An Implicit Riemannian Trust-Region Method for the Symmetric Generalized Eigenvalue Problem

Christopher G. Baker [1,2]
Pierre-Antoine Absil [3,4]
Kyle A. Gallivan [2]

[1] Computational Mathematics and Algorithms, Sandia National Laboratories
[2] School of Computational Science, Florida State University
[3] Département d'ingénierie mathématique, Université Catholique de Louvain
[4] Peterhouse, University of Cambridge

International Conference on Computational Science 2006

Outline

- Symmetric Generalized Eigenvalue Problem
- Riemannian Trust-Region Method
- Implicit Riemannian Trust-Region Method
- Results

Symmetric Generalized Eigenvalue Problem

Given: $n \times n$ pencil $(A, B), A=A^{T}, B=B^{T} \succ 0$.
Eigenvalue $\lambda_{i} \in \mathbb{R}$, eigenvector $v_{i} \in \mathbb{R}^{n}$ satisfy

$$
\begin{gathered}
A v_{i}=B v_{i} \lambda_{i}, \quad i=1, \ldots, n \\
\lambda_{i} \in \mathbb{R}, \quad v_{i} \in \mathbb{R}^{n} \\
\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}
\end{gathered}
$$

Problem: Compute the eigenvectors associated with the leftmost eigenvalues:

$$
\left(v_{i}, \lambda_{i}\right), \quad i=1, \ldots, p
$$

The Optimization Problem

$V=\left[\begin{array}{lll}v_{1} & \ldots & v_{p}\end{array}\right]$ is a minimizer of the generalized Rayleigh quotient:

$$
f(Y)=\operatorname{trace}\left(\left(Y^{T} B Y\right)^{-1} Y^{T} A Y\right)
$$

This function depends only on subspace: $f(Y)=f(Y M)$ for any invertible M.
\Rightarrow Search for leftmost p eigenpairs via optimization over the set of p-dimensional subspaces of \mathbb{R}^{n} : the Grassmann manifold. One method for this is the Riemannian Trust-Region (RTR) method.

Brief Intro to RTR

The Riemannian Trust-Region method [ABG06a, ABG06b]:

- Adapts trust-region ideas from Euclidean spaces to Riemannian manifolds;
- Preserves strong global convergence properties;
- Retains fast local convergence;
- Providing inverse-free, low-memory methods of optimization.

Trust-region Methods on Riemannian Manifolds

1. Given: smooth manifold M; Riemannian metric g; smooth cost function f on M; retraction R from the tangent bundle $T M$ to M; current iterate x_{k}.
1b. Lift up the cost function to the tangent space $T_{x} M$:

$$
\hat{f}_{x}=f \circ R_{x}
$$

2. Build a model $m_{k}(s)$ of $\hat{f}_{x_{k}}$ around 0 .
3. Find (up to some precision) a minimizer s_{k} of the model within a "trust-region", i.e., a ball of radius Δ_{k} around x_{k}.

Trust-Region Methods on Riemannian Manifolds (cont'd)

4. Compute the ratio

$$
\rho_{k}=\frac{f\left(x_{k}\right)-f\left(R_{x_{k}} s_{k}\right)}{m_{k}(0)-m_{k}\left(s_{k}\right)}
$$

to compare the actual value of the cost function at the proposed new iterate with the value predicted by the model.
5. Shrink, enlarge or keep the trust-region radius according to the value of ρ_{k}.
6. Accept or reject the proposed new iterate $R_{x_{k}} s_{k}$ according to the value of ρ_{k}.
7. Increment k and go to step 2.

Required Ingredients for Riemannian TR

- Manifold M, Riemannian metric g, and cost function f on M.
- Practical expression for $T_{x_{k}} M$.
- Retraction $R_{x_{k}}: T_{x_{k}} M \rightarrow M$.
- Function $\hat{f}_{x_{k}}(s):=f\left(R_{x_{k}} s\right)$.
- Gradient grad $\hat{f}_{x_{k}}(0)$.
- Hessian Hess $\hat{f}_{x_{k}}(0)$.

Trust-Region for Extreme SGEVP: Principles

Ingredients of the RTR method for ESGEVP [ABG06a]:

1. Manifold: $M=\left\{p\right.$ - dimensional subspaces of $\left.\mathbb{R}^{n}\right\}$
2. \mathcal{Y} represented by any $Y \in \mathbb{R}^{n \times p}: Y^{T} Y=I, \operatorname{col}(Y)=\mathcal{Y}$.
3. Tangent space: $T_{Y} M=\left\{Z \in \mathbb{R}^{n \times p}: Y^{T} B Z=0\right\}$.
4. Metric: $g_{Y}\left(Z_{a}, Z_{b}\right)=\operatorname{trace}\left(Z_{a}^{T} Z_{b}\right)$.
5. Retraction: $R_{Y} Z=(Y+Z) M$
6. Cost function: $f(Y)=\operatorname{trace}\left(\left(Y^{T} B Y\right)^{-1}\left(Y^{T} A Y\right)\right)$.

Trust-Region for Extreme SGEVP: Details

Lifted cost function:

$$
\begin{aligned}
\hat{f}_{Y}(Z) & =f\left(R_{Y} Z\right)=\operatorname{trace}\left(\left((Y+Z)^{T} B(Y+Z)\right)^{-1}(Y+Z)^{T} A(Y+Z)\right) \\
& =\operatorname{trace}\left(Y^{T} A Y\right)+2 \operatorname{trace}\left(Z^{T} A Y\right)+\operatorname{trace}\left(Z^{T}\left(A Z-B Z Y^{T} A Y\right)\right)+H O T
\end{aligned}
$$

The second order approximation of $\hat{f}_{Y}(Z)$ is

$$
\begin{aligned}
m_{Y}(Z) & =f(Y)+g_{Y}(\operatorname{grad} f(Y), Z)+\frac{1}{2} g_{Y}\left(\mathcal{H}_{Y} Z, Z\right) \\
& =\operatorname{trace}\left(Y^{T} A Y\right)+2 \operatorname{trace}\left(Z^{T} A Y\right)+\operatorname{trace}\left(Z^{T}\left(A Z-B Z Y^{T} A Y\right)\right) .
\end{aligned}
$$

Compute an approximate minimizer \tilde{Z} using truncated CG [CGT00]. Update: $Y_{+}=R_{Y} \tilde{Z}=(Y+\tilde{Z}) M$.

Complaints Against Trust-Region Methods

- Trust-region radius is heuristic.
- Radius of current trust-region based on performance of last model minimization.
- This may constrain current model minimization.
- Iterate may be rejected.
- Wasted time spent computing potential iterate.
- It can take a number of outer iterations to adjust trust-region radius.
- Inner iteration may run too long on the last iteration
- As soon as outer/global stopping criterion is realized, iteration should be stopped.

Proposal for New Trust-Region

Idea: Base trust-region on the current performance of m_{x}.
Old trust-region was

$$
\left\{s \in T_{x} M:\|s\| \leq \Delta_{k}\right\}, \Delta_{k}>0
$$

New trust-region is

$$
\left\{s \in T_{x} M: \rho_{x}(s) \geq \rho^{\prime}\right\}, \quad \rho^{\prime}>0
$$

ρ_{x} is as before:

$$
\rho_{x}(s)=\frac{f(x)-f\left(R_{x} s\right)}{m_{x}(0)-m_{x}(s)} .
$$

Implicit Riemannian Trust-Region (IRTR)

1. Given: smooth manifold M; Riemannian metric g; smooth cost function f on M; retraction R from the tangent bundle $T M$ to M; current iterate x_{k}.
1b. Lift up the cost function to the tangent space $T_{x} M$:

$$
\hat{f}_{x}=f \circ R_{x}
$$

2. Build a model $m_{k}(s)$ of $\hat{f}_{x_{k}}$ around 0 .
3. Find (approximately) a minimizer s_{k} of the model within the new trust-region.
4. Accept $x_{k+1}=R_{x_{k}} s_{k}$.
5. Increment k and go to step 2.

Solving Model Minimization in IRTR

- Use truncated CG to solve model minimization.
- New trust-region definition requires some modifications.
- Boundary test:
- Before: check $\left\|s^{j}\right\| \leq \Delta_{k}$
- Now: check $\rho_{x_{k}}\left(s^{j}\right) \geq \rho^{\prime}$
- If $\rho_{x_{k}}\left(s^{j}\right)<\rho^{\prime}$:
- Before: compute τ such that $\left\|s^{j-1}+\tau \delta_{j}\right\|=\Delta_{k}$
- Now: Compute τ such that $\rho_{x_{k}}\left(s^{j-1}+\tau \delta_{j}\right)=\rho^{\prime}$
- This is potentially much more difficult.

Required Ingredients for Implicit RTR

- Manifold M, Riemannian metric g, and cost function f on M
- Practical expression for $T_{x_{k}} M$
- Retraction $R_{x_{k}}: T_{x_{k}} M \rightarrow M$
- Function $\hat{f}_{x_{k}}(s):=f\left(R_{x_{k}} s\right)$
- Gradient grad $\hat{f}_{x_{k}}(0)$
- Hessian Hess $\hat{f}_{x_{k}}(0)$
- Trust-region test: $\rho_{x_{k}}(s)$
- Trust-region search: find τ s.t. $\rho_{x_{k}}(s+\tau \delta)=\rho^{\prime}$

Convergence Results of IRTR

- The trust-region definition is very strong.
- As a result, standard TR global convergence results follow easily.
- Global Convergence of IRTR for ESGEVP: Let $\left\{y_{k}\right\}$ be a sequence of iterates produced via IRTR-tCG with $\rho^{\prime} \in(0,1)$. Then

$$
\lim _{k \rightarrow \infty}\left\|\operatorname{grad} f\left(y_{k}\right)\right\|=0
$$

- The local convergence theory should be easily adaptable from RTR to IRTR.

Extreme SGEVP: $p=1$

If $p=1$, then $\rho_{y}(s)=\frac{\hat{f}_{y}(0)-\hat{f}_{y}(s)}{m_{y}(0)-m_{y}(s)}=\frac{1}{1+s^{T} B s}$.

- Checking trust-region inclusion requires checking $\|s\|_{B}$
- Solving ρ_{y} along a tangent vector has an analytical solution: τ s.t. $\rho_{y}(s+\tau \delta)=\rho^{\prime}$ given by

$$
\begin{aligned}
\tau & =\frac{-\delta^{T} B s+\sqrt{\left(\delta^{T} B s\right)^{2}+\delta^{T} B \delta\left(\Delta_{\rho^{\prime}}^{2}-s^{T} B s\right)}}{\delta^{T} B \delta} \\
\Delta_{\rho^{\prime}} & =\sqrt{\frac{1}{\rho^{\prime}}-1}
\end{aligned}
$$

- IRTR for $p=1$ ESGEVP is straightforward.

Case $p>1$

$$
\rho_{Y}(S)=\frac{\operatorname{trace}\left(\left(I+S^{T} B S\right)^{-1}\left(S^{T} B S\left(Y^{T} A Y\right)-2 S^{T} A Y-S^{T} A S\right)\right)}{\operatorname{trace}\left(S^{T} B S\left(Y^{T} A Y\right)-2 S^{T} A Y-S^{T} A S\right)}
$$

Assume that $Y^{T} B Y=I$ and $Y^{T} A Y=\Sigma$. Then

$$
\begin{aligned}
m_{Y}(S) & =\operatorname{trace}\left(Y^{T} A Y+2 S^{T} A Y+S^{T}\left(A S-B S Y^{T} A Y\right)\right) \\
& =\sum_{i=1}^{p}\left(\sigma_{i}+2 s_{i}^{T} A y_{i}+s_{i}^{T}\left(A s_{i}-B s_{i} \sigma_{i}\right)\right) \\
& =\sum_{i=1}^{p} m_{y_{i}}\left(s_{i}\right)
\end{aligned}
$$

Case $p>1$

- The $p>1$ model $m_{Y}(S)$ can be decoupled into p "scalar" models, for which we have a formula for ρ.
- The block algorithm runs p simultaneous tCG algorithms.
- All processes are stopped if any satisfies a stopping criterion.
- Global convergence is still guaranteed.
- But $\rho_{Y}(S) \nsupseteq \rho^{\prime}$: not a true IRTR!

Outer Criterion Monitoring

- Last call to tCG often performs more work than necessary to satisfy outer stopping criterion.
- Problem is typical for methods employing an inner iteration.
- Solution is (occasionally) compute outer residual in inner iteration, check stopping criterion.
- Similar to suggestion in [Not02], except we have no efficient formula for the residual norm.

EXP: Monitoring Outer Stopping Criterion

2-D Laplacian, $n=10000$; precond. using exact factorization of A after symamd; 10-D subspace acceleration; $p=5$

EXP: IRTR vs. RTR

BCSST24; precond. with exact factorization of A after symamd; no subspace acceleration; $p=5$

EXP: IRTR vs. RTR

BCSST24; precond. with exact factorization of A after symamd; 10-D subspace acceleration; $p=5$

Summary

- Take-home idea: Break down the barrier between inner and outer iteration:
- Outer criterion monitoring stops when iteration is ultimately satisfied; always maintain awareness of outer error
- Base trust-region on the performance of surrogate model; always maintain awareness of cost function
- Result: Globally convergent, block eigensolver with superlinear local convergence; more efficient than the RTR.

References

[ABG06a] P.-A. Absil, C. G. Baker, and K. A. Gallivan, A truncated-CG style method for symmetric generalized eigenvalue problems, J. Comput. Appl. Math. 189 (2006), no. 1-2, 274-285.
[ABG06b] P.-A Absil, C. G. Baker, and K. A. Gallivan, Trust-region methods on Riemannian manifolds, to be published in Foundations of Computational Mathematics.
[CGT00] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, Trust-region methods, MPS/SIAM Series on Optimization, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, and Mathematical Programming Society (MPS), Philadelphia, PA, 2000.
[Not02] Y. Notay, Combination of Jacobi-Davidson and conjugate gradients for the partial symmetric eigenproblem, Numer. Linear Algebra Appl. 9 (2002), no. 1, 21-44.

THE END

Algorithm 1 (Prec. Truncated CG for IRTR)

Set $s^{0}=0, r_{0}=\operatorname{grad} \hat{f}_{y}, z_{0}=M^{-1} r_{0}, d^{0}=-z_{0}$
for $j=0,1,2, \ldots$
Check inner stopping criterion
Check $\delta_{j}^{T} H_{y}\left[\delta_{j}\right]$
Compute $\tau \geq 0$ s.t. $s=s^{j}+\tau \delta_{j}$ satisfies $\rho_{y}(s)=\rho^{\prime}$; return s
Set $\alpha^{j}=\left(z_{j}^{T} r_{j}\right) /\left(\delta_{j}^{T} H_{y}\left[\delta_{j}\right]\right)$
Set $s^{j+1}=s^{j}+\alpha_{j} \delta_{j}$
if $\rho_{y}\left(s^{j+1}\right)<\rho^{\prime}$
Compute $\tau \geq 0$ s.t. $s=s^{j}+\tau \delta_{j}$ satisfies $\rho_{y}(s)=\rho^{\prime}$; return s
Check outer stopping criterion
Set $r_{j+1}=r_{j}+\alpha^{j} H_{y}\left[\delta_{j}\right]$
Set $z_{j+1}=M^{-1} r_{j+1}$
Set $\beta^{j+1}=\left(z_{j+1}^{T} r_{j+1}\right) /\left(z_{j}^{T} r_{j}\right)$
Set $\delta_{j+1}=-z_{j+1}+\beta^{j+1} \delta_{j}$
end.

