + ǫl)− J(u∗)

ǫ
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Numerical Implementation
Involves an iterative method with a forward sweep of the
circulation model followed by a backward sweep of the adjoint
model with a control characterization update afterwards.

The iterative method starts with a guess for the control values and
then the control is updated after each forward sweep and backward
sweep. The forward sweep and backward sweep are repeated until
the convergence of the iterates is achieved.
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Pressure Profiles
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Optimal Controls for Lifestick
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Optimal Controls for IAC
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Conclusion
Note that these results correspond with current suggested changes
in CPR.
One can achieve about 20 to 30 percent improvement in the SPP.
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Rabies in Raccoons

Rabies is a common viral disease.

Transmission through the bite of an infected animal.

Raccoons are the primary vector for rabies in eastern US.

Vaccine is distributed through food baits.

http://www.cdc.gov
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Reported Cases of Raccoon Rabies, 2001

Figure: Reported Cases of Raccoon Rabies, 2001, http://www.cdc.gov
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Costs and Treatment associated with Rabies in USA
30,000 persons/year given rabies post exposure prophylaxis at a
cost of $30 million

Vaccination and prevention cost $300 million/year

In recent years, 8 million baits were distributed over 15 Eastern
states.
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Basic Assumptions
The objective of the problem formulation is to provide a simple,
readily modified framework to analyze spatial optimal control for
vaccine distribution as it impacts the spread of rabies among
raccoons.

The epidemiological assumptions:

No variance in time from infection to death

Random mixing assumed to be the only means of contact and
transmission
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Temporal and Spatial Set-up

Time scale: There is no population growth or immigration in
the model presented here, but is included in a more general
model. The scale is assumed to be over a time period (say
within a season) over which births do not occur.

Mortality occurs only due to infection.

The time step of each iteration is that over which all infected
raccoons die (e.g. about 10 days).

Spatial scale: each cell is uniform in size, arranged
rectangularly

Movement: Raccoons are assumed to move according to a
movement matrix from cell to cell, with distance dependence
in dispersal.
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Vaccine Vaccine/food packets are assumed to be reduced each
time step due to uptake by raccoons, with the remaining packets
then decaying due to other factors.

Then additional packets (CONTROL variable) are added at the
end of each time step.
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Variables
Model with (k,l) denoting spatial location, t time

susceptibles = S(k,l,t)

infecteds = I(k,l,t)

immune = R(k,l,t)

vaccine = v(k,l,t)

control c(k, l, t), input of vaccine baits
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Order of events
Within a time step (about a week to 10 days):

First movement: using home range estimate to get range of
movement. See sum S, sum I and sum R to reflect movement.

Then: some susceptibles become immune by interacting with
vaccine

Lastly: new infecteds from the interaction of the non-immune
susceptibles and infecteds

NOTE that infecteds from time step n die and do not appear in
time step n + 1.
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Susceptibles and Infecteds Equations

S(k, l , t + 1) = (1− e1
v(k, l , t)

v(k, l , t) + K
)sum S(k, l , t)

− β

(1− e1
v(k, l , t)

v(k, l , t) + K
)sum S(k, l , t)sum I (k, l , t)

sum S(k, l , t) + sum R(k, l , t) + sum I (k, l , t)
,
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Susceptibles and Infecteds Equations

S(k, l , t + 1) = (1− e1
v(k, l , t)

v(k, l , t) + K
)sum S(k, l , t)

− β

(1− e1
v(k, l , t)

v(k, l , t) + K
)sum S(k, l , t)sum I (k, l , t)

sum S(k, l , t) + sum R(k, l , t) + sum I (k, l , t)
,

I (k, l , t + 1) = β

(1− e1
v(k, l , t)

v(k, l , t) + K
)sum S(k, l , t)sum I (k, l , t)

sum S(k, l , t) + sum R(k, l , t) + sum I (k, l , t)
.
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Immune and Vaccine Equations

R(k, l , t + 1) = sum R(k, l , t) + e1
v(k, l , t)

v(k, l , t) + K
sum S(k, l , t),

v(k, l , t + 1) =

Dv(k, l , t) max [0, (1 − e(sum S(k, l , t) + sum R(k, l , t)))] + c(k, l , t).
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States and Control

States: S(m, n, t), I(m, n, t), R(m, n, t), v(m, n, t)
for t = 2, ... T
(given initial distribution at t = 1)

Control c(m, n, t) , t= 1, 2, ..., T-1
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Susceptibles and Infecteds Equations

S(k, l , t + 1) = (1− e1
v(k, l , t)

v(k, l , t) + K
)sum S(k, l , t)

− β

(1− e1
v(k, l , t)

v(k, l , t) + K
)sum S(k, l , t)sum I (k, l , t)

sum S(k, l , t) + sum R(k, l , t) + sum I (k, l , t)
,
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Susceptibles and Infecteds Equations

S(k, l , t + 1) = (1− e1
v(k, l , t)

v(k, l , t) + K
)sum S(k, l , t)

− β

(1− e1
v(k, l , t)

v(k, l , t) + K
)sum S(k, l , t)sum I (k, l , t)

sum S(k, l , t) + sum R(k, l , t) + sum I (k, l , t)
,

I (k, l , t + 1) = β

(1− e1
v(k, l , t)

v(k, l , t) + K
)sum S(k, l , t)sum I (k, l , t)

sum S(k, l , t) + sum R(k, l , t) + sum I (k, l , t)
.
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Immune and Vaccine Equations

R(k, l , t + 1) = sum R(k, l , t) + e1
v(k, l , t)

v(k, l , t) + K
sum S(k, l , t),

v(k, l , t + 1) =

Dv(k, l , t) max [0, (1 − e(sum S(k, l , t) + sum R(k, l , t)))] + c(k, l , t).
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Objective Functional

maximize the susceptible raccoons, minimize the infecteds and cost
of distributing baits

∑

m,n

(

I (m, n,T )− S(m, n,T )
)

+ B
∑

m,n,t

c(m, n, t)2,

where T is the final time and c(m, n, t) is the cost of distributing
the packets at cell (m, n) and time t, B is the balancing
coefficient, c is the control.

Use discrete version of Pontryagin’s Maximum Principle.
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Hamiltonian at time t

H(m, n, t) =B
∑

m,n

c(m, n, t)2

+
∑

m,n

[

LS(m, n, t + 1)
(

RHS of S(m, n, t + 1) eqn
)

+ LI (m, n, t + 1)
(

RHS of I (m, n, t + 1) eqn
)

+ LR(m, n, t + 1)
(

RHS of R(m, n, t + 1) eqn
)

+ Lv(m, n, t + 1)
(

RHS of v(m, n, t + 1) eqn
)]
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Adjoints and Optimal Control

LS ,LI ,LR ,Lv denote the adjoints for S , I ,R , v respectively

LS(i , j , t) =
∂H(t)

∂S(i , j , t)
,

∂H(t)

∂c(i , j , t)
= 2Bc(i , j , t) + Lv(i , j , t + 1) = 0.

=⇒ c∗(i , j , t) = −
1

2B
Lv(i , j , t + 1),

subject to the upper and lower bounds
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Numerical Iterative Method

Start with a control guess and initial distribution of raccoons

Solve the state equations forward

Solve the adjoint equations backwards, using LI(k, l, T)=1,
LS(k,l, T) =-1, other adjoints are zero at final time

Update the control using the characterization

Repeat until convergence
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Disease Starts From the Corner: Initial Distribution
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Susceptibles, no control
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Figure: Susceptible Raccoons Without Control
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Infecteds, no control
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Susceptibles, with control, B = 0.5
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Infecteds, with control, B = 0.5
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Immune, with control, B = 0.5
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Optimal Control, B = 0.5
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Disease Starts From the Center: Initial Distribution
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Susceptibles, B = 0.5
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Infecteds, B = 0.5
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Optimal Control, B = 0.5, t = 1

1 2 3 4 5 6
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

t=1, B=0.5

co
n

tr
o

l

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Figure: Optimal Control, B = 0.5, t = 1



Optimal Control of Discrete Time Models

Inhomogeneous Initial Distribution
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Optimal Control, B = 0.5, t = 1
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Conclusion

Developed a method and model to determine different optimal
distributions of vaccine to control rabies spread;

Illustrated the approach using three scenarios;

Optimal bait distribution depends on the initial location of the
disease outbreak and the distribution of raccoons throughout
the grid;

The method can be readily extended to evaluate optimal
vaccination distribution strategies with other spatially
heterogeneous interactions, larger spatial grids and different
movement assumptions (including density dependence).

Linear objective functional and see the resulting changes.
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