#! /usr/bin/env python3 # def euler ( dydt, tspan, y0, n ): #*****************************************************************************80 # ## euler() approximates the solution to an ODE using Euler's method. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 22 April 2020 # # Author: # # John Burkardt # # Input: # # function dydt: points to a function that evaluates the right # hand side of the ODE. # # real tspan[2]: contains the initial and final times. # # real y0[m]: an array containing the initial condition. # # integer n: the number of steps to take. # # Output: # # real t[n+1], y[n+1,m]: the times and solution values. # import numpy as np m = np.size ( y0 ) t0 = tspan[0] tstop = tspan[1] dt = ( tstop - t0 ) / n t = np.zeros ( n + 1 ) y = np.zeros ( [ n + 1, m ] ) t[0] = t0 y[0,:] = y0 for i in range ( 0, n ): t[i+1] = t[i] + dt y[i+1,:] = y[i,:] + dt * ( dydt ( t[i], y[i,:] ) ) return t, y def euler_test ( ): #*****************************************************************************80 # ## euler_test() tests euler(). # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 22 April 2020 # # Author: # # John Burkardt # import numpy as np import platform print ( '' ) print ( 'euler_test():' ) print ( ' Python version: %s' % ( platform.python_version ( ) ) ) print ( ' Test euler().' ) tspan = np.array ( [ 0.0, 2.0 ] ) y0 = 5.1765 n = 100 humps_euler ( tspan, y0, n ) tspan = np.array ( [ 0.0, 5.0 ] ) y0 = np.array ( [ 5000, 100 ] ) n = 200 predator_prey_euler ( tspan, y0, n ) # # Terminate. # print ( '' ) print ( 'euler_test():' ) print ( ' Normal end of execution.' ) return def humps_deriv ( x, y ): #*****************************************************************************80 # ## humps_deriv() evaluates the derivative of the humps function. # # Discussion: # # y = 1.0 / ( ( x - 0.3 )^2 + 0.01 ) \ # + 1.0 / ( ( x - 0.9 )^2 + 0.04 ) \ # - 6.0 # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 22 April 2020 # # Author: # # John Burkardt # # Input: # # real x[:], y[:]: the arguments. # # Output: # # real yp[:]: the value of the derivative at x. # yp = - 2.0 * ( x - 0.3 ) / ( ( x - 0.3 )**2 + 0.01 )**2 \ - 2.0 * ( x - 0.9 ) / ( ( x - 0.9 )**2 + 0.04 )**2 return yp def humps_euler ( tspan, y0, n ): #*****************************************************************************80 # ## humps_euler() solves the humps ODE using the Euler method. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 22 April 2020 # # Author: # # John Burkardt # # Input: # # real tspan[2]: the time span # # real y0[2]: the initial condition. # # integer n: the number of steps to take. # import matplotlib.pyplot as plt import numpy as np print ( '' ) print ( 'humps_euler():' ) print ( ' Solve the humps ODE system using euler().' ) t, y = euler ( humps_deriv, tspan, y0, n ) plt.clf ( ) plt.plot ( t, y, 'r-', linewidth = 2 ) a = tspan[0] b = tspan[1] if ( a <= 0.0 and 0.0 <= b ): plt.plot ( [a,b], [0,0], 'k-', linewidth = 2 ) ymin = min ( y ) ymax = max ( y ) if ( ymin <= 0.0 and 0.0 <= ymax ): plt.plot ( [0, 0], [ymin,ymax], 'k-', linewidth = 2 ) plt.grid ( True ) plt.xlabel ( '<--- T --->' ) plt.ylabel ( '<--- Y(T) --->' ) plt.title ( 'humps euler(): time plot' ) filename = 'humps_euler.png' plt.savefig ( filename ) print ( ' Graphics saved as "%s"' % ( filename ) ) plt.show ( block = False ) plt.close ( ) return def predator_prey_deriv ( t, y ): #*****************************************************************************80 # ## predator_prey_deriv() evaluates the right hand side of the system. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 29 April 2021 # # Author: # # John Burkardt # # Reference: # # George Lindfield, John Penny, # Numerical Methods Using MATLAB, # Second Edition, # Prentice Hall, 1999, # ISBN: 0-13-012641-1, # LC: QA297.P45. # # Input: # # real T, the current time. # # real Y[2], the current solution variables, rabbits and foxes. # # Output: # # real DYDT[2], the right hand side of the ODE. # import numpy as np r = y[0] f = y[1] drdt = 2.0 * r - 0.001 * r * f dfdt = - 10.0 * f + 0.002 * r * f dydt = np.array ( [ drdt, dfdt ] ) return dydt def predator_prey_euler ( tspan, y0, n ): #*****************************************************************************80 # ## predator_prey_euler() solves the predator prey ODE using the Euler method. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 22 April 2020 # # Author: # # John Burkardt # # Input: # # real tspan[2]: the time span # # real y0[2]: the initial condition. # # integer n: the number of steps to take. # import matplotlib.pyplot as plt import numpy as np print ( '' ) print ( 'predator_prey_euler:' ) print ( ' Solve the predator prey ODE system using euler().' ) t, y = euler ( predator_prey_deriv, tspan, y0, n ) plt.plot ( y[:,0], y[:,1], 'r-', linewidth = 2 ) plt.grid ( True ) plt.xlabel ( '<--- Prey --->' ) plt.ylabel ( '<--- Predators --->' ) plt.title ( 'predator prey, euler: phase' ) filename = 'predator_prey_euler.png' plt.savefig ( filename ) print ( ' Graphics saved as "%s"' % ( filename ) ) plt.show ( block = False ) plt.close ( ) return def timestamp ( ): #*****************************************************************************80 # ## timestamp() prints the date as a timestamp. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 21 August 2019 # # Author: # # John Burkardt # import time t = time.time ( ) print ( time.ctime ( t ) ) return if ( __name__ == '__main__' ): timestamp ( ) euler_test ( ) timestamp ( )