Sun May 21 09:35:00 2023 gen_hermite_exactness_test(): Python version: 3.8.10 Test gen_hermite_exactness(). gen_hermite_exactness(): Investigate the polynomial exactness of a generalized Gauss-Hermite quadrature rule by integrating exponentially weighted monomials up to a given degree over the (-oo,+oo) interval. User input: Quadrature rule X file = "gen_herm_o8_a1.0_x.txt". Quadrature rule W file = "gen_herm_o8_a1.0_w.txt". Quadrature rule R file = "gen_herm_o8_a1.0_r.txt". Maximum degree to check = 18 Weighting function exponent ALPHA = 1.0 OPTION = 0, integrate |x|^alpha*exp(-x*x)*f(x). The quadrature rule to be tested is a generalized Gauss-Hermite rule ORDER = 8 ALPHA = 1.0 OPTION = 0, standard rule: Integral ( -oo < x < +oo ) |x|^alpha exp(-x*x) f(x) dx is to be approximated by sum ( 1 <= I <= ORDER ) w(i) * f(x(i)). Weights W: [2.69647353e-04 1.94439543e-02 1.78709346e-01 3.01577052e-01 3.01577052e-01 1.78709346e-01 1.94439543e-02 2.69647353e-04] Abscissas X: [-3.06513799 -2.12993434 -1.32127253 -0.56793282 0.56793282 1.32127253 2.12993434 3.06513799] Region R: [-1.e+30 1.e+30] A generalized Gauss-Hermite rule would be able to exactly integrate monomials up to and including degree = 15 Degree Error 0 0.0000000000000007 1 0.0000000000000001 2 0.0000000000000009 3 0.0000000000000000 4 0.0000000000000007 5 0.0000000000000001 6 0.0000000000000003 7 0.0000000000000003 8 0.0000000000000003 9 0.0000000000000044 10 0.0000000000000009 11 0.0000000000000071 12 0.0000000000000014 13 0.0000000000000000 14 0.0000000000000018 15 0.0000000000000000 16 0.0142857142857165 17 0.0000000000000000 18 0.0650793650793677 gen_hermite_exactness(): Investigate the polynomial exactness of a generalized Gauss-Hermite quadrature rule by integrating exponentially weighted monomials up to a given degree over the (-oo,+oo) interval. User input: Quadrature rule X file = "gen_herm_o8_a1.0_modified_x.txt". Quadrature rule W file = "gen_herm_o8_a1.0_modified_w.txt". Quadrature rule R file = "gen_herm_o8_a1.0_modified_r.txt". Maximum degree to check = 18 Weighting function exponent ALPHA = 1.0 OPTION = 1, integrate f(x). The quadrature rule to be tested is a generalized Gauss-Hermite rule ORDER = 8 ALPHA = 1.0 OPTION = 1, modified rule: Integral ( -oo < x < +oo ) f(x) dx is to be approximated by sum ( 1 <= I <= ORDER ) w(i) * f(x(i)). Weights W: [1.0582142 0.85240804 0.7750492 0.73313171 0.73313171 0.7750492 0.85240804 1.0582142 ] Abscissas X: [-3.06513799 -2.12993434 -1.32127253 -0.56793282 0.56793282 1.32127253 2.12993434 3.06513799] Region R: [-1.e+30 1.e+30] A generalized Gauss-Hermite rule would be able to exactly integrate monomials up to and including degree = 15 Degree Error 0 0.0000000000000004 1 0.0000000000000000 2 0.0000000000000004 3 0.0000000000000000 4 0.0000000000000007 5 0.0000000000000001 6 0.0000000000000010 7 0.0000000000000003 8 0.0000000000000010 9 0.0000000000000018 10 0.0000000000000009 11 0.0000000000000071 12 0.0000000000000011 13 0.0000000000000000 14 0.0000000000000011 15 0.0000000000000000 16 0.0142857142857132 17 0.0000000000000000 18 0.0650793650793643 gen_hermite_exactness_test(): Normal end of execution. Sun May 21 09:35:00 2023