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Symmetric Generalized Eigenvalue Problem

Given: n x n pencil (4,B), A= A!, B= B! - 0.
Eigenvalue \; € R, eigenvector v; € R" satisty
Avi:Bvi)\i, izl,...,n
Ai€R, v, eR”
A< A< S Ay

Problem: Compute the eigenvectors associated with the

leftmost eigenvalues:

(Uia)‘i)v 1=1,...,p



The Optimization Problem

V = [Ul L vp] is a minimizer of the generalized Rayleigh

quotient:
f(Y) =trace (Y'BY)'YTAY).

This function depends only on subspace: f(Y) = f(Y M) for
any invertible M.

= Search for leftmost p eigenpairs via optimization over the set

of p-dimensional subspaces of R™: the Grassmann manifold.

One method for this is the Riemannian Trust-Region (RTR)
method.



Brief Intro to RTR

The Riemannian Trust-Region method [ABG06a, ABGO6b|:

e Adapts trust-region ideas from Euclidean spaces to
Riemannian manifolds;

e Preserves strong global convergence properties;

e Retains fast local convergence;

e Providing inverse-free, low-memory methods of

optimization.



1b.

Trust-region Methods on Riemannian Manifolds

Given: smooth manifold M; Riemannian metric g; smooth
cost function f on M; retraction R from the tangent
bundle T'M to M; current iterate xy.

Lift up the cost function to the tangent space T, M:

fZC:fORLU'

Build a model my(s) of f,, around 0.
Find (up to some precision) a minimizer s; of the model

within a “trust-region”, i.e., a ball of radius Ay around x.



4.

Trust-Region Methods on Riemannian Manifolds (cont’'d)

Compute the ratio

_ f(@) — f(Rays)

mi(0) — mg(sg)

to compare the actual value of the cost function at the
proposed new iterate with the value predicted by the
model.

Shrink, enlarge or keep the trust-region radius according to
the value of p;.

Accept or reject the proposed new iterate R, s according
to the value of py.

Increment £ and go to step 2.



Required Ingredients for Riemannian TR

Manifold M, Riemannian metric g, and cost function f on
M.

Practical expression for T, M.

Retraction Ry, : T, M — M.

Function fy, (s) := f(Ruy, 5).

Gradient grad f,, (0).

Hessian Hess f,, (0).



Trust-Region for Extreme SGEVP: Principles

Ingredients of the RTR method for ESGEVP [ABGO06al:

L.
2.
3.

Manifold: M = {p — dimensional subspaces of R"}
Y represented by any Y € R™? : Y'Y = I, col(Y) = ).
Tangent space: Ty M = {Z ¢ R™*? : Y BZ = 0}.
Metric: gy (Zq, Zy) = trace (21 Zy).

Retraction: RyZ = (Y + Z2)M

Cost function: f(Y) = trace (Y'BY) (YT AY)).



Trust-Region for Extreme SGEVP: Details

Lifted cost function:

A

fyv(Z) = f(Ry Z) = trace (((Y + Z2)'B(Y + Z)) B Y +2)"AY + Z))

— trace (YTAY) + 2trace (ZTAY) 1+ trace (ZT(AZ _ BZYTAY)) + HOT

The second order approximation of fy(Z) is

my(Z) = F(Y) + gy (arad £(Y), 2) + 3 gv (Hy 7, 2)

— trace (YTAY) + 2trace (ZTAY) + trace (ZT (AZ _ BZYTAY)) |

Compute an approximate minimizer Z using truncated

CG [CGT00]. Update: Yy = Ry Z = (Y + Z)M.
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Complaints Against Trust-Region Methods

e Trust-region radius is heuristic.
— Radius of current trust-region based on performance of
last model minimization.
— This may constrain current model minimization.
e Iterate may be rejected.
— Wasted time spent computing potential iterate.
— It can take a number of outer iterations to adjust
trust-region radius.
e [nner iteration may run too long on the last iteration
— As soon as outer/global stopping criterion is realized,

iteration should be stopped.
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Proposal for New Trust-Region

Idea: Base trust-region on the current performance of ms.

Old trust-region was

(s€TLM: ||s|| < Ap},Ap > 0.

New trust-region is

{seT,M:p,(s)>p'}, p>0.

P, is as before:
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1b.

Implicit Riemannian Trust-Region (IRTR)

Given: smooth manifold M; Riemannian metric g; smooth
cost function f on M; retraction R from the tangent
bundle T'M to M; current iterate xy.

Lift up the cost function to the tangent space 1, M:

fx:foR:ﬂ-

Build a model my(s) of f,, around 0.

Find (approximately) a minimizer s; of the model within
the new trust-region.

Accept 41 = Ry, Sk

Increment £ and go to step 2.
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Solving Model Minimization in IRTR

Use truncated CG to solve model minimization.
New trust-region definition requires some modifications.

Boundary test:

— Before: check ||s7|| < Ay

— Now: check p,, (s7) > p/

If pa, (87) < p:

— Before: compute 7 such that ||s/~! + 76| = Ay
— Now: Compute 7 such that p,, (s~ + 76;) = o/
— This is potentially much more difficult.
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Required Ingredients for Implicit RTR

Manifold M, Riemannian metric g, and cost function f on
M

Practical expression for 1, M

Retraction R, : T, M — M

Function fy, (s) := f(Ruy, s)

Gradient grad f,, (0)

Hessian Hess f,, (0)

Trust-region test: pg, (s)

Trust-region search: find 7 s.t. pg, (s +76) = pf
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Convergence Results of IRTR

The trust-region definition is very strong.

As a result, standard TR global convergence results follow

easily.

Global Convergence of IRTR for ESGEVP: Let {yi} be a
sequence of iterates produced via IRTR-tCG with
p' € (0,1). Then

lim [|gradf (yi)|| = 0.

k— o0

The local convergence theory should be easily adaptable
from RTR to IRTR.
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Extreme SGEVP: p =1

If p=1, then p,(s) = nfzgggi%& — 1+s%st'

e Checking trust-region inclusion requires checking ||s||5

e Solving p, along a tangent vector has an analytical

solution: 7 s.t. py(s+ 79) = p’ given by

5T Bs + \/ (0T Bs)? + 6T BS(A2, — 5T Bs)

01’ Bé
/1
Ap/ e ; - 1

e IRTR for p =1 ESGEVP is straightforward.
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Case p > 1

trace (I + STBS) " H(STBS(YTAY) — 25T AY — ST AS))

py(5) = trace (STBS(YTAY) — 25T AY — ST AS)
Assume that Y2 BY =T and YZAY = 3. Then

my(S)

trace (YT AY + 25T AY + ST(AS — BSY' AY))

p
= Y (0i+2s] Ay; + 5] (As; — Bs;oy))
1=1

- Zmyz(sl)
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Case p > 1

The p > 1 model my (S) can be decoupled into p “scalar”

models, for which we have a formula for p.
The block algorithm runs p simultaneous tCG algorithms.

All processes are stopped if any satisfies a stopping

criterion.

Global convergence is still guaranteed.

But py (S) # p': not a true IRTR!
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Outer Criterion Monitoring

Last call to tCG often performs more work than necessary

to satisfy outer stopping criterion.

Problem is typical for methods employing an inner

1iteration.

Solution is (occasionally) compute outer residual in inner

iteration, check stopping criterion.

Similar to suggestion in [Not02], except we have no efficient

formula for the residual norm.
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EXP: Monitoring Outer Stopping Criterion

s ITR vs. RTR: Preconditioned + SA
10 T T T T T T
*\ —— RTR (no outer stop)
% + RTR (outer stop)
ITR .95 (outer stop)
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2-D Laplacian, n = 10000; precond. using exact factorization of A after

symamd; 10-D subspace acceleration; p = 5
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EXP: IRTR vs. RTR

ITR vs. RTR: Preconditioned

——RTR
ITR .10
——ITR .25 |~
——ITR .50
—=—ITR .75
ITR .90 |
ITR .95
-v-ITR .99
- & - ITR .999| -

normf(grad)

| | | | |
0 50 100 150 200 250 300 350
# matvecs (A*x)

BCSST24; precond. with exact factorization of A after symamd; no

subspace acceleration; p = 5
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EXP: IRTR vs. RTR

1 ITR vs. RTR: Preconditioned + SA

10 T T T T T T
——RTR
o % ITR .10
10+ \\ — —=—|TR .25 |
\ —+—ITR .50
. \ —=—|TR .75
10° + \\ ITR .90 |-
% ITR .95
. . \ -v-ITR .99
T 10 - \ » -~ &~ |TR .999| -
S}
E
S 10" .
10° | .
10° | -
10_2 i i i i i i i i
0 20 40 60 80 100 120 140 160 180

# matvecs (A*x)

BCSST24; precond. with exact factorization of A after symamd; 10-D

subspace acceleration; p = 5
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Summary

e Take-home idea: Break down the barrier between inner
and outer iteration:

— QOuter criterion monitoring stops when iteration is
ultimately satisfied; always maintain awareness of outer
error

— Base trust-region on the performance of surrogate
model; always maintain awareness of cost function

e Result: Globally convergent, block eigensolver with

superlinear local convergence; more efficient than the RTR.
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THE END
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Algorithm 1 (Prec. Truncated CG for IRTR)
Set s =0, rg = gradfy, 20 =M"1trg, d® = —2
for 7 =0,1,2,...
Check inner stopping criterion
Check 6] H,[0;]
Compute T > 0 s.t. s = s’ + 70, satisfies p,(s) = p'; return s
Set of = (z;r;)/(6] Hy[0;])
Set s7t1 = 57 4 a4
if p, (s771) < pf
Compute T > 0 s.t. s = s? + 70, satisfies p,(s) = p'; return s
Check outer stopping criterion
Set rjv1 =r; + o’ Hy[d;]
Set zjy1 =M 1r;
Set B = (2T, yry0)/(2Try)
Set 041 = —zj+1 + 7110,
end.
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