Constructing a constraint-stabilized time-stepping approach for piecewise smooth multibody dynamics, part 1

Gary D. Hart

Division of Natural Sciences
University of Pittsburgh at Greensburg

ICAM Applied Mathematics Conference
February 21, 2009

Application of Rigid Multi Body Dynamics

- RMBD in diverse areas

\star	rock dynamics	\star
human motion		
\star	robotic simulations	\star
nuclear reactors		
\star	virtual reality	\star
haptics		

- VR or Virtual reality exposure (VRE) therapy
\star fear of heights $\quad \star$ fear of public speaking
\star telerehabilitation $\quad \star$ PTSD

Some Previous Approaches

- Integrate-detect-restart simulation a natural choice
- Classical solution may not exist
- Collisions can cause small stepsizes
- Differential algebraic equations (DAE) for joint constraints
- Specialized techniques because non-smooth noninterpenetration and friction constraints.
- Optimization based animation technique solving a quadratic program at each step to avoid stiffness.
- Collision detection still present, hence small stepsizes
- Penalty Barrier Methods are most popular.
- Easy set up, even for DAEs, but problem may be stiff and requires a priori smoothing parameters

Previous Approaches

Hard Constraint Approaches

- Advantage:
- Results are same order of magnitude as penalty method
- Same dynamics using 4 orders of magnitude larger time step
- We use a velocity impulse LCP based approach avoiding the lack of a solution and introducing artificial stiffness
- Disadvantage:
- LCP model yields inequality constraints from contact and friction, treated computationally as hard constraints.

Previous Approaches

- To avoid infinitely small time steps, say from collisions, we need to impose a minimum stepsize

Previous Approaches

Figure: Simple Simulation: Trivial Example

Figure: Simple Simulation: Trivial Example

Previous Approaches

Figure: Simple Simulation: Trivial Example

Figure: Simple Simulation: Trivial Example

Figure: Simple Simulation: Trivial Example

Figure: Simple Simulation: Trivial Example

Previous Approaches

Need to Define and Compute Depth of Penetration

- For methods with minimum time step, interpenetration may be unavoidable, thus it needs to be quantified (to limit amount of interpenetration)
- Minimum Euclidean distance good for distance between objects, but not for penetration

Construction of a constraint-stabilized time-stepping approach for piecewise smooth multibody dynamics

- Ratio Metric
- Differentiability
- Constraints and Model
- Algorithm
- Numerical Results

- Summary

Polyhedra and Expansion/Contraction Maps

Definition

We define $\mathrm{CP}\left(\mathrm{A}, \mathrm{b}, x_{o}\right)$ to be the convex polyhedron P defined by the linear inequalities $A x \leq b$ with an interior point x_{0}. We will often just write $\mathrm{P}=\mathrm{CP}\left(\mathrm{A}, \mathrm{b}, x_{o}\right)$.

Definition

Let $\mathrm{P}=\mathrm{CP}\left(\mathrm{A}, \mathrm{b}, x_{o}\right)$. Then for any nonnegative real number t , the expansion (contraction) of P with respect to the point x_{0} is defined to be

$$
P\left(x_{0}, t\right)=\left\{x \mid A x \leq t b+(1-t) A x_{0} .\right\}
$$

Polyhedral Ratio Metric

Minkowski Penetration Depth

Definition

Let $P_{i}=C P\left(A_{i}, b_{i}, x_{i}\right)$ be a convex polyhedron for $\mathrm{i}=1,2$. The Minkowski Penetration Depth (MPD) between the two bodies P_{1} and P_{2} is defined formally as

$$
\begin{equation*}
P D\left(P_{1}, P_{2}\right)=\min \left\{\|d\| \| \text { interior }\left(P_{1}+d\right) \bigcap P_{2}=\emptyset\right\} . \tag{1}
\end{equation*}
$$

Polyhedral Ratio Metric

Ratio Metric Penetration Depth

Definition

Let $P_{i}=C P\left(A_{i}, b_{i}, x_{i}\right)$ be a convex polyhedron for $\mathrm{i}=1,2$. Then the Ratio Metric between the two sets is given by

$$
\begin{equation*}
r\left(P_{1}, P_{2}\right)=\min \left\{t \mid P_{1}\left(x_{1}, t\right) \bigcap P_{2}\left(x_{2}, t\right) \neq \emptyset\right\} \tag{2}
\end{equation*}
$$

and the corresponding Ratio Metric Penetration Depth (RPD) is given by

$$
\begin{equation*}
\rho\left(P_{1}, P_{2}, r\right)=\frac{r\left(P_{1}, P_{2}\right)-1}{r\left(P_{1}, P_{2}\right)} \tag{3}
\end{equation*}
$$

Polyhedral Ratio Metric

Expansion/Contraction Again

Figure: Visual representation of double expansion or contraction

Metric Equivalence Theorem

Theorem (Metric Equivalence)

Let $P_{i}=C P\left(A_{i}, b_{i}, x_{i}\right)$ be a convex polyhedron for $i=1,2$, s be the MPD between the two bodies, D be the distance between x_{1} and x_{2}, ϵ be the maximum allowable Minkowski penetration between any two bodies. Then the ratio metric penetration depth between the two sets satisfies the relationship

$$
\begin{equation*}
\frac{s}{D} \leq \rho\left(P_{1}, P_{2}, r\right) \leq \frac{s}{\epsilon} \tag{4}
\end{equation*}
$$

if P_{1} and P_{2} have disjoint interiors, and

$$
\begin{equation*}
-\frac{s}{\epsilon} \leq \rho\left(P_{1}, P_{2}, r\right) \leq-\frac{s}{D} \tag{5}
\end{equation*}
$$

if the interiors of P_{1} and P_{2} are not disjoint.

Metric Equivalence Theorem

Significance of the Metric Equivalence Theorem

- Let number of facets of two polyhedra be m_{1} and m_{2}
- Computing PD by using the Minkowski sums: $O\left(m_{1}^{2}+m_{2}^{2}\right)$
- Solving linear programming problem: $O\left(m_{1}+m_{2}\right)$
- \therefore our metric provide us with a simple way to detect collision and measure penetration of two convex polyhedral bodies bodies with lower complexity and is equivalent, for small penetration, to the classical measure
- \therefore for time step h, if the MPD is $O\left(h^{2}\right)$ then so is the RPD

Construction of a constraint-stabilized time-stepping approach for piecewise smooth multibody dynamics

- Ratio Metric
- Differentiability
- Constraints and Model
- Algorithm
- Numerical Results
- Summary

$$
\begin{aligned}
& \frac{d}{d x}(c)=0 \\
& \frac{d}{d x}(x)=1 \\
& \frac{d}{d x}\left(x^{n}\right)=n x^{\mathrm{n}-1} \\
& \frac{d}{d x}(x \pm v)=\frac{d u}{d x} \pm \frac{d v}{d x} \\
& \frac{d}{d x}(c u)=c \frac{d u}{d x} \\
& \frac{d}{d x}(x v)=凶 \frac{d v}{d x}+v \frac{d u}{d x} \\
& \frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-v \frac{d v}{d x}}{v^{2}} \\
& \frac{d}{d x}\left(x^{n}\right)=n \mathbb{x}^{\mathrm{n}-1} \frac{d u}{d x} \\
& \frac{d}{d x}(u \circ v)=\frac{d v}{d x}\left(\frac{d x}{d x} \circ v\right)
\end{aligned}
$$

Basic Contact Unit

Perfect Contact

Definition

Two convex polyhedra are in perfect contact when there is a nonempty intersection without interpenetration.

Definition

In n-dimensional space, a Basic Contact Unit (BCU) occurs when

- two convex polyhedra are in perfect contact,
- the contact region attached to a BCU is a point, and
- exactly $n+1$ facets are involved at the contact.

The point where the contact occurs is called an event point, or more simply, an event.

Basic Contact Unit

Basic Contact Unit

- A CoF is always a BCU
- In 2D: CoF In 3D: CoF, (nonparallel) EoE
- In n-dim space, there are exactly $\left[\frac{n+1}{2}\right]$ distinct BCUs

Figure:
Corner-on-Face

Figure: Edge-on-Edge

Figure: Face-on-Face

Basic Contact Unit

Convex Hull of BCUs

Theorem

The intersection of two convex polyhedra in perfect contact is the convex hull of the event points.

Figure: 2D Example: Contact Region Is Convex Hull of BCUs.

Differentiability at an Event

Nondifferentiability

Figure: Nondifferentiability of Euclidean distance function

Infinite Differentiability at an Event

- If E is an event at perfect contact of convex polyhedra P_{1} and P_{2}, then $P_{E}\left(x_{i}, t\right)$, the restrictions of $P_{i}\left(x_{i}, t\right)$ to E , is the convex body defined by the facets of $P\left(x_{i}, t\right)$ which involve E.
- If E is an event at perfect contact of P_{1} and P_{2}, then

$$
r\left(P_{E}\left(x_{1}, t\right), P_{E}\left(x_{2}, t\right)\right)=\min _{t \geq 0}\left\{\begin{array}{l}
\hat{A}_{L_{1}} R_{1}^{T} x-\hat{b}_{1} t \leq \hat{A}_{L_{1}} R_{1}^{T} x_{1} \tag{6}\\
\hat{A}_{L_{2}} R_{2}^{T} x-\hat{b}_{2} t \leq \hat{A}_{L_{2}} R_{2}^{T} x_{2}
\end{array}\right.
$$

where the sum of the rows of $\hat{A}_{L_{1}}$ and $\hat{A}_{L_{2}}$ totals $n+1$.

- Theorem: At any event E of perfect contact, $r\left(P_{E}\left(x_{1}, t\right), P_{E}\left(x_{2}, t\right)\right)$ is infinitely differentiable with respect to the translation vectors and rotation angles.

Differentiability at an Event

Component Functions

- Associate $m^{\text {th }}$ event $E^{(m)}$ with component function $\widehat{\phi}^{(m)}$
- We use the restrictions $P_{E^{(m)}}\left(x_{1}, t\right)$ and $P_{E^{(m)}}\left(x_{2}, t\right)$
- $\widehat{\phi}^{(m)}=f\left(r_{m}\right)$, where $f(t)=(t-1) / t$ and

$$
r_{m}=\min _{t \geq 0}\left\{\begin{array}{l}
\hat{A}_{m_{1}} R_{1}^{T} x-b_{m_{1}} t \leq \hat{A}_{m_{1}} R_{1}^{T} x_{1} \tag{7}\\
\hat{A}_{m_{2}} R_{2}^{T} x-b_{m_{2}} t \leq \hat{A}_{m_{2}} R_{2}^{T} x_{2}
\end{array}\right.
$$

and sum of numbers of rows of $\hat{A}_{m_{1}}$ and $\hat{A}_{m_{2}}$ is $n+1$.

Figure: Two Component Signed Distance Functions

Max of Component Functions

RPD is the maximum of component distance functions.

Theorem

Suppose $x_{1} \neq x_{2}$ and let $P_{i}=C P\left(A_{L_{i}} R_{j}^{T}, b_{L_{i}}+A_{L_{i}} R_{i}^{T} x_{i}, x_{i}\right)$ be convex polyhedra for $i=1,2$ and let $\left\{E^{(1)}, E^{(2)}, \cdots, E^{(N)}\right\}$ be the list of all possible events with corresponding component distance functions $\left\{\widehat{\Phi}^{(1)}, \widehat{\Phi}^{(2)}, \cdots, \widehat{\Phi}^{(N)}\right\}$. Then

$$
\rho\left(P_{1}, P_{2}, r\right)=\max \left\{\widehat{\Phi}^{(1)}, \widehat{\Phi}^{(2)}, \cdots, \widehat{\Phi}^{(N)}\right\}
$$

where $\rho\left(P_{1}, P_{2}, r\right)$ is defined by (3).

Construction of a constraint-stabilized time-stepping approach for piecewise smooth multibody dynamics

- Ratio Metric
- Differentiability
- Constraints and Model
- Algorithm
- Numerical Results
- Summary

Noninterpenetration Constraints

- Model noninterpenetration constraints by continuous piecewise differentiable signed distance functions:

$$
\begin{equation*}
\Phi^{(j)}(q) \geq 0, \quad j=1,2, \cdots, p \tag{8}
\end{equation*}
$$

- We will use RPD to compute $\Phi^{(j)}$

Figure: Noninterpenetration Constraint: Constraint not enforced

Physical Constraints

Joint Constraints

- Model joint constraints by sufficiently smooth

$$
\Theta^{(i)}(q)=0, i=1,2, \cdots, n_{J}
$$

- Define $\nu^{(i)}(q)=\nabla_{q} \Theta^{(i)}(q), \quad i=1,2, \cdots, n_{J}$

Figure: Joint Constraint: Fixed distance between wheels

Model

Linear Complementarity Model

Euler discretization of the equations of motion:

$$
\begin{aligned}
M\left(q^{(l)}\right)\left(v^{(l+1)}-v^{(l)}\right) & =h_{l} k\left(t^{(l)}, q^{(l)}, v^{(l)}\right)+\sum_{i=1}^{n_{j}} c^{(i)} \nu^{(i)}\left(q^{(l)}\right) \\
& +\sum_{m \in \mathcal{E}}\left(c_{n}^{(m)} n^{(m)}\left(q^{(l)}\right)+\sum_{i=1}^{M_{c}^{(m)}} \beta_{i}^{(m)} d_{i}^{(m)}\left(q^{(l)}\right)\right) .
\end{aligned}
$$

Modified linearization of geometrical and noninterpenetration constraints:

$$
\begin{array}{lll}
\gamma \Theta^{(i)}\left(q^{(l)}\right)+h_{l} \nu^{(i)^{\top}}\left(q^{(l)}\right) v^{(l+1)} & =0, \quad i=1,2, \cdots, n_{J}, \\
n^{(m)^{\top}}\left(q^{(l)}\right) v^{(l+1)}+\frac{\gamma}{h_{l}} \phi^{(j)}\left(q^{(l)}\right) \geq 0 & \perp c_{n}^{(m)} \geq 0, \quad m \in \mathcal{E} .
\end{array}
$$

Model

Friction Model

Friction model (usual classical pyramid approximation of friction cone, see Stewart \& Trinkle 1995 or Anitescu \& Hart 2004):

$$
\begin{align*}
D^{(m)^{T}}(q) v+\lambda^{(m)} e^{(m)} & \geq 0 \quad \perp \quad \beta^{(m)} \geq 0 \\
\mu c_{n}^{(m)}-e^{(m)^{T}} \beta^{(m)} & \geq 0 \quad \perp \quad \lambda^{(m)} \geq 0 . \tag{11}
\end{align*}
$$

Model

Mixed Complementarity and QP Formulation

$$
\begin{array}{rllll}
M^{(I)} v & -\tilde{n} \widetilde{c}_{n}-\widetilde{D} \widetilde{\beta} & & =-q^{(I)} & \\
\widetilde{\nu}^{T} v & & & =-\Upsilon & \\
\widetilde{n}^{T} v & & -\tilde{\mu} \lambda & \geq-\Gamma-\triangle & \perp \\
\widetilde{D}^{T} v & & c_{n} \geq 0 \\
& \tilde{\mu} c_{n}-\widetilde{E}^{T} \widetilde{\beta} & & \geq 0 & \perp \\
\widetilde{\beta} \geq 0 \tag{12}\\
& & \perp & \lambda \geq 0
\end{array}
$$

Note (12) constitutes $1^{\text {st }}$-order optimality conditions of QP

$$
\begin{array}{rlrlrl}
\min _{v, \lambda} & \frac{1}{2} v^{\top} M^{(I)} v+q^{(l)^{T}} v & & \\
\text { s.t. } & n^{(m)^{T}} v-\mu^{(m)} \lambda^{(m)} & \geq-\Gamma^{(m)}-\Delta^{(m)}, & & m \in \mathcal{E} \\
& D^{(m)^{T}} v+\lambda^{(m)} e^{(m)} & \geq 0, & & m \in \mathcal{E} \tag{13}\\
\nu_{i}^{T} v & =-\Upsilon_{i}, & & 1 \leq i \leq n_{J} \\
& \lambda^{(m)} & \geq 0 & & m \in \mathcal{E}
\end{array}
$$

Construction of a constraint-stabilized time-stepping approach for piecewise smooth multibody dynamics

- Ratio Metric
- Differentiability
- Constraints and Model
- Algorithm
- Numerical Results

Assumption A1

A1: There exists $\epsilon_{o}>0, C_{1}^{d}>0$, and $C_{2}^{d}>0$ such that

- $\Phi^{(j)}$ for $1 \leq j \leq n_{B}$ are piecewise continuous on their domains Ω_{ϵ}, with piecewise components $\widehat{\phi}^{(m)}(q)$ which are twice continuously differentiable in their respective open domains with first and second derivatives uniformly bounded by $C_{1}^{d}>0$ and $C_{2}^{d}>0$, respectively, and
- $\Theta^{(i)}(q)$ for $i=1,2, \cdots, m$ are twice continuously differentiable in Ω_{ϵ} with first and second derivatives uniformly bounded by $C_{1}^{d}>0$ and $C_{2}^{d}>0$, respectively.

Using Assumption A1

Lemma

If Assumption $A 1$ holds, then $\Phi^{(j)}$ for $1 \leq j \leq n_{B}$ is everywhere directionally differentiable. Moreover, the generalized gradient of $\Phi^{(j)}$ is contained in the convex cover of the gradients of its component functions which are active at q evaluated at q.

Note: We use $\Phi^{(j)^{o}}(q ; v)=\limsup _{p \rightarrow q, t \downarrow 0} \frac{\Phi^{(j)}(p+t v)-\Phi^{(j)}(p)}{t}$

Lemma

If Assumption $A 1$ holds, then for any j such that $1 \leq j \leq n_{B}$, then $\Phi^{(j)}$ satisfies a Lipschitz condition.

Note: We use Lebourg's Mean Value Theorem in the proof

Assumptions D1 - D3

D1: The mass matrix is constant. That is, $M\left(q^{(I)}\right)=M^{(I)}=M$.
D2: The norm growth parameter is constant: $c(\cdot, \cdot, \cdot) \leq c_{o}$
D3: The external force is continuous and increases at most linearly with the pos. and vel., and unif. bdd in time:

$$
k(t, v, q)=k_{o}(t, v, q)+f_{c}(v, q)+k_{1}(v)+k_{2}(q)
$$

and there is some constant $c_{K} \geq 0$ such that

$$
\begin{aligned}
\left\|k_{0}(t, v, q)\right\| & \leq c_{K} \\
\left\|k_{1}(v)\right\| & \leq c_{K}\|v\| \\
\left\|k_{2}(q)\right\| & \leq c_{K}\|q\| .
\end{aligned}
$$

Also assume

$$
v^{\top} f_{c}(v, q)=0 \quad \forall v, q .
$$

Main Algorithm

Algorithm for Piecewise Smooth RMBD

Algorithm

Algorithm for piecewise smooth multibody dynamics
Step 1: Given $q^{(I)} . v^{(I)}$. and h_{l}, calculate the active set $\mathcal{A}\left(q^{(I)}\right)$ and active events $\mathcal{E}\left(q^{(I)}\right)$.
Step 2: Compute $v^{(I+1)}$, the velocity solution of our mixed LCP.
Step 3: Compute $q^{(I+1)}=q^{(I)}+h_{l} v^{(I+1)}$.
Step 4: IF finished, THEN stop ELSE set $I=I+1$ and restart.

Main Result

Theorem

Assume that our algorithm is applied over a time interval [0, T], and

- The active set $\mathcal{A}(q)$ and active events $\mathcal{E}(q)$ are properly defined
- The time steps $h_{l}>0$ satisfy

$$
\sum_{l=0}^{N-1} h_{l}=T \quad \text { and } \quad \frac{h_{l-1}}{h_{l}}=c_{h}, \quad l=1,2, \cdots, N-1
$$

- The system satisfies Assumptions (A1) and (D1) - (D3)
- The system is initially feasible. That is, $I\left(q^{(0)}\right)=0$

Then, there exist $H>0, V>0$, and $C_{c}>0$ such that $\left\|v^{(I)}\right\| \leq V \quad$ and $\quad I(q(I)) \leq C_{C}\left\|v^{(I)}\right\|^{2} h_{I-1}^{2}, \quad \forall I, 1 \leq I \leq N$

Consequences of the Theorem

- Algorithm achieves constraint stabilization because the infeasibility is bounded above by the size of the solution. In particular, $v^{(I+1)}=0 \Rightarrow I\left(q^{(I+1)}\right)=0$
- Linear $O(h)$ method yields quadratic $O\left(h^{2}\right)$ infeasibility
- Velocity remains bounded
- No need to change the step size to control infeasibility
- Solve one linear complementarity problem per step

Construction of a constraint-stabilized time-stepping approach for piecewise smooth multibody dynamics

- Ratio Metric
- Differentiability
- Constraints and Model
- Algorithm
- Numerical Results
- Summary

Balance2

Six successive frames from Balance2

Balance2

Smaller stepsize \Rightarrow smaller average infeasibility Constraint stabilization \Rightarrow smaller average infeasibility

Average infeasibility shows quadratic $O\left(h^{2}\right)$ nature

Pyramid1

Six successive frames from Pyramid1

gdhart@pitt.edu (UPG)
ICAM App. Math. Con.
2/21/2009
$50 / 53$

Construction of a constraint-stabilized time-stepping approach for piecewise smooth multibody dynamics

- Ratio Metric
- Differentiability
- Constraints and Model
- Algorithm
- Numerical Results
- Summary

Accomplishments

- Successfully developed a computationally efficient signed distance function, Ratio Metric
- Successfully shown equivalence of RPM to MPD
- Successfully developed and analyzed algorithm that achieves constraint stabilization solving one LCP per step
- Successfully calculated generalized gradients and showed that infeasibility at step $/$ is upper bounded by $O\left(\left\|h_{l-1}\right\|^{2}\left\|v^{(l)}\right\|^{2}\right)$
- Successfully implemented this algorithm for several problems with good results

Accomplishments

Thank You!

- ICAM
- Clemson University
- University of Pittsburgh
- University of Tennessee/Knoxville
- Virginia Tech

