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List of projects

• Symmetric Generalized Eigenvalue Problem

– Trust-region methods on Riemannian manifolds

• Low-rank Incremental SVD methods (with Danny

Sorensen)

– Multi-pass algorithms for increased accuracy and

confidence
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Outline

• Review: RTR method for Extreme SGEVP.

• Review: Adaptive Model RTR.

• Implicit Riemannian Trust-Region method.

– Description.

– Convergence results.

• IRTR for Extreme SGEVP.

– Algorithm details.

– Numerical experiments.
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Trust-region methods on Riemannian manifolds

1. Given: smooth manifold M ; Riemannian metric g; smooth

cost function f on M ; retraction R from the tangent

bundle TM to M ; current iterate xk.

1b. Lift up the cost function to the tangent space TxM :

f̂x = f ◦ Rx.

2. Build a model mk(s) of f̂xk
around 0.

3. Find (up to some precision) a minimizer sk of the model

within a “trust-region”, i.e., a ball of radius ∆k around xk.
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Trust-region methods on Riemannian manifolds (cont’d)

4. Compute the ratio

ρ =
f(xk) − f(Rxk

sk)

mk(0) − mk(sk)

to compare the actual value of the cost function at the

proposed new iterate with the value predicted by the

model.

5. Shrink, enlarge or keep the trust-region radius according to

the value of ρ.

6. Accept or reject the proposed new iterate Rxk
sk according

to the value of ρ.

7. Increment k and go to step 2.
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Required ingredients for Riemannian TR

• Manifold M , Riemannian metric g, and cost function f on

M .

• Practical expression for Txk
M .

• Retraction Rxk
: Txk

M → M .

• Function f̂xk
(s) := f(Rxk

(s)).

• Gradient grad f̂xk
(0).

• Hessian Hess f̂xk
(0).
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ESGEV: The optimization problem

Given: n × n pencil (A, B), A = AT , B = BT Â 0,

Avi = Bviλi, i = 1, . . . , n

vT
i Bvj = δij λ1 ≤ λ2 ≤ . . . ≤ λn

Problem: compute the “leftmost” eigenspace

V := col(v1, . . . , vp)

Solution: V satisfies

V = arg min
Y∈Grass(p,n)

f(Y), where

f : Grass(p, n) → R : col(Y ) 7→ tr
(

(Y T BY )−1Y T AY
)

.
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Trust-region for Extreme SGEVP: principles

Ingredients of the RTR method for ESGEV [ABG06]:

1. Manifold: M = {p − dimensional subspaces of Rn}
(Grassmann manifold).

2. Representations: Y represented by any

Y ∈ Rn×p : col(Y ) = Y.

3. Tangent space: formally, TY M = {Z ∈ Rn×p : Y T BZ = 0}.

4. Metric: formally, gY (Za, Zb) = tr
(

(Y T BY )−1ZT
a Zb

)

.
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Trust-region for Extreme SGEVP: principles (2)

5. Retraction: formally, RY (Z) = (Y + Z)M , where arbitrary

M serves for normalization.

6. Cost function: formally, f(Y ) = tr
(

(Y T BY )−1(Y T AY )
)

.

Underlying fact:
[

v1 . . . vp

]

M minimizes f for all M

invertible.
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Trust-region for Extreme SGEVP: details

Lifted cost function:

f̂Y (Z) = f(RY (Z)) = tr

„

“

(Y + Z)T
B(Y + Z)

”

−1

(Y + Z)T
A(Y + Z)

«

= tr
“

(Y T
BY )−1

Y
T
AY

”

+ 2tr
“

(Y T
BY )−1

Z
T
AY

”

+ tr
“

(Y T
BY )−1

Z
T (AZ − BZ(Y T

AY ))
”

+ HOT

= tr
“

(Y T
BY )−1

Y
T
AY

”

+ 2tr
“

(Y T
BY )−1

Z
T
PBY,BY AY

”

+tr
“

(Y T
BY )−1

Z
T
PBY,BY (AZ − BZ(Y T

AY ))
”

+ HOT,

where PBY,BY = I − BY (Y T B2Y )−1Y T B.
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Trust-region for Extreme SGEVP: details (2)

The second order approximation of f̂Y (Z) is thus

mY (Z) = f(Y ) + gY (grad f(Y ), Z) +
1

2
gY (HY Z, Z)

= tr
(

(Y T BY )−1Y T AY
)

+ 2tr
(

(Y T BY )−1ZT AY
)

+ tr
(

(Y T BY )−1ZT
(

AZ − BZ(Y T BY )−1Y T AY
))

.

Compute an approximate minimizer Z̃ using truncated

CG [CGT00]

Update: Y+ = RY (Z̃) = (Y + Z̃)M .
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Outline

• Review: RTR method for Extreme SGEVP.

• Review: Adaptive Model RTR.

• Implicit Riemannian Trust-Region method.

– Description.

– Convergence results.

• IRTR for Extreme SGEVP.

– Algorithm details.

– Numerical experiments.
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A hybrid Tracemin / TR method

Collaboration with Ahmed Sameh.

• Problem: Trust-region confinement may hamper efficient

preconditioning far away from the solution.

; Use preconditioned Basic Tracemin [SW82, ST00] in Phase I.

• Problem: Close to the solution, Basin Tracemin is linear.

; Use TR method in Phase II.
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Adaptive Model RTR

The method can be described in an Adaptive Model RTR

framework [ABGS05].

• Phase I:

– Use a model Hessian PBX,BXAPBX,BX

– Set trust-region radius to infinity.

• Phase II:

– Use model Hessian Hessf̂X [S] = PBX,BX(AS − BSXT AX)

– Finite trust-region radius and ρ′ ∈ (0, 1).
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EXP: Adaptive Model RTR
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Adaptive Model RTR

• Method inherits the global convergence of constituent methods.

• The switching criterion affects efficiency only.

• Potential efficiency greater than constituents.

• Take-home idea: Framing the method as a model trust-region

optimization allows us to choose best suited model at different

points in the computation.
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Outline

• Review: RTR method for Extreme SGEVP.

• Review: Adaptive Model RTR.

• Implicit Riemannian Trust-Region method.

– Description.

– Convergence results.

• IRTR for Extreme SGEVP.

– Algorithm details.

– Numerical experiments.
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Complaints Against Trust-Region Mechanism

• Trust-region radius is heuristic.

– Radius of current trust-region based on performance of

last model minimization.

– This may constrain current model minimization.

• Iterate may be rejected.

– Wasted time spent computing potential iterate.

– It can take a number of outer iterations to adjust

trust-region radius.
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Proposal for New Trust-Region

Suggestion: Based trust-region on the current performance of

the surrogate model.

New trust-region is

{

s ∈ TxM : ρx(s) ≥ ρ′
}

, ρ′ > 0.

ρx is as before:

ρx(s) =
f(x) − f(Rxs)

mx(0) − mx(s)
.
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Implicit Riemannian Trust-Region (IRTR)

1. Given: smooth manifold M ; Riemannian metric g; smooth

cost function f on M ; retraction R from the tangent

bundle TM to M ; current iterate xk.

1b. Lift up the cost function to the tangent space TxM :

f̂x = f ◦ Rx.

2. Build a model mk(s) of f̂xk
around 0.

3. Find (approximately) a minimizer sk of the model within

the new trust-region.

4. Accept xk+1 = Rxk
sk.

5. Increment k and go to step 2.
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Solving Model Minimization in IRTR

• Use truncated CG to solve model minimization.

• New trust-region definition requires some modifications.

• Boundary test:

– Before: check ‖sj‖ ≤ ∆k

– Now: check ρxk
(sj) ≥ ρ′

• If ρxk
(sj) < ρ′:

– Compute τ such that ρxk
(sj−1 + τδj) ≥ ρ′

– This is potentially more difficult than finding

‖sj−1 + τδj‖ = ∆k.
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Required ingredients for Implicit RTR

• Manifold M , Riemannian metric g, and cost function f on

M

• Practical expression for Txk
M

• Retraction Rxk
: Txk

M → M

• Function f̂xk
(s) := f(Rxk

(s))

• Gradient grad f̂xk
(0)

• Hessian Hess f̂xk
(0)

• Trust-region test: ρxk
(s)

• Trust-region search: find τ s.t. ρxk
(s + τδ) = ρ′
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Convergence Results of IRTR

• The trust-region definition is very strong.

• As a result, standard TR global convergence results follow

easily.

• Global Convergence of IRTR for ESGEV: Let {yk} be a

sequence of iterates produced via IRTR-tCG with

ρ′ ∈ (0, 1). Then

lim
k→∞

‖gradf(yk)‖2 = 0.

• The local convergence results have not yet been adapted

from the RTR to the IRTR. Also, the global convergence

results have yet to be adapted to a general IRTR.
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Outline

• Review: RTR method for Extreme SGEVP.

• Review: Adaptive Model RTR.

• Implicit Riemannian Trust-Region method.

– Description.

– Convergence results.

• IRTR for Extreme SGEVP.
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– Numerical experiments.
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IRTR for the Extreme SGEVP

As with RTR for Extreme SGEVP:

1. Manifold: Grassman, represented as Y ∈ Rn×p, Y T BY = I

2. Tangent space: TY M = {Z ∈ Rn×p : Y T BZ = 0}.

3. Metric: gY (Za, Zb) = tr
(

ZT
a Zb

)

.

4. Retraction: RY (Z) = (Y + Z)M , M for

B-orthonormalization

5. Cost function: f(Y ) = tr
(

(Y T BY )−1(Y T AY )
)

.
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IRTR for the Extreme SGEVP (2)

Therefore, cost function f̂Y is

f̂Y (S) = tr
(

(I + ST BS)−1(Y + S)T A(Y + S)
)

grad f̂Y (0) = PBY,BY AY

Hess f̂Y (0)[S] = PBY (AS − BSY T AY )

Newton model of f̂Y is

mY (S) = tr
(

Y T AY
)

+ 2tr
(

ST AY
)

+ tr
(

ST (AS − BSY T AY )
)
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Case p = 1

If p = 1, then ρy(s) =
f̂y(0)−f̂y(s)

my(0)−my(s) = 1
1+sT Bs

.

• Checking trust-region inclusion requires checking ‖s‖B

• Solving ρy along a tangent vector has an analytical

solution: τ s.t. ρy(s + τδ) = ρ′ given by

τ =
−δT Bs +

√

(δT Bs)2 + δT Bδ(∆2
ρ′ − sT Bs)

δT Bδ

∆ρ′ =

√

1

ρ′
− 1

• IRTR for p = 1 ESGEV is straightforward.
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Implications for RTR

• Implications for RTR-ESGEV when p = 1, B = I, no

preconditioning.

– In this case, TR defined by ‖s‖2 = ‖s‖B ≤ ∆k

• If 1√
3

< ∆k <
√

3, then

– ρyk
(sk) > 1

4 ⇒ iterate is acceptable!

– ∆k+1 = ∆k ⇒ trust-region radius is maintained!

• Properly chosen ∆0 guarantees model performance.

Even without preconditioner or B 6= I, IRTR recommended.
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Case p > 1

ρY (S) =
tr
(

(I + ST BS)−1(ST BS(Y T AY ) − 2ST AY − ST AS)
)

tr (ST BS(Y T AY ) − 2ST AY − ST AS)

Assume that Y T BY = I and Y T AY = Σ. Then

mY (S) = tr
(

Y T AY + 2ST AY + ST (AS − BSY T AY )
)

=

p
∑

i=1

(

σi + 2sT
i Ayi + sT

i (Asi − Bsiσi)
)

=

p
∑

i=1

myi
(si).
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Case p > 1

• The p > 1 model mY (S) can be decoupled into p “scalar”

models, for which we have a formula for ρ.

• The block algorithm runs p simultaneous tCG algorithms.

• All processes are stopped if any satisfies a stopping

criterion.

• Global convergence is still guaranteed.

• But ρY (S) ¤ ρ′: not a true IRTR!
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Outer Criterion Monitoring

• Last call to tCG often performs more work than necessary

to satisfy outer stopping criterion.

• Problem is typical for methods employing an inner

iteration.

• Solution is (occasionally) compute outer residual in inner

iteration, check stopping criterion.

• Similar to suggestion in [Not02], except we have no efficient

formula for the residual norm.
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EXP: Monitoring Outer Stopping Criterion (1)
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EXP: Monitoring Outer Stopping Criterion (2)
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EXP: IRTR vs. RTR
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EXP: IRTR vs. RTR
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Goal of IRTR

• Combined with SA, IRTR switches between optimizing on

TM and M .

• Take-home idea: Break down the barrier between inner

and outer iteration:

– Outer criterion monitoring stops when iteration is

ultimately satisfied; always maintain awareness of outer

error

– Base trust-region on the performance of surrogate

model; always maintain awareness of cost function

• Both ideas touched on in [Not02].

• Reduce all TR parameters to one: ρ′
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Future Work

• Formulation of a true block IRTR for Extreme SGEVP.

• Convergence results of IRTR for general (M, g, R, f)

• Application of IRTR to other NLA problems.

• Explore affect of ρ′ parameter.

• Look at adaptive model mechanism for IRTR.
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THE END
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Algorithm 1 (Prec. Truncated CG for IRTR)

Set s0 = 0, r0 = gradf̂y, z0 = M−1r0, d0 = −z0

for j = 0, 1, 2, . . .

Check inner stopping criterion

Check δT
j Hy[δj ]

Compute τ ≥ 0 s.t. s = sj + τδj satisfies ρy(s) = ρ′; return s

Set αj = (zT
j rj)/(δT

j Hy[δj ])

Set sj+1 = sj + αjδj

if ρy(sj+1) < ρ′

Compute τ ≥ 0 s.t. s = sj + τδj satisfies ρy(s) = ρ′; return s

Check outer stopping criterion

Set rj+1 = rj + αjHy[δj ]

Set zj+1 = M−1rj+1

Set βj+1 = (zT
j+1rj+1)/(zT

j rj)

Set δj+1 = −zj+1 + βj+1δj

end.
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