Constructing a constraint-stabilized time-stepping approach for piecewise smooth multibody dynamics, part 1

Gary D. Hart

Division of Natural Sciences University of Pittsburgh at Greensburg

ICAM Applied Mathematics Conference February 21, 2009

Introduction

Ratio Metric

Application of Rigid Multi Body Dynamics

- RMBD in diverse areas
 - rock dynamics
 - robotic simulations
 - virtual reality

- human motion
- * nuclear reactors
- * haptics
- VR or Virtual reality exposure (VRE) therapy
 - ⋆ fear of heights
- ★ fear of public speaking
- telerehabilitation
- * PTSD

- Integrate-detect-restart simulation a natural choice
 - Classical solution may not exist
 - Collisions can cause small stepsizes
- Differential algebraic equations (DAE) for joint constraints
 - Specialized techniques because non-smooth noninterpenetration and friction constraints.
- Optimization based animation technique solving a quadratic program at each step to avoid stiffness.
 - Collision detection still present, hence small stepsizes
- Penalty Barrier Methods are most popular.
 - Easy set up, even for DAEs, but problem may be stiff and requires a priori smoothing parameters

gdhart@pitt.edu (UPG)

Previous Approaches

Hard Constraint Approaches

Advantage:

- Results are same order of magnitude as penalty method
- Same dynamics using 4 orders of magnitude larger time step
- We use a velocity impulse LCP based approach avoiding the lack of a solution and introducing artificial stiffness

Disadvantage:

 LCP model yields inequality constraints from contact and friction, treated computationally as hard constraints.

gdhart@pitt.edu (UPG)

Differentiability Constraints and Model Algorithm Numerical Results 'Comps

Previous Approaches

Ratio Metric

Introduction

 To avoid infinitely small time steps, say from collisions, we need to impose a minimum stepsize

Ratio Metric

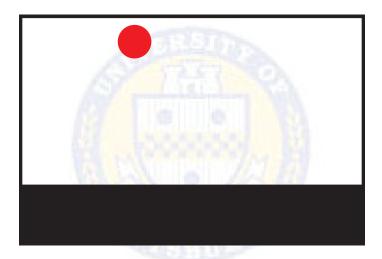


Figure: Simple Simulation: Trivial Example

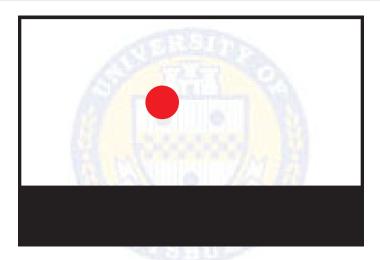


Figure: Simple Simulation: Trivial Example

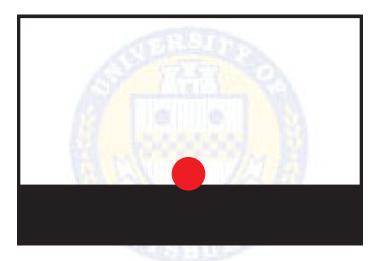


Figure: Simple Simulation: Trivial Example

2/21/2009

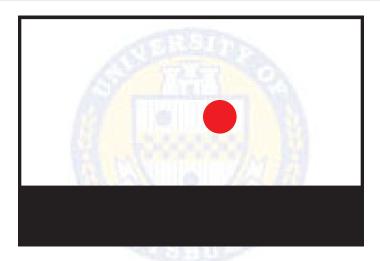


Figure: Simple Simulation: Trivial Example

2/21/2009

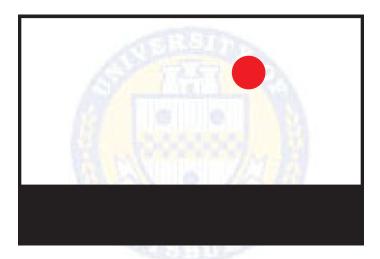


Figure: Simple Simulation: Trivial Example

Introduction

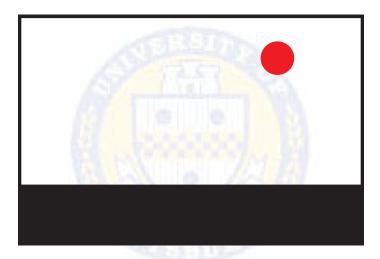


Figure: Simple Simulation: Trivial Example

2/21/2009

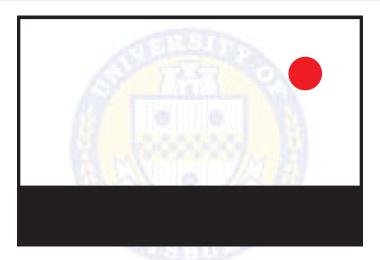


Figure: Simple Simulation: Trivial Example

Ratio Metric

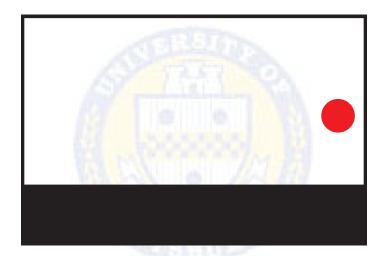


Figure: Simple Simulation: Trivial Example

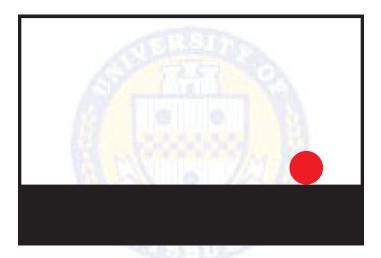


Figure: Simple Simulation: Trivial Example

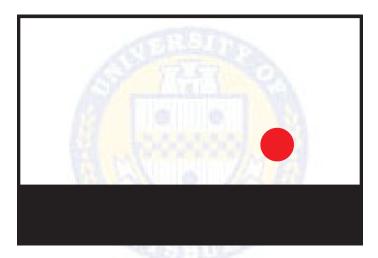


Figure: Simple Simulation: Trivial Example

Ratio Metric

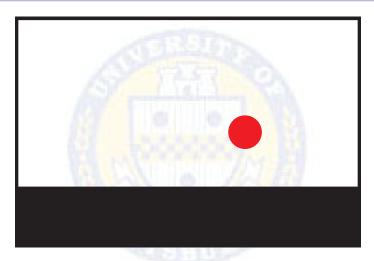


Figure: Simple Simulation: Trivial Example

Ratio Metric Differentiability Constraints and Model Algorithm Numerical Results

Previous Approaches

Introduction

Need to Define and Compute Depth of Penetration

- For methods with minimum time step, interpenetration may be unavoidable, thus it needs to be quantified (to limit amount of interpenetration)
- Minimum Euclidean distance good for distance between objects, but not for penetration

adhart@pitt.edu (UPG)

Construction of a constraint-stabilized time-stepping approach for piecewise smooth multibody dynamics

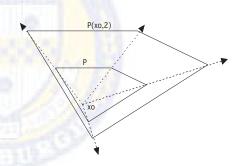
Ratio Metric

Introduction

- Differentiability
- Constraints and Model

Ratio Metric

- Algorithm
- Numerical Results
- Summary



gdhart@pitt.edu (UPG) ICAM /

Polyhedra and Expansion/Contraction Maps

Definition

We define CP(A, b, x_o) to be the convex polyhedron P defined by the linear inequalities $Ax \le b$ with an interior point x_o . We will often just write P = CP(A, b, x_o).

Definition

Let $P = CP(A, b, x_o)$. Then for any nonnegative real number t, the expansion (contraction) of P with respect to the point x_o is defined to be

$$P(x_o, t) = \{x | Ax \le tb + (1 - t)Ax_o.\}$$

Introduction Ratio Metric Differentiability Constraints and Model Algorithm Numerical Results 'Comps occoor occoor

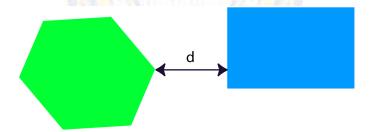
Polyhedral Ratio Metric

Minkowski Penetration Depth

Definition

Let $P_i = CP(A_i, b_i, x_i)$ be a convex polyhedron for i = 1,2. The Minkowski Penetration Depth (MPD) between the two bodies P_1 and P_2 is defined formally as

$$PD(P_1, P_2) = \min\{||d|| | interior(P_1 + d) \bigcap P_2 = \emptyset\}.$$
 (1)



Ratio Metric Penetration Depth

Definition

Let $P_i = CP(A_i, b_i, x_i)$ be a convex polyhedron for i = 1,2. Then the Ratio Metric between the two sets is given by

$$r(P_1, P_2) = \min\{t | P_1(x_1, t) \cap P_2(x_2, t) \neq \emptyset\},$$
 (2)

and the corresponding Ratio Metric Penetration Depth (RPD) is given by

$$\rho(P_1, P_2, r) = \frac{r(P_1, P_2) - 1}{r(P_1, P_2)}.$$
 (3)

gdhart@pitt.edu (UPG)

Expansion/Contraction Again

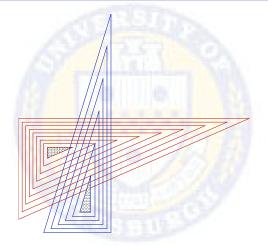


Figure: Visual representation of double expansion or contraction

gdhart@pitt.edu (UPG)

Metric Equivalence Theorem

Introduction

Metric Equivalence Theorem

Theorem (Metric Equivalence)

Let $P_i = CP(A_i, b_i, x_i)$ be a convex polyhedron for i = 1, 2, s be the MPD between the two bodies, D be the distance between x_1 and x_2 , ϵ be the maximum allowable Minkowski penetration between any two bodies. Then the ratio metric penetration depth between the two sets satisfies the relationship

$$\frac{s}{D} \le \rho(P_1, P_2, r) \le \frac{s}{\epsilon},\tag{4}$$

if P_1 and P_2 have disjoint interiors, and

$$-\frac{s}{\epsilon} \le \rho(P_1, P_2, r) \le -\frac{s}{D} \tag{5}$$

if the interiors of P_1 and P_2 are not disjoint.

adhart@pitt.edu (UPG)

Metric Equivalence Theorem

Introduction

Significance of the Metric Equivalence Theorem

- Let number of facets of two polyhedra be m_1 and m_2
 - Computing PD by using the Minkowski sums: $O(m_1^2 + m_2^2)$
 - Solving linear programming problem: $O(m_1 + m_2)$
- : our metric provide us with a simple way to detect collision and measure penetration of two convex polyhedral bodies bodies with lower complexity and is equivalent, for small penetration, to the classical measure
- : for time step h, if the MPD is $O(h^2)$ then so is the RPD

Construction of a constraint-stabilized time-stepping approach for piecewise smooth multibody dynamics

- Ratio Metric
- Differentiability
- Constraints and Model
- Algorithm
- Numerical Results
- Summary

$$\frac{d}{dx}(c) = 0$$

Algorithm

$$\frac{d}{dx}(x) = 1$$

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

$$\frac{d}{dx}(u\pm v) = \frac{du}{dx} \pm \frac{dv}{dx}$$

$$\frac{d}{dx}(c u) = c \frac{du}{dx}$$

$$\frac{d}{dx}(u\ v) = u\ \frac{dv}{dx} + v\ \frac{du}{dx}$$

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

$$\frac{d}{dx}(u^n) = n u^{n-1} \frac{du}{dx}$$

$$\frac{d}{dx}(u \circ v) = \frac{dv}{dx} \, \left(\frac{du}{dx} \circ v\right)$$

adhart@pitt.edu (UPG) ICAM App. Math. Con.
 Introduction
 Ratio Metric
 Differentiability
 Constraints and Model
 Algorithm
 Numerical Results
 'Comps

 000000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 000000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 000000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 000000
 00000
 00000</t

Basic Contact Unit

Perfect Contact

Definition

Two convex polyhedra are in perfect contact when there is a nonempty intersection without interpenetration.

Definition

In n-dimensional space, a Basic Contact Unit (BCU) occurs when

- two convex polyhedra are in perfect contact,
- the contact region attached to a BCU is a point, and
- exactly n+1 facets are involved at the contact.

The point where the contact occurs is called an event point, or more simply, an event.

Introduction

Basic Contact Unit

Ratio Metric

- A CoF is always a BCU
- In 2D: CoF In 3D: CoF, (nonparallel) EoE
- In n-dim space, there are exactly $\left[\frac{n+1}{2}\right]$ distinct BCUs

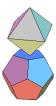


Figure: Corner-on-Face

Figure: Edge-on-Edge

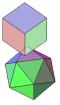


Figure: Face-on-Face

Convex Hull of BCUs

Theorem

The intersection of two convex polyhedra in perfect contact is the convex hull of the event points.

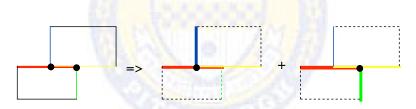


Figure: 2D Example: Contact Region Is Convex Hull of BCUs.

Differentiability at an Event

Introduction

Nondifferentiability

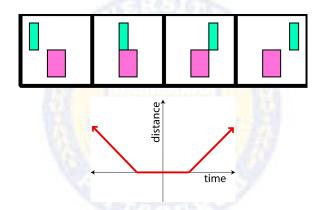


Figure: Nondifferentiability of Euclidean distance function

gdhart@pitt.edu (UPG)

Introduction

Infinite Differentiability at an Event

- If E is an event at perfect contact of convex polyhedra P_1 and P_2 , then $P_E(x_i, t)$, the restrictions of $P_i(x_i, t)$ to E, is the convex body defined by the facets of $P(x_i, t)$ which involve E.
- If E is an event at perfect contact of P_1 and P_2 , then

$$r(P_{E}(x_{1},t),P_{E}(x_{2},t)) = \min_{t\geq 0} \begin{cases} \hat{A}_{L_{1}}R_{1}^{T}x - \hat{b}_{1}t \leq \hat{A}_{L_{1}}R_{1}^{T}x_{1} \\ \hat{A}_{L_{2}}R_{2}^{T}x - \hat{b}_{2}t \leq \hat{A}_{L_{2}}R_{2}^{T}x_{2} \end{cases}$$
(6)

where the sum of the rows of \hat{A}_{L_1} and \hat{A}_{L_2} totals n+1.

• Theorem: At any event E of perfect contact, $r(P_E(x_1, t), P_E(x_2, t))$ is infinitely differentiable with respect to the translation vectors and rotation angles.

Component Functions

- Associate m^{th} event $E^{(m)}$ with component function $\widehat{\Phi}^{(m)}$
- We use the restrictions $P_{E^{(m)}}(x_1, t)$ and $P_{E^{(m)}}(x_2, t)$
- $\widehat{\Phi}^{(m)} = f(r_m)$, where f(t) = (t-1)/t and

$$r_{m} = \min_{t \geq 0} \begin{cases} \hat{A}_{m_{1}} R_{1}^{T} x - b_{m_{1}} t \leq \hat{A}_{m_{1}} R_{1}^{T} x_{1} \\ \hat{A}_{m_{2}} R_{2}^{T} x - b_{m_{2}} t \leq \hat{A}_{m_{2}} R_{2}^{T} x_{2} \end{cases}$$
(7)

2/21/2009

31 / 53

and sum of numbers of rows of \hat{A}_{m_1} and \hat{A}_{m_2} is n+1.

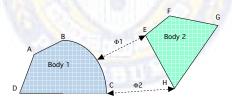


Figure: Two Component Signed Distance Functions

gdhart@pitt.edu (UPG) ICAM App. Math. Con.

Introduction

Max of Component Functions

Ratio Metric

RPD is the maximum of component distance functions.

Theorem

Suppose $x_1 \neq x_2$ and let $P_i = CP(A_{L_i}R_i^T, b_{L_i} + A_{L_i}R_i^Tx_i, x_i)$ be convex polyhedra for i = 1, 2 and let $\left\{E^{(1)}, E^{(2)}, \cdots, E^{(N)}\right\}$ be the list of all possible events with corresponding component distance functions $\left\{\widehat{\Phi}^{(1)}, \widehat{\Phi}^{(2)}, \cdots, \widehat{\Phi}^{(N)}\right\}$. Then

$$\rho(P_1, P_2, r) = \max \left\{ \widehat{\Phi}^{(1)}, \widehat{\Phi}^{(2)}, \cdots, \widehat{\Phi}^{(N)} \right\},\,$$

where $\rho(P_1, P_2, r)$ is defined by (3).

Ratio Metric

Introduction

Differentiability

Ratio Metric

- Constraints and Model
- Algorithm
- Numerical Results
- Summary

Noninterpenetration Constraints

 Model noninterpenetration constraints by continuous piecewise differentiable signed distance functions:

$$\Phi^{(j)}(q) \ge 0, \quad j = 1, 2, \cdots, p.$$
 (8)

We will use RPD to compute Φ^(j)

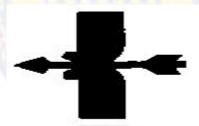


Figure: Noninterpenetration Constraint: Constraint not enforced

gdhart@pitt.edu (UPG)

Introduction

Joint Constraints

Ratio Metric

- Model joint constraints by sufficiently smooth $\Theta^{(i)}(q) = 0, i = 1, 2, \dots, n_i$
- Define $\nu^{(i)}(q) = \nabla_q \Theta^{(i)}(q), \quad i = 1, 2, \dots, n_J$

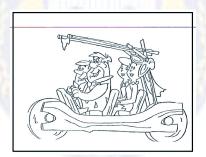


Figure: Joint Constraint: Fixed distance between wheels

Model

Linear Complementarity Model

Euler discretization of the equations of motion:

$$M(q^{(I)}) (v^{(I+1)} - v^{(I)}) = h_I k (t^{(I)}, q^{(I)}, v^{(I)}) + \sum_{i=1}^{n_J} c_{\nu}^{(i)} \nu^{(i)} (q^{(I)}) + \sum_{m \in \mathcal{E}} \left(c_n^{(m)} n^{(m)} (q^{(I)}) + \sum_{i=1}^{M_C^{(m)}} \beta_i^{(m)} d_i^{(m)} (q^{(I)}) \right).$$
(9)

Modified linearization of geometrical and noninterpenetration constraints:

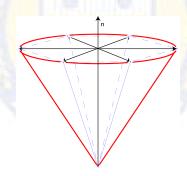
$$\gamma \Theta^{(i)}(q^{(l)}) + h_{l} \nu^{(i)^{T}}(q^{(l)}) \nu^{(l+1)} = 0, \quad i = 1, 2, \dots, n_{J}, \\
n^{(m)^{T}}(q^{(l)}) \nu^{(l+1)} + \frac{\gamma}{h_{l}} \Phi^{(j)}(q^{(l)}) \geq 0 \quad \perp c_{n}^{(m)} \geq 0, \qquad m \in \mathcal{E}.$$
(10)

Introduction

Friction Model

Friction model (usual classical pyramid approximation of friction cone, see Stewart & Trinkle 1995 or Anitescu & Hart 2004):

$$D^{(m)^{T}}(q)v + \lambda^{(m)}e^{(m)} \geq 0 \quad \perp \quad \beta^{(m)} \geq 0, \\ \mu c_{n}^{(m)} - e^{(m)^{T}}\beta^{(m)} \geq 0 \quad \perp \quad \lambda^{(m)} \geq 0.$$
 (11)



Model

Mixed Complementarity and QP Formulation

Note (12) constitutes 1st-order optimality conditions of QP

$$\min_{\substack{v,\lambda\\ v,\lambda}} \frac{1}{2} v^{T} M^{(I)} v + q^{(I)^{T}} v$$
s.t.
$$n^{(m)^{T}} v - \mu^{(m)} \lambda^{(m)} \geq -\Gamma^{(m)} - \Delta^{(m)}, \quad m \in \mathcal{E}$$

$$D^{(m)^{T}} v + \lambda^{(m)} e^{(m)} \geq 0, \quad m \in \mathcal{E}$$

$$\nu_{i}^{T} v = -\Upsilon_{i}, \quad 1 \leq i \leq n_{J}$$

$$\lambda^{(m)} > 0 \quad m \in \mathcal{E}$$
(13)

Construction of a constraint-stabilized time-stepping approach for piecewise smooth multibody dynamics

- Ratio Metric
- Differentiability
- Constraints and Model
- Algorithm
- Numerical Results
- Summary



gdhart@pitt.edu (UPG) 2/21/2009 ICAM App. Math. Con.

Assumption A1

A1: There exists $\epsilon_0 > 0$, $C_1^d > 0$, and $C_2^d > 0$ such that

- $\Phi^{(j)}$ for $1 \leq j \leq n_B$ are piecewise continuous on their domains Ω_ϵ , with piecewise components $\widehat{\Phi}^{(m)}(q)$ which are twice continuously differentiable in their respective open domains with first and second derivatives uniformly bounded by $C_1^d > 0$ and $C_2^d > 0$, respectively, and
- $\Theta^{(i)}(q)$ for $i=1,2,\cdots,m$ are twice continuously differentiable in Ω_{ϵ} with first and second derivatives uniformly bounded by $C_1^d>0$ and $C_2^d>0$, respectively.

Using Assumption A1

Lemma

If Assumption A1 holds, then $\Phi^{(j)}$ for $1 \le j \le n_B$ is everywhere directionally differentiable. Moreover, the generalized gradient of $\Phi^{(j)}$ is contained in the convex cover of the gradients of its component functions which are active at q evaluated at q.

Note: We use
$$\Phi^{(j)o}(q; v) = \limsup_{p \to q, t \downarrow 0} \frac{\Phi^{(j)}(p + tv) - \Phi^{(j)}(p)}{t}$$

Lemma

If Assumption A1 holds, then for any j such that $1 \le j \le n_B$, then $\Phi^{(j)}$ satisfies a Lipschitz condition.

41 / 53

Note: We use Lebourg's Mean Value Theorem in the proof

gdhart@pitt.edu (UPG) ICAM App. Math. Con. 2/21/2009

Assumptions D1 - D3

Ratio Metric

- **D1:** The mass matrix is constant. That is, $M(q^{(l)}) = M^{(l)} = M$.
- **D2:** The norm growth parameter is constant: $c(\cdot, \cdot, \cdot) \leq c_0$
- D3: The external force is continuous and increases at most linearly with the pos. and vel., and unif. bdd in time:

$$k(t, v, q) = k_0(t, v, q) + f_c(v, q) + k_1(v) + k_2(q)$$

and there is some constant $c_K \ge 0$ such that

$$||k_{o}(t, v, q)|| \leq c_{K} ||k_{1}(v)|| \leq c_{K} ||v|| ||k_{2}(q)|| \leq c_{K} ||q||.$$

Also assume

$$v^T f_c(v, q) = 0 \quad \forall v, q.$$

Algorithm for Piecewise Smooth RMBD

Algorithm

Algorithm for piecewise smooth multibody dynamics

- **Step 1:** Given $q^{(l)}$. $v^{(l)}$. and h_l , calculate the active set $\mathcal{A}(q^{(l)})$ and active events $\mathcal{E}(q^{(l)})$.
- **Step 2:** Compute $v^{(l+1)}$, the velocity solution of our mixed LCP.
- **Step 3:** Compute $q^{(l+1)} = q^{(l)} + h_l v^{(l+1)}$.
- **Step 4:** IF finished, THEN stop ELSE set I = I + 1 and restart.

Ratio Metric

Theorem

Introduction

Assume that our algorithm is applied over a time interval [0, T], and

- The active set A(q) and active events $\mathcal{E}(q)$ are properly defined
- The time steps $h_l > 0$ satisfy

$$\sum_{l=0}^{N-1} h_l = T \text{ and } \frac{h_{l-1}}{h_l} = c_h, I = 1, 2, \cdots, N-1$$

- The system satisfies Assumptions (A1) and (D1) (D3)
- The system is initially feasible. That is, $I(q^{(0)}) = 0$

Then, there exist H > 0, V > 0, and $C_c > 0$ such that $||v^{(I)}|| \le V$ and $I(q(I)) \le C_c ||v^{(I)}||^2 h_{I-1}^2$, $\forall I, \ 1 \le I \le N$

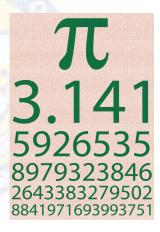
Introduction

Consequences of the Theorem

- Algorithm achieves constraint stabilization because the infeasibility is bounded above by the size of the solution. In particular, $v^{(l+1)} = 0 \Rightarrow I(q^{(l+1)}) = 0$
- Linear O(h) method yields quadratic $O(h^2)$ infeasibility
- Velocity remains bounded
- No need to change the step size to control infeasibility
- Solve one linear complementarity problem per step

Construction of a constraint-stabilized time-stepping approach for piecewise smooth multibody dynamics

- Ratio Metric
- Differentiability
- Constraints and Model
- Algorithm
- Numerical Results
- Summary



adhart@pitt.edu (UPG) 2/21/2009 ICAM App. Math. Con.

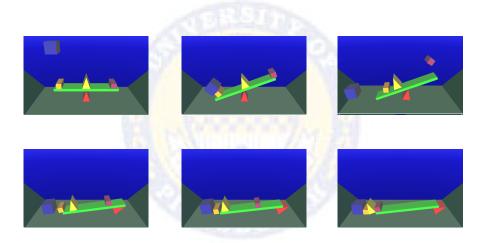
 Differentiability
 Constraints and Model
 Algorithm occors
 Numerical Results
 'Comps

 000000
 00000
 0000
 000
 000

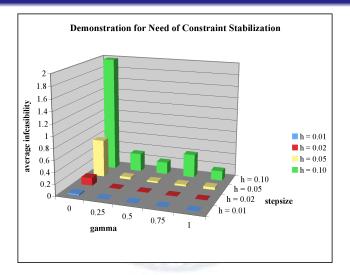
Introduction 00000000 Balance2

Six successive frames from Balance2

Ratio Metric

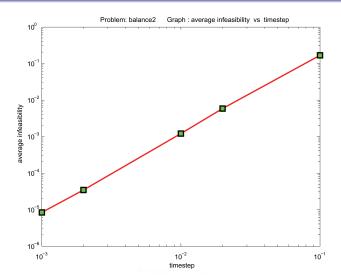


Balance2



Smaller stepsize ⇒ smaller average infeasibility Constraint stabilization ⇒ smaller average infeasibility Balance2

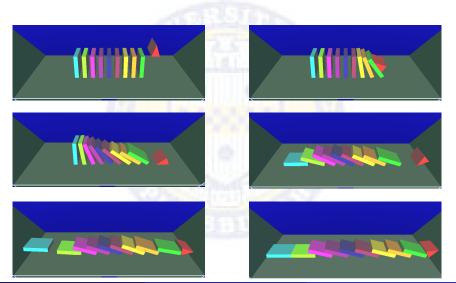
Introduction



Average infeasibility shows quadratic $O(h^2)$ nature

Introduction

Six successive frames from Pyramid1



Ratio Metric

Introduction

Differentiability

Ratio Metric

- Constraints and Model
- Algorithm
- Numerical Results
- Summary

gdhart@pitt.edu (UPG)

Accomplishments

Accomplishments

- Successfully developed a computationally efficient signed distance function. Ratio Metric
- Successfully shown equivalence of RPM to MPD
- Successfully developed and analyzed algorithm that achieves constraint stabilization solving one LCP per step
- Successfully calculated generalized gradients and showed that infeasibility at step I is upper bounded by $O(||h_{l-1}||^2 ||v^{(l)}||^2)$
- Successfully implemented this algorithm for several problems with good results

Accomplishments

Introduction

Thank You!

- ICAM
- Clemson University
- University of Pittsburgh
- University of Tennessee/Knoxville
- Virginia Tech

