
An Implicit Riemannian Trust-Region Method
for the Symmetric Generalized Eigenvalue

Problem

Christopher G. Baker [1,2]

Pierre-Antoine Absil [3,4]

Kyle A. Gallivan [2]

[1] Computational Mathematics and Algorithms, Sandia National Laboratories

[2] School of Computational Science, Florida State University

[3] Département d’ingénierie mathématique, Université Catholique de Louvain

[4] Peterhouse, University of Cambridge

International Conference on Computational Science 2006

Sandia is a multiprogram laboratory operated by Sandia

Corporation, a Lockheed Martin Company, for the United States

Department of Energy under contract DE-AC04-94AL85000.

Outline

• Symmetric Generalized Eigenvalue Problem

• Riemannian Trust-Region Method

• Implicit Riemannian Trust-Region Method

• Results

2

Symmetric Generalized Eigenvalue Problem

Given: n × n pencil (A, B), A = AT , B = BT � 0.

Eigenvalue λi ∈ R, eigenvector vi ∈ Rn satisfy

Avi = Bviλi, i = 1, . . . , n

λi ∈ R, vi ∈ Rn

λ1 ≤ λ2 ≤ . . . ≤ λn

Problem: Compute the eigenvectors associated with the

leftmost eigenvalues:

(vi, λi), i = 1, . . . , p

3

The Optimization Problem

V =
[

v1 . . . vp

]

is a minimizer of the generalized Rayleigh

quotient:

f(Y) = trace
(

(Y T BY)−1Y T AY
)

.

This function depends only on subspace: f(Y) = f(Y M) for

any invertible M .

⇒ Search for leftmost p eigenpairs via optimization over the set

of p-dimensional subspaces of Rn: the Grassmann manifold.

One method for this is the Riemannian Trust-Region (RTR)

method.

4

Brief Intro to RTR

The Riemannian Trust-Region method [ABG06a, ABG06b]:

• Adapts trust-region ideas from Euclidean spaces to

Riemannian manifolds;

• Preserves strong global convergence properties;

• Retains fast local convergence;

• Providing inverse-free, low-memory methods of

optimization.

5

Trust-region Methods on Riemannian Manifolds

1. Given: smooth manifold M ; Riemannian metric g; smooth

cost function f on M ; retraction R from the tangent

bundle TM to M ; current iterate xk.

1b. Lift up the cost function to the tangent space TxM :

f̂x = f ◦ Rx.

2. Build a model mk(s) of f̂xk
around 0.

3. Find (up to some precision) a minimizer sk of the model

within a “trust-region”, i.e., a ball of radius ∆k around xk.

6

Trust-Region Methods on Riemannian Manifolds (cont’d)

4. Compute the ratio

ρk =
f(xk) − f(Rxk

sk)

mk(0) − mk(sk)

to compare the actual value of the cost function at the

proposed new iterate with the value predicted by the

model.

5. Shrink, enlarge or keep the trust-region radius according to

the value of ρk.

6. Accept or reject the proposed new iterate Rxk
sk according

to the value of ρk.

7. Increment k and go to step 2.

7

Required Ingredients for Riemannian TR

• Manifold M , Riemannian metric g, and cost function f on

M .

• Practical expression for Txk
M .

• Retraction Rxk
: Txk

M → M .

• Function f̂xk
(s) := f(Rxk

s).

• Gradient grad f̂xk
(0).

• Hessian Hess f̂xk
(0).

8

Trust-Region for Extreme SGEVP: Principles

Ingredients of the RTR method for ESGEVP [ABG06a]:

1. Manifold: M = {p − dimensional subspaces of Rn}

2. Y represented by any Y ∈ Rn×p : Y T Y = I, col(Y) = Y.

3. Tangent space: TY M = {Z ∈ Rn×p : Y T BZ = 0}.

4. Metric: gY (Za, Zb) = trace
(

ZT
a Zb

)

.

5. Retraction: RY Z = (Y + Z)M

6. Cost function: f(Y) = trace
(

(Y T BY)−1(Y T AY)
)

.

9

Trust-Region for Extreme SGEVP: Details

Lifted cost function:

f̂Y (Z) = f(RY Z) = trace

„

“

(Y + Z)T
B(Y + Z)

”

−1

(Y + Z)T
A(Y + Z)

«

= trace
“

Y
T
AY

”

+ 2trace
“

Z
T
AY

”

+ trace
“

Z
T (AZ − BZY

T
AY)

”

+ HOT

The second order approximation of f̂Y (Z) is

mY (Z) = f(Y) + gY (grad f(Y), Z) +
1

2
gY (HY Z, Z)

= trace
“

Y
T
AY

”

+ 2trace
“

Z
T
AY

”

+ trace
“

Z
T

“

AZ − BZY
T
AY

””

.

Compute an approximate minimizer Z̃ using truncated

CG [CGT00]. Update: Y+ = RY Z̃ = (Y + Z̃)M .

10

Complaints Against Trust-Region Methods

• Trust-region radius is heuristic.

– Radius of current trust-region based on performance of

last model minimization.

– This may constrain current model minimization.

• Iterate may be rejected.

– Wasted time spent computing potential iterate.

– It can take a number of outer iterations to adjust

trust-region radius.

• Inner iteration may run too long on the last iteration

– As soon as outer/global stopping criterion is realized,

iteration should be stopped.

11

Proposal for New Trust-Region

Idea: Base trust-region on the current performance of mx.

Old trust-region was

{s ∈ TxM : ‖s‖ ≤ ∆k} ,∆k > 0 .

New trust-region is

{

s ∈ TxM : ρx(s) ≥ ρ′
}

, ρ′ > 0 .

ρx is as before:

ρx(s) =
f(x) − f(Rxs)

mx(0) − mx(s)
.

12

Implicit Riemannian Trust-Region (IRTR)

1. Given: smooth manifold M ; Riemannian metric g; smooth

cost function f on M ; retraction R from the tangent

bundle TM to M ; current iterate xk.

1b. Lift up the cost function to the tangent space TxM :

f̂x = f ◦ Rx.

2. Build a model mk(s) of f̂xk
around 0.

3. Find (approximately) a minimizer sk of the model within

the new trust-region.

4. Accept xk+1 = Rxk
sk.

5. Increment k and go to step 2.

13

Solving Model Minimization in IRTR

• Use truncated CG to solve model minimization.

• New trust-region definition requires some modifications.

• Boundary test:

– Before: check ‖sj‖ ≤ ∆k

– Now: check ρxk
(sj) ≥ ρ′

• If ρxk
(sj) < ρ′:

– Before: compute τ such that ‖sj−1 + τδj‖ = ∆k

– Now: Compute τ such that ρxk
(sj−1 + τδj) = ρ′

– This is potentially much more difficult.

14

Required Ingredients for Implicit RTR

• Manifold M , Riemannian metric g, and cost function f on

M

• Practical expression for Txk
M

• Retraction Rxk
: Txk

M → M

• Function f̂xk
(s) := f(Rxk

s)

• Gradient grad f̂xk
(0)

• Hessian Hess f̂xk
(0)

• Trust-region test: ρxk
(s)

• Trust-region search: find τ s.t. ρxk
(s + τδ) = ρ′

15

Convergence Results of IRTR

• The trust-region definition is very strong.

• As a result, standard TR global convergence results follow

easily.

• Global Convergence of IRTR for ESGEVP: Let {yk} be a

sequence of iterates produced via IRTR-tCG with

ρ′ ∈ (0, 1). Then

lim
k→∞

‖gradf(yk)‖ = 0.

• The local convergence theory should be easily adaptable

from RTR to IRTR.

16

Extreme SGEVP: p = 1

If p = 1, then ρy(s) =
f̂y(0)−f̂y(s)

my(0)−my(s) = 1
1+sT Bs

.

• Checking trust-region inclusion requires checking ‖s‖B

• Solving ρy along a tangent vector has an analytical

solution: τ s.t. ρy(s + τδ) = ρ′ given by

τ =
−δT Bs +

√

(δT Bs)2 + δT Bδ(∆2
ρ′ − sT Bs)

δT Bδ

∆ρ′ =

√

1

ρ′
− 1

• IRTR for p = 1 ESGEVP is straightforward.

17

Case p > 1

ρY (S) =
trace

(

(I + ST BS)−1(ST BS(Y T AY) − 2ST AY − ST AS)
)

trace (ST BS(Y T AY) − 2ST AY − ST AS)

Assume that Y T BY = I and Y T AY = Σ. Then

mY (S) = trace
(

Y T AY + 2ST AY + ST (AS − BSY T AY)
)

=

p
∑

i=1

(

σi + 2sT
i Ayi + sT

i (Asi − Bsiσi)
)

=

p
∑

i=1

myi
(si).

18

Case p > 1

• The p > 1 model mY (S) can be decoupled into p “scalar”

models, for which we have a formula for ρ.

• The block algorithm runs p simultaneous tCG algorithms.

• All processes are stopped if any satisfies a stopping

criterion.

• Global convergence is still guaranteed.

• But ρY (S) � ρ′: not a true IRTR!

19

Outer Criterion Monitoring

• Last call to tCG often performs more work than necessary

to satisfy outer stopping criterion.

• Problem is typical for methods employing an inner

iteration.

• Solution is (occasionally) compute outer residual in inner

iteration, check stopping criterion.

• Similar to suggestion in [Not02], except we have no efficient

formula for the residual norm.

20

EXP: Monitoring Outer Stopping Criterion

0 20 40 60 80 100 120 140 160 180
10

−15

10
−10

10
−5

10
0

10
5

matvecs (A*x)

no
rm

f(g
ra

d)

ITR vs. RTR: Preconditioned + SA

RTR (no outer stop)
RTR (outer stop)
ITR .95 (outer stop)

2-D Laplacian, n = 10000; precond. using exact factorization of A after

symamd; 10-D subspace acceleration; p = 5

21

EXP: IRTR vs. RTR

0 50 100 150 200 250 300 350
10

−2

10
0

10
2

10
4

10
6

10
8

10
10

10
12

matvecs (A*x)

no
rm

f(g
ra

d)

ITR vs. RTR: Preconditioned

RTR
ITR .10
ITR .25
ITR .50
ITR .75
ITR .90
ITR .95
ITR .99
ITR .999

BCSST24; precond. with exact factorization of A after symamd; no

subspace acceleration; p = 5

22

EXP: IRTR vs. RTR

0 20 40 60 80 100 120 140 160 180
10

−2

10
0

10
2

10
4

10
6

10
8

10
10

10
12

matvecs (A*x)

no
rm

f(g
ra

d)

ITR vs. RTR: Preconditioned + SA

RTR
ITR .10
ITR .25
ITR .50
ITR .75
ITR .90
ITR .95
ITR .99
ITR .999

BCSST24; precond. with exact factorization of A after symamd; 10-D

subspace acceleration; p = 5

23

Summary

• Take-home idea: Break down the barrier between inner

and outer iteration:

– Outer criterion monitoring stops when iteration is

ultimately satisfied; always maintain awareness of outer

error

– Base trust-region on the performance of surrogate

model; always maintain awareness of cost function

• Result: Globally convergent, block eigensolver with

superlinear local convergence; more efficient than the RTR.

24

References

[ABG06a] P.-A. Absil, C. G. Baker, and K. A. Gallivan, A truncated-CG

style method for symmetric generalized eigenvalue problems, J.

Comput. Appl. Math. 189 (2006), no. 1–2, 274–285.

[ABG06b] P.-A Absil, C. G. Baker, and K. A. Gallivan, Trust-region

methods on Riemannian manifolds, to be published in

Foundations of Computational Mathematics.

[CGT00] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, Trust-region

methods, MPS/SIAM Series on Optimization, Society for

Industrial and Applied Mathematics (SIAM), Philadelphia,

PA, and Mathematical Programming Society (MPS),

Philadelphia, PA, 2000.

[Not02] Y. Notay, Combination of Jacobi-Davidson and conjugate

gradients for the partial symmetric eigenproblem, Numer.

Linear Algebra Appl. 9 (2002), no. 1, 21–44.

25

THE END

26

Algorithm 1 (Prec. Truncated CG for IRTR)

Set s0 = 0, r0 = gradf̂y, z0 = M−1r0, d0 = −z0

for j = 0, 1, 2, . . .

Check inner stopping criterion

Check δT
j Hy[δj]

Compute τ ≥ 0 s.t. s = sj + τδj satisfies ρy(s) = ρ′; return s

Set αj = (zT
j rj)/(δT

j Hy[δj])

Set sj+1 = sj + αjδj

if ρy(sj+1) < ρ′

Compute τ ≥ 0 s.t. s = sj + τδj satisfies ρy(s) = ρ′; return s

Check outer stopping criterion

Set rj+1 = rj + αjHy[δj]

Set zj+1 = M−1rj+1

Set βj+1 = (zT
j+1rj+1)/(zT

j rj)

Set δj+1 = −zj+1 + βj+1δj

end.

27

