ITR Project Meeting, March 25, 2006

Kyle A. Gallivan
Christopher G. Baker
Pierre-Antoine Absil
School of Computational Science,
Florida State University

Collaboration with Ahmed Sameh and Danny Sorensen

List of projects

- Symmetric Generalized Eigenvalue Problem
- Trust-region methods on Riemannian manifolds
- Low-rank Incremental SVD methods (with Danny Sorensen)
- Multi-pass algorithms for increased accuracy and confidence

Implicit Riemannian Trust-Region Method for the symmetric generalized eigenproblem

Christopher G. Baker
Pierre-Antoine Absil

Kyle A. Gallivan

School of Computational Science, Florida State University
Département d'ingénierie mathématique, Université Catholique de Louvain

These slides and related documents are available at http://www.csit.fsu.edu/~cbaker/Publi/SGEVP_IRTR.htm

Outline

- Review: RTR method for Extreme SGEVP.
- Review: Adaptive Model RTR.
- Implicit Riemannian Trust-Region method.
- Description.
- Convergence results.
- IRTR for Extreme SGEVP.
- Algorithm details.
- Numerical experiments.

Trust-region methods on Riemannian manifolds

1. Given: smooth manifold M; Riemannian metric g; smooth cost function f on M; retraction R from the tangent bundle $T M$ to M; current iterate x_{k}.
1b. Lift up the cost function to the tangent space $T_{x} M$:

$$
\hat{f}_{x}=f \circ R_{x}
$$

2. Build a model $m_{k}(s)$ of $\hat{f}_{x_{k}}$ around 0 .
3. Find (up to some precision) a minimizer s_{k} of the model within a "trust-region", i.e., a ball of radius Δ_{k} around x_{k}.

Trust-region methods on Riemannian manifolds (cont'd)

4. Compute the ratio

$$
\rho=\frac{f\left(x_{k}\right)-f\left(R_{x_{k}} s_{k}\right)}{m_{k}(0)-m_{k}\left(s_{k}\right)}
$$

to compare the actual value of the cost function at the proposed new iterate with the value predicted by the model.
5. Shrink, enlarge or keep the trust-region radius according to the value of ρ.
6. Accept or reject the proposed new iterate $R_{x_{k}} s_{k}$ according to the value of ρ.
7. Increment k and go to step 2.

Required ingredients for Riemannian TR

- Manifold M, Riemannian metric g, and cost function f on M.
- Practical expression for $T_{x_{k}} M$.
- Retraction $R_{x_{k}}: T_{x_{k}} M \rightarrow M$.
- Function $\hat{f}_{x_{k}}(s):=f\left(R_{x_{k}}(s)\right)$.
- Gradient grad $\hat{f}_{x_{k}}(0)$.
- Hessian Hess $\hat{f}_{x_{k}}(0)$.

ESGEV: The optimization problem

Given: $n \times n$ pencil $(A, B), A=A^{T}, B=B^{T} \succ 0$,

$$
\begin{aligned}
A v_{i} & =B v_{i} \lambda_{i}, \quad i=1, \ldots, n \\
v_{i}^{T} B v_{j} & =\delta_{i j} \quad \lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}
\end{aligned}
$$

Problem: compute the "leftmost" eigenspace

$$
\mathcal{V}:=\operatorname{col}\left(v_{1}, \ldots, v_{p}\right)
$$

Solution: \mathcal{V} satisfies

$$
\begin{gathered}
\mathcal{V}=\underset{\mathcal{Y} \in \operatorname{Grass}(p, n)}{\arg \min } f(\mathcal{Y}), \quad \text { where } \\
f: \operatorname{Grass}(p, n) \rightarrow \mathbb{R}: \operatorname{col}(Y) \mapsto \operatorname{tr}\left(\left(Y^{T} B Y\right)^{-1} Y^{T} A Y\right) .
\end{gathered}
$$

Trust-region for Extreme SGEVP: principles

Ingredients of the RTR method for ESGEV [ABG06]:

1. Manifold: $M=\left\{p-\right.$ dimensional subspaces of $\left.\mathbb{R}^{n}\right\}$ (Grassmann manifold).
2. Representations: \mathcal{Y} represented by any $Y \in \mathbb{R}^{n \times p}: \operatorname{col}(Y)=\mathcal{Y}$.
3. Tangent space: formally, $T_{Y} M=\left\{Z \in \mathbb{R}^{n \times p}: Y^{T} B Z=0\right\}$.
4. Metric: formally, $g_{Y}\left(Z_{a}, Z_{b}\right)=\operatorname{tr}\left(\left(Y^{T} B Y\right)^{-1} Z_{a}^{T} Z_{b}\right)$.

Trust-region for Extreme SGEVP: principles (2)

5. Retraction: formally, $R_{Y}(Z)=(Y+Z) M$, where arbitrary M serves for normalization.
6. Cost function: formally, $f(Y)=\operatorname{tr}\left(\left(Y^{T} B Y\right)^{-1}\left(Y^{T} A Y\right)\right)$. Underlying fact: $\left[\begin{array}{lll}v_{1} & \ldots & v_{p}\end{array}\right] M$ minimizes f for all M invertible.

Trust-region for Extreme SGEVP: details

Lifted cost function:

$$
\begin{aligned}
\hat{f}_{Y}(Z)= & f\left(R_{Y}(Z)\right)=\operatorname{tr}\left(\left((Y+Z)^{T} B(Y+Z)\right)^{-1}(Y+Z)^{T} A(Y+Z)\right) \\
= & \operatorname{tr}\left(\left(Y^{T} B Y\right)^{-1} Y^{T} A Y\right)+2 \operatorname{tr}\left(\left(Y^{T} B Y\right)^{-1} Z^{T} A Y\right) \\
& +\operatorname{tr}\left(\left(Y^{T} B Y\right)^{-1} Z^{T}\left(A Z-B Z\left(Y^{T} A Y\right)\right)\right)+H O T \\
= & \operatorname{tr}\left(\left(Y^{T} B Y\right)^{-1} Y^{T} A Y\right)+2 \operatorname{tr}\left(\left(Y^{T} B Y\right)^{-1} Z^{T} P_{B Y, B Y} A Y\right) \\
& +\operatorname{tr}\left(\left(Y^{T} B Y\right)^{-1} Z^{T} P_{B Y, B Y}\left(A Z-B Z\left(Y^{T} A Y\right)\right)\right)+H O T,
\end{aligned}
$$

where $P_{B Y, B Y}=I-B Y\left(Y^{T} B^{2} Y\right)^{-1} Y^{T} B$.

Trust-region for Extreme SGEVP: details (2)

The second order approximation of $\hat{f}_{Y}(Z)$ is thus

$$
\begin{aligned}
m_{Y}(Z)= & f(Y)+g_{Y}(\operatorname{grad} f(Y), Z)+\frac{1}{2} g_{Y}\left(\mathcal{H}_{Y} Z, Z\right) \\
= & \operatorname{tr}\left(\left(Y^{T} B Y\right)^{-1} Y^{T} A Y\right)+2 \operatorname{tr}\left(\left(Y^{T} B Y\right)^{-1} Z^{T} A Y\right) \\
& +\operatorname{tr}\left(\left(Y^{T} B Y\right)^{-1} Z^{T}\left(A Z-B Z\left(Y^{T} B Y\right)^{-1} Y^{T} A Y\right)\right) .
\end{aligned}
$$

Compute an approximate minimizer \tilde{Z} using truncated CG [CGT00]
Update: $Y_{+}=R_{Y}(\tilde{Z})=(Y+\tilde{Z}) M$.

Outline

- Review: RTR method for Extreme SGEVP.
- Review: Adaptive Model RTR.
- Implicit Riemannian Trust-Region method.
- Description.
- Convergence results.
- IRTR for Extreme SGEVP.
- Algorithm details.
- Numerical experiments.

A hybrid Tracemin / TR method

Collaboration with Ahmed Sameh.

- Problem: Trust-region confinement may hamper efficient preconditioning far away from the solution.
\leadsto Use preconditioned Basic Tracemin [SW82, ST00] in Phase I.
- Problem: Close to the solution, Basin Tracemin is linear. \leadsto Use TR method in Phase II.

Adaptive Model RTR

The method can be described in an Adaptive Model RTR framework [ABGS05].

- Phase I:
- Use a model Hessian $P_{B X, B X} A P_{B X, B X}$
- Set trust-region radius to infinity.
- Phase II:
- Use model Hessian Hess $\hat{f}_{X}[S]=P_{B X, B X}\left(A S-B S X^{T} A X\right)$
- Finite trust-region radius and $\rho^{\prime} \in(0,1)$.

EXP: Adaptive Model RTR

Calgary Saddledome, BCSST24; $n=3562$; precond. with exact factorization of A after symamd; $p=5$.

Adaptive Model RTR

- Method inherits the global convergence of constituent methods.
- The switching criterion affects efficiency only.
- Potential efficiency greater than constituents.
- Take-home idea: Framing the method as a model trust-region optimization allows us to choose best suited model at different points in the computation.

Outline

- Review: RTR method for Extreme SGEVP.
- Review: Adaptive Model RTR.
- Implicit Riemannian Trust-Region method.
- Description.
- Convergence results.
- IRTR for Extreme SGEVP.
- Algorithm details.
- Numerical experiments.

Complaints Against Trust-Region Mechanism

- Trust-region radius is heuristic.
- Radius of current trust-region based on performance of last model minimization.
- This may constrain current model minimization.
- Iterate may be rejected.
- Wasted time spent computing potential iterate.
- It can take a number of outer iterations to adjust trust-region radius.

Proposal for New Trust-Region

Suggestion: Based trust-region on the current performance of the surrogate model.

New trust-region is

$$
\left\{s \in T_{x} M: \rho_{x}(s) \geq \rho^{\prime}\right\}, \quad \rho^{\prime}>0 .
$$

ρ_{x} is as before:

$$
\rho_{x}(s)=\frac{f(x)-f\left(R_{x} s\right)}{m_{x}(0)-m_{x}(s)} .
$$

Implicit Riemannian Trust-Region (IRTR)

1. Given: smooth manifold M; Riemannian metric g; smooth cost function f on M; retraction R from the tangent bundle $T M$ to M; current iterate x_{k}.
1b. Lift up the cost function to the tangent space $T_{x} M$:

$$
\hat{f}_{x}=f \circ R_{x}
$$

2. Build a model $m_{k}(s)$ of $\hat{f}_{x_{k}}$ around 0 .
3. Find (approximately) a minimizer s_{k} of the model within the new trust-region.
4. Accept $x_{k+1}=R_{x_{k}} s_{k}$.
5. Increment k and go to step 2.

Solving Model Minimization in IRTR

- Use truncated CG to solve model minimization.
- New trust-region definition requires some modifications.
- Boundary test:
- Before: check $\left\|s^{j}\right\| \leq \Delta_{k}$
- Now: check $\rho_{x_{k}}\left(s^{j}\right) \geq \rho^{\prime}$
- If $\rho_{x_{k}}\left(s^{j}\right)<\rho^{\prime}$:
- Compute τ such that $\rho_{x_{k}}\left(s^{j-1}+\tau \delta_{j}\right) \geq \rho^{\prime}$
- This is potentially more difficult than finding $\left\|s^{j-1}+\tau \delta_{j}\right\|=\Delta_{k}$.

Required ingredients for Implicit RTR

- Manifold M, Riemannian metric g, and cost function f on M
- Practical expression for $T_{x_{k}} M$
- Retraction $R_{x_{k}}: T_{x_{k}} M \rightarrow M$
- Function $\hat{f}_{x_{k}}(s):=f\left(R_{x_{k}}(s)\right)$
- Gradient grad $\hat{f}_{x_{k}}(0)$
- Hessian Hess $\hat{f}_{x_{k}}(0)$
- Trust-region test: $\rho_{x_{k}}(s)$
- Trust-region search: find τ s.t. $\rho_{x_{k}}(s+\tau \delta)=\rho^{\prime}$

Convergence Results of IRTR

- The trust-region definition is very strong.
- As a result, standard TR global convergence results follow easily.
- Global Convergence of IRTR for ESGEV: Let $\left\{y_{k}\right\}$ be a sequence of iterates produced via IRTR-tCG with $\rho^{\prime} \in(0,1)$. Then

$$
\lim _{k \rightarrow \infty}\left\|\operatorname{grad} f\left(y_{k}\right)\right\|_{2}=0
$$

- The local convergence results have not yet been adapted from the RTR to the IRTR. Also, the global convergence results have yet to be adapted to a general IRTR.

Outline

- Review: RTR method for Extreme SGEVP.
- Review: Adaptive Model RTR.
- Implicit Riemannian Trust-Region method.
- Description.
- Convergence results.
- IRTR for Extreme SGEVP.
- Algorithm details.
- Numerical experiments.

IRTR for the Extreme SGEVP

As with RTR for Extreme SGEVP:

1. Manifold: Grassman, represented as $Y \in \mathbb{R}^{n \times p}, Y^{T} B Y=I$
2. Tangent space: $T_{Y} M=\left\{Z \in \mathbb{R}^{n \times p}: Y^{T} B Z=0\right\}$.
3. Metric: $g_{Y}\left(Z_{a}, Z_{b}\right)=\operatorname{tr}\left(Z_{a}^{T} Z_{b}\right)$.
4. Retraction: $R_{Y}(Z)=(Y+Z) M, M$ for B-orthonormalization
5. Cost function: $f(Y)=\operatorname{tr}\left(\left(Y^{T} B Y\right)^{-1}\left(Y^{T} A Y\right)\right)$.

IRTR for the Extreme SGEVP (2)

Therefore, cost function \hat{f}_{Y} is

$$
\begin{aligned}
\hat{f}_{Y}(S) & =\operatorname{tr}\left(\left(I+S^{T} B S\right)^{-1}(Y+S)^{T} A(Y+S)\right) \\
\operatorname{grad} \hat{f}_{Y}(0) & =P_{B Y, B Y} A Y \\
\text { Hess } \hat{f}_{Y}(0)[S] & =P_{B Y}\left(A S-B S Y^{T} A Y\right)
\end{aligned}
$$

Newton model of \hat{f}_{Y} is

$$
m_{Y}(S)=\operatorname{tr}\left(Y^{T} A Y\right)+2 \operatorname{tr}\left(S^{T} A Y\right)+\operatorname{tr}\left(S^{T}\left(A S-B S Y^{T} A Y\right)\right)
$$

$$
\text { Case } p=1
$$

If $p=1$, then $\rho_{y}(s)=\frac{\hat{f}_{y}(0)-\hat{f}_{y}(s)}{m_{y}(0)-m_{y}(s)}=\frac{1}{1+s^{T} B s}$.

- Checking trust-region inclusion requires checking $\|s\|_{B}$
- Solving ρ_{y} along a tangent vector has an analytical solution: τ s.t. $\rho_{y}(s+\tau \delta)=\rho^{\prime}$ given by

$$
\begin{aligned}
\tau & =\frac{-\delta^{T} B s+\sqrt{\left(\delta^{T} B s\right)^{2}+\delta^{T} B \delta\left(\Delta_{\rho^{\prime}}^{2}-s^{T} B s\right)}}{\delta^{T} B \delta} \\
\Delta_{\rho^{\prime}} & =\sqrt{\frac{1}{\rho^{\prime}}-1}
\end{aligned}
$$

- IRTR for $p=1$ ESGEV is straightforward.

Implications for RTR

- Implications for RTR-ESGEV when $p=1, B=I$, no preconditioning.
- In this case, TR defined by $\|s\|_{2}=\|s\|_{B} \leq \Delta_{k}$
- If $\frac{1}{\sqrt{3}}<\Delta_{k}<\sqrt{3}$, then
- $\rho_{y_{k}}\left(s_{k}\right)>\frac{1}{4} \Rightarrow$ iterate is acceptable!
$-\Delta_{k+1}=\Delta_{k} \Rightarrow$ trust-region radius is maintained!
- Properly chosen Δ_{0} guarantees model performance.

Even without preconditioner or $B \neq I$, IRTR recommended.

Case $p>1$

$\rho_{Y}(S)=\frac{\operatorname{tr}\left(\left(I+S^{T} B S\right)^{-1}\left(S^{T} B S\left(Y^{T} A Y\right)-2 S^{T} A Y-S^{T} A S\right)\right)}{\operatorname{tr}\left(S^{T} B S\left(Y^{T} A Y\right)-2 S^{T} A Y-S^{T} A S\right)}$
Assume that $Y^{T} B Y=I$ and $Y^{T} A Y=\Sigma$. Then

$$
\begin{aligned}
m_{Y}(S) & =\operatorname{tr}\left(Y^{T} A Y+2 S^{T} A Y+S^{T}\left(A S-B S Y^{T} A Y\right)\right) \\
& =\sum_{i=1}^{p}\left(\sigma_{i}+2 s_{i}^{T} A y_{i}+s_{i}^{T}\left(A s_{i}-B s_{i} \sigma_{i}\right)\right) \\
& =\sum_{i=1}^{p} m_{y_{i}}\left(s_{i}\right)
\end{aligned}
$$

$$
\text { Case } p>1
$$

- The $p>1$ model $m_{Y}(S)$ can be decoupled into p "scalar" models, for which we have a formula for ρ.
- The block algorithm runs p simultaneous tCG algorithms.
- All processes are stopped if any satisfies a stopping criterion.
- Global convergence is still guaranteed.
- But $\rho_{Y}(S) \nsupseteq \rho^{\prime}$: not a true IRTR!

Outer Criterion Monitoring

- Last call to tCG often performs more work than necessary to satisfy outer stopping criterion.
- Problem is typical for methods employing an inner iteration.
- Solution is (occasionally) compute outer residual in inner iteration, check stopping criterion.
- Similar to suggestion in [Not02], except we have no efficient formula for the residual norm.

EXP: Monitoring Outer Stopping Criterion (1)

2-D Laplacian, $n=10000$; no precond.; no subspace acceleration; $p=5$

EXP: Monitoring Outer Stopping Criterion (2)

2-D Laplacian, $n=10000$; precond. using exact factorization of A after symamd; 10-D subspace acceleration; $p=5$

EXP: IRTR vs. RTR

BCSST24; precond. with exact factorization of A after symamd; no subspace acceleration; $p=5$

EXP: IRTR vs. RTR

BCSST24; precond. with exact factorization of A after symamd; 10-D subspace acceleration; $p=5$

Goal of IRTR

- Combined with SA, IRTR switches between optimizing on $T M$ and M.
- Take-home idea: Break down the barrier between inner and outer iteration:
- Outer criterion monitoring stops when iteration is ultimately satisfied; always maintain awareness of outer error
- Base trust-region on the performance of surrogate model; always maintain awareness of cost function
- Both ideas touched on in [Not02].
- Reduce all TR parameters to one: ρ^{\prime}

Future Work

- Formulation of a true block IRTR for Extreme SGEVP.
- Convergence results of IRTR for general (M, g, R, f)
- Application of IRTR to other NLA problems.
- Explore affect of ρ^{\prime} parameter.
- Look at adaptive model mechanism for IRTR.

References

[ABG06] P.-A. Absil, C. G. Baker, and K. A. Gallivan, A truncated-CG style method for symmetric generalized eigenvalue problems, J. Comput. Appl. Math. 189 (2006), no. 1-2, 274-285.
[ABGS05] P.-A Absil, C. G. Baker, K. A. Gallivan, and A. Sameh, Adaptive model trust region methods for generalized eigenvalue problems, International Conference on Computational Science (Vaidy S. Sunderam, Geert Dick van Albada, and Peter M. A. Sloot, eds.), Lecture Notes in Compuer Science, vol. 3514, Springer-Verlag, 2005, pp. 33-41.
[CGT00] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, Trust-region methods, MPS/SIAM Series on Optimization, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, and Mathematical Programming Society (MPS), Philadelphia, PA, 2000.
[Not02] Y. Notay, Combination of Jacobi-Davidson and conjugate gradients for the partial symmetric eigenproblem, Numer. Linear Algebra Appl. 9 (2002), no. 1, 21-44.
[ST00] A. Sameh and Z. Tong, The trace minimization method for the symmetric generalized eigenvalue problem, J. Comput. Appl. Math. 123 (2000), 155-175.
[SW82] A. H. Sameh and J. A. Wisniewski, A trace minimization algorithm for the generalized eigenvalue problem, SIAM J. Numer. Anal. 19 (1982), no. 6, 1243-1259.

THE END

Algorithm 1 (Prec. Truncated CG for IRTR)

Set $s^{0}=0, r_{0}=\operatorname{grad} \hat{f}_{y}, z_{0}=M^{-1} r_{0}, d^{0}=-z_{0}$
for $j=0,1,2, \ldots$
Check inner stopping criterion
Check $\delta_{j}^{T} H_{y}\left[\delta_{j}\right]$
Compute $\tau \geq 0$ s.t. $s=s^{j}+\tau \delta_{j}$ satisfies $\rho_{y}(s)=\rho^{\prime}$; return s Set $\alpha^{j}=\left(z_{j}^{T} r_{j}\right) /\left(\delta_{j}^{T} H_{y}\left[\delta_{j}\right]\right)$
Set $s^{j+1}=s^{j}+\alpha_{j} \delta_{j}$
if $\rho_{y}\left(s^{j+1}\right)<\rho^{\prime}$
Compute $\tau \geq 0$ s.t. $s=s^{j}+\tau \delta_{j}$ satisfies $\rho_{y}(s)=\rho^{\prime} ;$ return s
Check outer stopping criterion
Set $r_{j+1}=r_{j}+\alpha^{j} H_{y}\left[\delta_{j}\right]$
Set $z_{j+1}=M^{-1} r_{j+1}$
Set $\beta^{j+1}=\left(z_{j+1}^{T} r_{j+1}\right) /\left(z_{j}^{T} r_{j}\right)$
Set $\delta_{j+1}=-z_{j+1}+\beta^{j+1} \delta_{j}$
end.

