A Probabilistic Constitutive Law For Damage in Ligaments

Zheying Guo

Dr. Raffaella De Vita

Department of Engineering Science and Mechanics

Virginia Tech

Outline

Introduction

- Ligament Functions and Injuries
- Ligament Morphology
- Ligament Tensile and Damage Behavior
- Constitutive Model
 - Assumptions
 - Model Formulation
 - Stress-Stretch Relationship
- **Results**
 - Model Fitting Results
 - Predictions for Different Subfailure Stretches
 - Effects of Model Parameters
- Conclusions

Introduction

Introduction

- Ligament Functions and Injuries
- Ligament Morphology
- Ligament Tensile and Damage Behavior
- Constitutive Model
 - Assumptions
 - Model Formulation
 - Stress-Stretch Relationship

Results

- Model Fitting Results
- Predictions for Different Subfailure Stretches
- Effects of Model Parameters

Ligament Functions and Injuries

Ligament functions

- Connect bone to bone
- Guide and restrain joint motions

Ligament injuries

- Most commonly injured ligaments in sports are ACLs, MCLs (90% of knee ligament injuries)
- 85% of the ligament injuries consist of first degree and second degree sprains

Ligament Morphology

- Components:
 - Collagen fibers (70%~80% of dry weight)
 - Ground substance
 - Water (65%~70% of the total weight)
 - Proteoglycans, glycoproteins
 - Elastin (1%~2% of dry weight)

Collagen fiber waviness

SEM of Rat MCL (Provenzano, 2002)

Ligament Tensile and Damage Behavior

Z. Guo, R. De Vita A Probabilistic Constitutive Law For Damage in Ligaments

irginiaTech

Model Formulation

Introduction

- Ligament Functions and Injuries
- Ligament Morphology
- Ligament Tensile and Damage Behavior
- Constitutive Model
 - Assumptions
 - Model Formulation
 - Stress-Stretch Relationship
- Results
 - Model Fitting Results
 - Predictions for Different Subfailure Stretches
 - Effects of Model Parameters
- **Conclusions**

Model Assumptions

- Ligament tensile behavior is determined only by collagen fibers.
- □ Fibers are parallel and aligned along ligament physiological loading direction.
- □ Fibers become straight at different stretches. Straight fiber behaves like a spring.
- Damage process is controlled by the stretch.
- Damage is caused by the failure of the fibrils that make up the collagen fiber.
- At each damage stretch, one fibril breaks and the stiffness of the fiber reduces by a damage factor.

Model Schematic

Damage process for *i*th fiber with five damage stretches. The stiffness reduction factor D=0.5

rginiallech

Model Formulation

Generate N fibers with straightening stretches $\Lambda_s^{(i)}$, which are randomly defined by a Weibull distribution:

$$\Lambda_s^{(i)}(P_s^{(i)}, \alpha_s, \beta_s, \gamma_s) = \gamma_s + \beta_s [-\ln(1 - P_s^{(i)})]^{\frac{1}{\alpha_s}}$$

- *i* =1 ... N (integer)
- $0 < P_s^{(i)} < 1$: random number
- $\alpha_s > 0$: shape parameter
- $\beta_s > 0$: scale parameter
- $\gamma_s = 1$: location parameter

Model Formulation (con't)

A single straight fiber has M damage stretches. The damage stretches $\Lambda_d^{(j)}$ are randomly generated by another Weibull distribution:

$$\Lambda_d^{(j)}(P_d^{(j)}, \alpha_d, \beta_d, \gamma_d) = \gamma_d + \beta_d \left[-\ln(1 - P_d^{(j)})\right]^{\frac{1}{\alpha_d}}$$

- *j*=1 ... M (integer)
- $0 < P_d^{(j)} < 1$: random number
- $\alpha_d > 0$: shape parameter
- $\beta_d > 0$: scale parameter
- $\gamma_d = 1.0514$: location parameter

Stress-Stretch Relation

Stress of a single straight fiber

$$\sigma^{(i)} = \begin{cases} 0 & \Lambda^{(i)} \le 1 \\ K(\Lambda^{(i)} - 1) & 1 < \Lambda^{(i)} < \Lambda_d^{(j)} \\ D^k K(\Lambda^{(i)} - 1) & \Lambda^{(i)} \ge \Lambda_d^{(k)}, (\Lambda_d^{(k)} > \Lambda_d^{(k-1)} > \dots > \Lambda_d^{(1)}) \end{cases}$$

- Λ : ligament stretch
- $\Lambda^{(i)} = \Lambda / \Lambda_s^{(i)}$: fiber stretch relative to straight configuration
- *K* : fiber's elastic modulus
- 0< *D* <1 : damage reduction factor
- Ligament stress

$$\sigma = \frac{1}{N} \sum_{i=1}^{N} \sigma^{(i)}$$

Results

Introduction

- Ligament Functions and Injuries
- Ligament Morphology
- Ligament Tensile and Damage Behavior
- Constitutive Model
 - Assumptions
 - Model Formulation
 - Stress-Stretch Relationship
- **Results**
 - Model Fitting Results
 - Predictions for Different Subfailure Stretches
 - Effects of Model Parameters

Model Fitting Result

Figure 1. Fitting to rat MCL tensile experimental data (Provenzano, 2002)

rginia'l'ech

Results: Effect of Different Subfailure Stretches

Figure 2. Model prediction of different subfailure stretches

rginia'l'ech

Results: Varying Straightening Parameters

Figure 3. Model predictions of different α_s values

iia lech

Figure 4. Model predictions of different β_s values

Results: Varying Damage Parameters

Figure 5. Model predictions of different α_d values

Figure 6. Model predictions of different β_d values

Figure 7. Model predictions of different *D* values

Conclusions

Introduction

- Ligament Functions and Injuries
- Ligament Morphology
- Ligament Tensile and Damage Behavior
- Constitutive Model
 - Assumptions
 - Model Formulation
 - Stress-Stretch Relationship

Results

- Model Fitting Results
- Predictions for Different Subfailure Stretches
- Effects of Model Parameters

- One-dimensional model has been presented to describe the tensile and damage behavior of ligaments
- The model was fitted to the tensile experimental data for rat MCL
- □ It can be extended to 3-D model by introducing the fiber orientations

Thank you!

Questions

A Probabilistic Constitutive Law For Damage in Ligaments

Page 20