Optimal control applied to a model of species augmentation

Erin N. Bodine

Co-authors: Suzanne Lenhart & Louis Gross

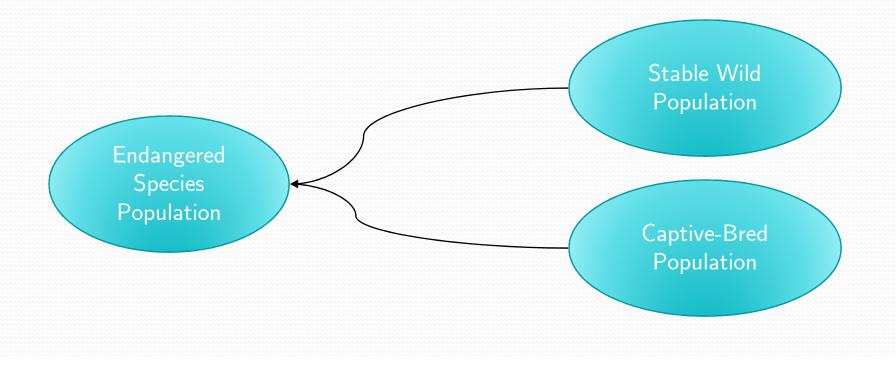
The Institute for Environmental Modeling

Outline

- Introduction to Species Augmentation
- Formulating the Optimal Control Model
- Numerical Simulations & Results
- Work in Progress A Discrete Time Version
- Questions

Species Augmentation

Species augmentation is a method of reducing species loss by augmenting a declining or threatened population with individuals from captive-bred or stable, wild populations.



Where has species augmentation already been used?

1995 Florida panther (*Felis concolor coryi*) augmentation

Eight female Texas panthers (another panther subspecies) were placed in the Southern Florida panther ranger in an effort to raise the population size and increase genetic diversity

30 – 50 panthers in 1995 80 – 100 panthers in 2007

Where are the models?

- There currently do not exist general mathematical species augmentation models to address questions concerning the dynamics of augmented populations and communities.
- My dissertation research aim is to begin developing a mathematical framework to address the biological questions surrounding species augmentation.
- As a general augmentation theory is developed, the results can be readily adapted to a variety of specific cases.

Our Model

 The first model we have developed a continuous time model that addresses the question

At what rate does the target population need to be augmented to meet certain objectives?

 Mathematical Biosciences & Engineering 2008, 5(4): 669 - 680.

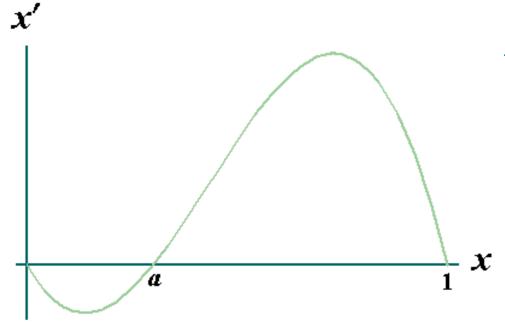
Simple Two-Population Model

- Start with two populations
 - x the target/endangered population
 - y the reserve population
- Assume both populations grow according to a simple population growth model with Allee effect in the absence of human intervention.

Allee Effect Model

Normalized Allee Equation

$$\frac{dx}{dt} = rx(t) \left(1 - x(t)\right) \left(x(t) - a\right)$$

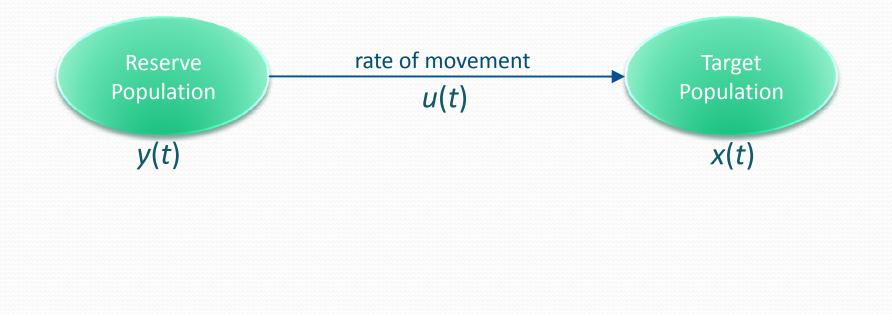


x(t) Population size at time t

- *r* Intrinsic growth rate
- a Minimum population density for growth

Model Assumptions

We wish to move individuals from y to x over a period $[t_0, t_1]$ of time such that x is as large as possible by the end of the time period.



Model Assumptions

- Target population starts below minimum threshold for growth, 0 ≤ x(t₀) < a, so population is declining
- Reserve population starts above minimum threshold for growth, $b \le y(t_0) < 1$, so population is growing
- In addition to maximizing x by the final time, do not want to completely deplete y
- Minimize cost of harvesting/augmenting

Optimal Control Formulation

The optimal control formulation of this problem is:

$$\max_{0 \le u \le 1} \left[x(t_1) + By(t_1) - A \int_{t_0}^{t_1} u^2(t) dt \right]$$
$$x'(t) = rx(1-x)(x-a) + puy, \quad x(t_0) = x_0 < a$$
$$y'(t) = sy(1-y)(y-b) - uy, \quad y(t_0) = y_0 > b$$

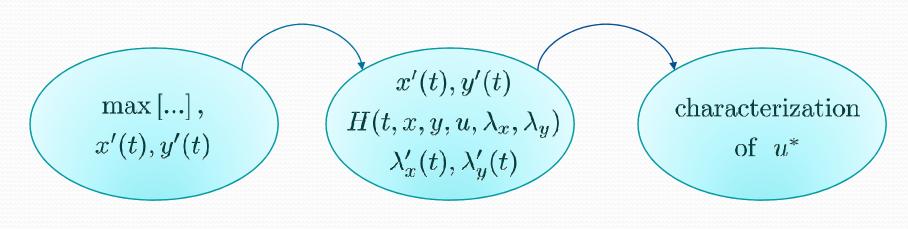
The parameter *p* is the ratio of the reserve population carrying capacity to the target population carrying capacity.

Using Pontryagin's Maximum Principle

Pontryagin's Maximum Principle

- provides necessary conditions for a control to be optimal
- applying Pontryagin's Maximum Principle we obtain a characterization of the optimal control

Pontryagin's Maximum Principle



Characterization of Optimal Control

Construct the Hamiltonian H

$$H = -Au^2 + \lambda_x (rx(1-x)(x-a) + puy) + \lambda_y (sy(1-y)(y-b) - uy)$$

and the adjoint functions λ_x and λ_y corresponding to the states x and y

$$\lambda'_{x} = -\frac{\partial H}{\partial x} = \lambda_{x} r \left(3(x^{*})^{2} - 2x^{*}(1+a) + a\right), \quad \lambda_{x}(t_{1}) = 1$$

$$\lambda'_{y} = -\frac{\partial H}{\partial y} = \lambda_{y} s \left(3(y^{*})^{2} - 2y^{*}(b+1) + b\right) - \lambda_{x} p u^{*} + \lambda_{y} u^{*}, \quad \lambda_{y}(t_{1}) = B$$

Maximize H with respect to u to get the optimal control $u^*(t)$

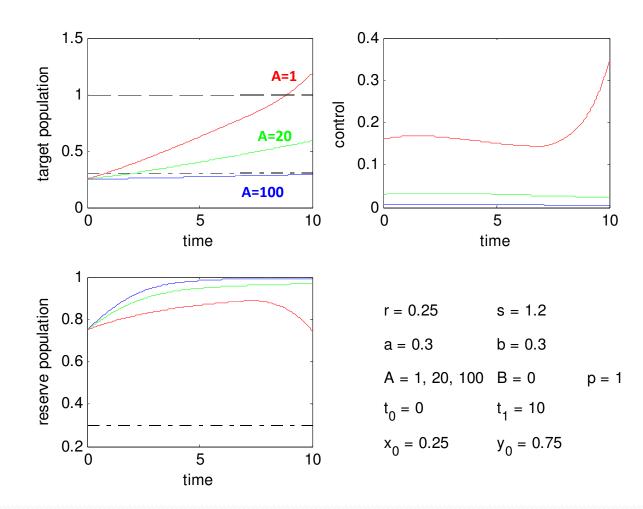
$$u^*(t) = \min\left\{1, \max\left\{0, \frac{p\lambda_x(t) - \lambda_y(t)}{2A}y^*(t)\right\}\right\}$$

Numerical Simulations

- Make an initial guess for u*(t)
- Solve state equations (with initial conditions) using Runge-Kutta 4 method
- Solve adjoint equations (with terminal conditions) using Runge-Kutta 4 method
- Update u*(t) using the characterization of the optimal control
- Repeat until meet convergence condition

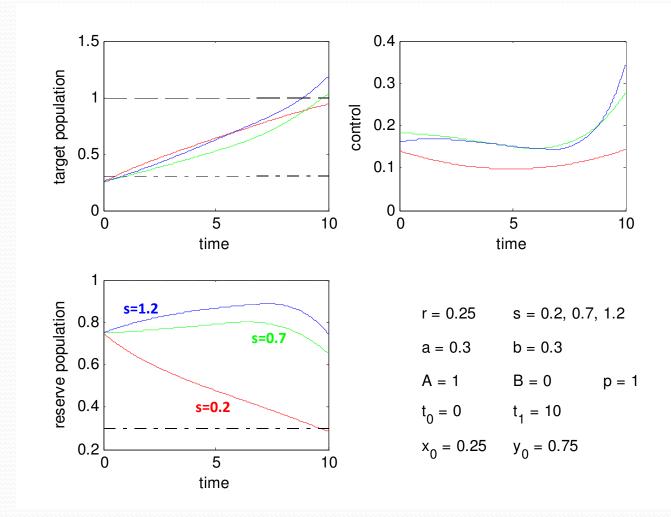
Results

Varying cost coefficient of translocation



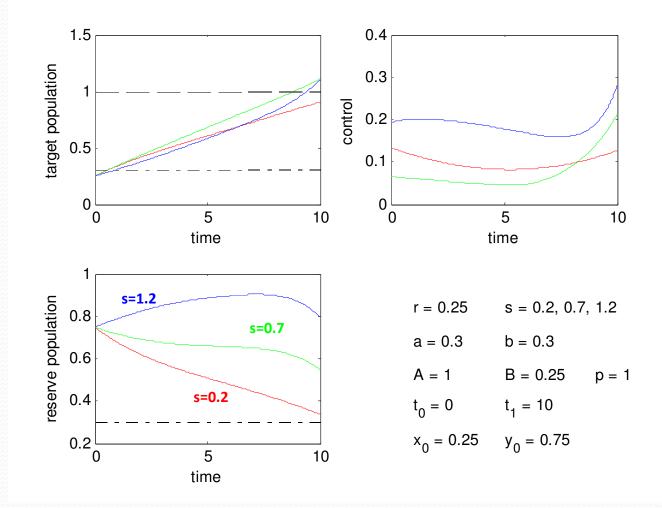
Results

Varying ratio of intrinsic growth rates, with low cost of translocation



Results

As before but increasing importance of maximizing reserve pop by final time



Conclusions

- High cost can prevent moving enough individuals to the target population so that it is above its threshold for population growth
- Low cost can lead to an "over-augmenting" of the target population. Augmenting a population above its carrying capacity results in wasted resources.
- The combination of a low cost of translocation and a low intrinsic growth rate for the reserve population could lead to the reserve population falling below its threshold for population growth by the final time.
- This can be counteracted by increasing the importance of having a large reserve population by the final time, i.e. increase the B value

Future Augmentation Modeling

- Discrete Time
 - Augmentation usually occurs as a single or a few translocations of individuals
 - We are working on creating a discrete time version of this model to compare with these continuous time results
- Linearity of the control in the cost term
 - Model presented uses a control which is quadratic in the cost term
 - Can be interpreted as "as augmentation rate (u(t)) increases, the rate of increase of the cost increases"

$$\int_{t_0}^{t_1} u(s) ds$$
 instead of $\int_{t_0}^{t_1} u^2(s) ds$

Thank you!