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REDUCED ORDER MODELING OF SOME NONLINEAR
STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS

JOHN BURKARDT, MAX D. GUNZBURGER, AND CLAYTON WEBSTER

Abstract. Determining accurate statistical information about outputs from

ensembles of realizations is not generally possible whenever the input-output

map involves the (computational) solution of systems of nonlinear partial dif-

ferential equations (PDEs). This is due to the high cost of effecting each re-

alization. Recently, in applications such as control and optimization that also

require multiple solutions of PDEs, there has been much interest in reduced-

order models (ROMs) that greatly reduce the cost of determining approximate

solutions. We explore the use of ROMs for determining outputs that depend

on solutions of stochastic PDEs. One is then able to cheaply determine much

larger ensembles, but this increase in sample size is countered by the lower

fidelity of the ROM used to approximate the state. In the contexts of proper

orthogonal decomposition-based ROMs, we explore these counteracting effects

on the accuracy of statistical information about outputs determined from en-

sembles of solutions.

Key Words. reduced order modeling, stochastic differential equations, brow-

nian motion, monte carlo methods, finite element methods.

1. Introduction

Realistic simulations of complex systems governed by nonlinear partial differen-
tial equations must account for the “noisy” features of the modeled phenomena,
such as material properties, coefficients, domain geometry, excitations and bound-
ary data. “Noise” can be understood as uncertainties in the specification of the
physical model; because of noise, the behavior of a complex system is at least par-
tially unpredictable. A simulation can attempt to capture the noisy aspects of a
system by describing the simulation input data as random fields. This turns the
problem into a stochastic partial differential equation (SPDE). We will consider
such problems, characterized by nonlinear partial differential equations, and for
which the input data are not purely deterministic; for example, the coefficients or
the right-hand-side of the partial differential equation may be regarded as sums of
a deterministic and stochastic function.

For a given system, various stochastic perturbation techniques have been consid-
ered [1,2,4–6,16,19,36,64,65]. This paper will focus on nonlinear SPDE’s in which
the stochastic inputs are modeled as white noise, i.e., they are not significantly
correlated. The aim of our work is to efficiently determine statistical information
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about the random field u = u(t,x;ω) from numerical approximations of the non-
linear SPDE driven by white noise:

(1.1)
du
dt

= Au− γN(u) + g + ε
dW
dt

, x ∈ D, ω ∈ Ω, t > 0.

Here D ⊂ RN is a convex, bounded and polygonal spatial domain, (Ω,F ,P) is
a probability space described in section 2, and A is a linear second-order elliptic
operator with deterministic coefficients, defined on a space of functions satisfying
certain boundary conditions, N(u) is a nonlinear function of the random process
u, g represents a deterministic function and W denotes an infinite dimensional
Brownian motion or Wiener process. The additive noise that appears in (1.1) is
in the form of space-time Brownian white noise as described in section 2.1. The
amplitudes of the noise and the nonlinearity are controlled by parameters ε and γ,
respectively. Once the equation is reformulated into a weak form, the usual Galerkin
finite element approach can be used to produce a discretized system suitable for
solution on a computer.

Generally, obtaining precise statistics about ensembles of realizations of nonlin-
ear SPDEs such as (1.1) entails a high cost in both memory and CPU. This cost
is exhibited in many recent attempts on similar problems [9, 13, 26, 27]. Even with
the use of reliable nonlinear solvers and carefully chosen solution schemes, these
computations involve formidable work. Typical finite element codes may require
the use of many thousands of degrees of freedom for the accurate simulation of
deterministic PDEs. The situation becomes far worse when the same techniques
are extended to SPDEs [20] for which multiple realizations are usually required.

It is natural to consider a reduced-order model (ROM), such as [10, 11]. A
reduced-order model attempts to determine acceptable approximate solutions of a
PDE while using very few degrees of freedom. One way to achieve this efficiency is
for the models to use basis functions that are in some way intimately connected to
the problem being solved. Once a low-dimensional reduced basis has been deter-
mined, it may be used in a new Galerkin system to solve related instances of the
PDE. In this way, a ROM may be used to efficiently explore the behavior of large
ensembles of PDE solutions. This is the kind of efficiency needed when attempting
to compute realistic statistics from outputs of the SPDE.

There have been many reduced-order modeling techniques proposed; see [10,11,
33,37] and the references cited therein. The most popular reduced-order modeling
approach for nonlinear PDEs is based on proper orthogonal decomposition (POD)
analysis. POD begins with a set of m̃ precomputed solutions of the equation, often
called snapshots; these could be generated by evaluating the computational solution
of a transient problem at many instants of time or over a range of values of the
problem parameters. These solutions are presumably obtained using costly, large-
scale, high-fidelity codes. The K-dimensional POD basis is then formed from the K
eigenvectors corresponding to the dominant eigenvalues of the snapshot correlation
matrix. This basis may then be used to construct a new finite element system of
much reduced order, suitable for generating approximate solutions, at least within
a limited range of the underlying snapshot data. POD-based model reduction
has been applied with some success to several problems, most notably in fluid
mechanics. For detailed discussions, one may consult [3,7,8,10–12,17,25,28,29,32–
34,43–48,50–54,59,60,62,63].

The efficiency of a POD basis comes from its low dimension combined with its
good approximating power. However, the ability of a POD-based basis to approxi-
mate the state of a system is totally dependent on the information contained in the
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snapshot set. Certainly, a POD-based basis cannot contain more information than
that contained in the snapshot set. Thus, crucial to the success of the POD-based
approaches to model reduction is the generation of “good” snapshot sets, which
manage to capture a wide range of system behaviors.

In order to present a standard approach, we focus on the case D = (0, 1)×(0, 1) ⊂
R2, I := [t1, T ], a bounded interval of R and Au = ∆u =

(
∂2

∂x2 + ∂2

∂y2

)
u with

homogeneous Dirichlet boundary conditions. However, much of our results and
computations can be readily extended to higher spatial dimensions and more general
second-order elliptic operators. An effort has been made to present most of this
discussion using the familiar terminology from standard finite element methods for
the numerical approximation of deterministic PDEs.

The paper is organized as follows: we first formulate the idea of a probability
space, a Wiener process and Brownian motion in a plane half strip. Next, we dis-
cuss discrete Brownian white noise, the model nonlinear stochastic PDE and its
finite element approximation. We then introduce the Monte Carlo-Galerkin finite
element approximation by sampling input data for the nonlinear SPDE and then
approximating the corresponding realization of the solution. Reduced-order models
(ROMs) are generated and analyzed with respect to noise driven by the Brown-
ian motion; computational error results are presented. Finally, some concluding
remarks are given.

2. Preliminaries

We begin by recalling the mathematical formulation of a probability space (Ω,F ,P),
where Ω, F and P are the set of random events, the minimal σ-algebra of subsets of
Ω, and the probability measure, respectively. We define D ⊂ RN to be a bounded
spatial domain.

If X is a real random variable in (Ω,F ,P) with X ∈ L1(Ω), we denote its
expected value by

(2.1) E [X] =
∫

Ω

X(ω)P(dω) =
∫

R
xµ(dx).

Here µ is the distribution probability measure for X, defined on the Borel set B of
R, given by

(2.2) µ(B) = P
(
X−1(B)

)
.

We will assume that µ (B) is absolutely continuous with respect to Lebesque mea-
sure; then there exists a density function for X, ρ : R → R+, such that

(2.3) E [X] =
∫

R
xρ(x)dx.

Next, we define what is meant by a measurable stochastic and Wiener process and
formally explain the concept of a Brownian motion on a plane half-strip (otherwise
known as a Brownian sheet):

Definition 2.1. An (N, d)-valued stochastic process U(z) =
{
U(z); z ∈ RN

+

}
=

{(U1(z), . . . ,Ud(z))}z∈RN
+
, defined on a probability space (Ω,F ,P), is measurable if

U : Ω× RN
+ → Rd

is F × B(RN
+ ) measurable.

Notice that when N = 1, U is just an Rd-valued stochastic process.
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Definition 2.2. An R-valued stochastic process W (t) = {W (t)}t∈R1
+

is called a
Brownian motion or Wiener process if

• W0 = 0 a.s.,
• Wt −Ws is N(0, t− s)1 for all t ≥ s ≥ 0
• for all times 0 < t1 < t2 < · · · < tn, the random variables Wt1 ,Wt2 −
Wt1 , . . . ,Wtn

−Wtn−1 are independent (“independent increments”).

Notice that
E(Wt) = 0, E(W 2

t ) = t for each t ≥ 0.

We complete this section by defining Brownian motion on a plane half strip or
Brownian sheet W(t, z), t ∈ R1

+ and z ∈ RN−1
+ .

Definition 2.3. Let W(t, z) = {W(t, z)}t∈R1
+, z∈RN−1

+
denote an (N, d) Brownian

sheet. That is, W is the N -parameter Gaussian random field with values in Rd, its
mean-function is zero, and its covariance function is given by the following: for all
t, s ∈ R1

+ and z,w ∈ RN−1
+ and all 1 ≤ i, j ≤ d,

E (Wi(t, z) ·Wj(s,w)) =


(t ∧ s)×

N∏
k=1

(zk ∧ wk), if i = j

0, if i 6= j

We have written W(t, z) in vector form as {(W1(t, z), . . . ,Wd(t, z))}t∈R1
+, z∈RN−1

+
,

as is customary. When N = 1, W is just Brownian motion in Rd.
Now consider the three-dimensional Gaussian white noise

∆W(t,x) =
∂3W

∂t∂x1∂x2
(t,x;ω), x = (x1, x2) ∈ D ⊂ R2

where W(t,x) is Brownian motion on a half plane or a Brownian sheet satisfying,
for t, s ∈ R1

+ and x,y ∈ D:

E (∆W(t,x) ·∆W(s,y)) = δ(t− s)× δ(x− y)

= δ(t− s)× δ(x1 − y1)× δ(x2 − y2)(2.4)

with δ the usual Dirac δ-function. According to [1], application of standard finite
element techniques requires that ∆W(t,x) = ∆W(t, x1, x2) be modeled by the
piecewise constant random process given in the following section.

2.1. The approximation of Brownian white noise. Following [1, 20, 65], we
regularize the noise through discretization. For simplicity, we use a uniform dis-
cretization 0 = t1 < t2 < · · · < tn < · · · < tÑ = T of the time interval [t1, T ] given
by

tn+1 = t1 + n∆t, t > 1

with ∆t = (T − t1)/Ñ , for some integer Ñ large enough so that ∆t ∈ (0, 1).

Likewise, we consider a uniform finite element triangulation {τj}M̃
j=1 of the square

D characterized by the parameter h, which we take to be the longest side of any
triangle. We denote by ∆τ the area of any of the finite elements.

1N(0, t− s) is the zero-mean Gaussian (or normal) distribution with variance t− s
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Figure 1. Piecewise constant approximation for the noise

∆Ŵ(t,x) = c
ÑM̃

Ñ∑
i=1

M̃∑
j=1

ηijχi(t)χj(x) at the final time T = 1 over

a uniform finite element triangulation. The number of elements
ranges from M̃ = 2 to M̃ = 512.

Using the finite element triangulation {τj}M̃
j=1 of D, and guided by Lemma 2.4,

a “reasonable” piecewise constant approximation of the noise is given by

(2.5) ∆Ŵ(t,x) =
∂3Ŵ

∂t∂x1∂x2
(t,x;ω) = c

ÑM̃

Ñ∑
i=1

M̃∑
j=1

ηij(ω)χi(t)χj(x),

where

c
ÑM̃

=
1√

∆t
√

∆τ

and, for i = 1, 2, . . . , Ñ − 1, j = 1, 2, . . . , M̃ − 1, ηij ∈ N(0, 1) is independently and
identically distributed (iid),

√
∆t
√

∆τ ηij =
∫ ti+1

ti

∫
τj

dW(t,x),

χi(t) =
{

1, if ti ≤ t < ti+1,
0, otherwise and χj(x) =

{
1, if x ∈ τj ,
0, otherwise .

That is, χi(t) is the characteristic function for the ith time interval and χj(x) is
the characteristic function for the jth finite element. For an arbitrary i and j, the
discrete analog of (2.4) for the piecewise constant approximation to ∆Ŵ is given
by

E
(
∆Ŵ(t,x) ·∆Ŵ(s,y)

)
=


1

∆t
× 1

∆τ
, if ti ≤ t, s < ti+1 and x,y ∈ τj ,

0, otherwise

Therefore,

lim
Ñ,M̃→∞

E
(
∆Ŵ(t,x) ·∆Ŵ(s,y)

)
= δ(t− s)× δ(x− y)
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as required. In Figure 2.1, some sample realizations of the piecewise constant
approximation of the three-parameter white noise are displayed for ∆t = 1 and
various values of M̃ at the final time T = 1.

Similarly to [1], we have the following result for a nonrandom function f(t,x).

Lemma 2.4. Let f be a nonrandom function and Lipschitz continuous on [0, T ]×
[0, 1]× [0, 1]. In particular, assume that there is a positive constant γ ≥ 0 such that
|f(t,x)− f(s,y)| ≤ γ (|t− s|+ ‖x− y‖) for (t,x), (s,y) ∈ [0, T ] × [0, 1] × [0, 1].
Then

E

[∫ T

0

∫
D
f(t,x)dW(t,x)−

∫ T

0

∫
D
f(t,x)dŴ(t,x)

]2

≤ 2Tγ2
(
(∆t)2 + h2

)
.

Proof. The proof is as follows:

E

[∫ T

0

∫
D
f(t,x)dW(t,x)−

∫ T

0

∫
D
f(t,x)dŴ(t,x)

]2

= E

 Ñ∑
i=1

M̃∑
j=1

∫ ti+1

ti

∫
τj

f(t,x)dW(t,x)

−
Ñ∑

i=1

M̃∑
j=1

∫ ti+1

ti

∫
τj

f(s,y)

(
1

∆t∆τ

∫ ti+1

ti

∫
τj

dW(t,x)

)
dyds

2

= E

 Ñ∑
i=1

M̃∑
j=1

∫ ti+1

ti

∫
τj

(
f(t,x)− 1

∆t∆τ

∫ ti+1

ti

∫
τj

f(s,y)dyds

)
dW(t,x)

2

=
Ñ∑

i=1

M̃∑
j=1

∫ ti+1

ti

∫
τj

(
f(t,x)− 1

∆t∆τ

∫ ti+1

ti

∫
τj

f(s,y)dyds

)2

dxdt

=
Ñ∑

i=1

M̃∑
j=1

∫ ti+1

ti

∫
τj

(
1

∆t∆τ

∫ ti+1

ti

∫
τj

(f(t,x)− f(s,y)) dyds

)2

dxdt

≤ γ2

(∆t∆τ)2

Ñ∑
i=1

M̃∑
j=1

∫ ti+1

ti

∫
τj

(∫ ti+1

ti

∫
τj

(|t− s|+ ‖x− y‖) dyds

)2

dxdt

≤ γ2

(∆t∆τ)2

Ñ∑
i=1

M̃∑
j=1

∫ ti+1

ti

∫
τj

(∫ ti+1

ti

∫
τj

(∆t+ h) dyds

)2

dxdt

= γ(∆t+ h)2
Ñ∑

i=1

M̃∑
j=1

∫ ti+1

ti

∫
τj

dxdt ≤ 2Tγ2
(
(∆t)2 + h2

)
.

�

3. The model nonlinear stochastic partial differential equation and its
finite element approximation

In this section we discuss the formulation of the nonlinear stochastic PDE and
its finite element approximation. Let D = D1 × D2 be a bounded region in R2

whose boundary is denoted ∂D; let T denote a positive constant. Denote x =
(x1, x2) ∈ D such that x1 ∈ D1 and x2 ∈ D2. Let ε denote the given (constant)
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perturbation parameter that measures the amplitude of the space-time white noise
∂3W

∂t∂x1∂x2
(t,x;ω). Furthermore, let g be a deterministic function. We consider

the model nonlinear stochastic partial differential equation on a bounded interval
I := (0, T ) ⊂ R as follows: find u : Ī ×D → R such that
(3.1)

∂u

∂t
(t,x)−∆u(t,x) + γN(u(t,x)) = g(t,x) + ε

∂3W
∂t∂x1∂x2

(t,x;ω), in I ×D

u(t,x) = 0, on ∂D
u(0,x) = 0, in D,

where N : Ī ×D → R is a nonlinear function of u(t,x) and γ denotes the strength
of the nonlinearity. Setting ε = 0 reduces (3.1) to a deterministic PDE for which
standard reduced-order methods apply. Similarly, setting γ = 0 reduces (3.1) to a
linear stochastic PDE.

Generally, when discussing the stochastic process u(t,x;ω), we will omit the
explicit dependence on the probability space Ω, treating each realization as a de-
terministic PDE, unless it will be useful for clarity’s sake to make this dependence
explicit.

3.1. The Nonlinear Monte Carlo Finite Element Method. The Monte Carlo
Finite Element Method is a natural choice for handling a stochastic PDE. If the
aim is to compute a functional of the solution u, such as its expected value, one
would try to approximate the integral E (u(· ;ω)) numerically by sample averages
of iid realizations corresponding to sample white noise functions. In fact, all the
statistics we are interested are really integrals of a function u(· ;ω) over Ω.

We begin with a variational formulation, to define a finite element method suit-
able for producing approximate solutions of (3.1); of course, many other methods
could also be used. A variational formulation of (3.1) is the following: find u(t, ·),
t ∈ I, such that

(3.2)



∫
D
u(t,x)φ(x)dD +

∫ T

0

∫
D
{∇u · ∇φ}dDds

+ γ

∫ T

0

∫
D
N(u(s,x))φ(x)dDds

=
∫ T

0

∫
D
g(s,x)φ(x)dDds+ ε

∫ T

0

∫
D
φ(x)dW(s,x),

u(0,x) = 0, in D.

for all φ ∈ H1
0 (D). The last integral in (3.2) is understood in the Itô sense.

The semi-discretization in space leads to the following problem: find u(t, ·) ∈
H1

0 (D), t ∈ I, such that

(3.3) (ut, φ(x))L2(D) + B(u, φ) = F (φ) for all φ ∈ H1
0 (D)

where

(3.4)
B(u, φ) =

∫
D
∇u · ∇φdD + γ

∫
D
N(u(t,x))φ(x)dD

= (∇u,∇φ)L2(D) + (N(u), φ)L2(D)
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and

(3.5)
F (φ) =

∫
D

(
g(t,x) + ε

∂3Ŵ
∂t∂x1∂x2

(t,x;ω)

)
φ(x)dD

= (g, φ)L2(D) +
(
∆Ŵ, φ

)
L2(D)

respectively. We note that ut := ∂u
∂t .

For each realization of the piecewise constant noise ∆Ŵ, a realization of the ap-
proximate solution is computed, using a time-marching scheme such as the standard
backward Euler-Galerkin finite element method. Linearization is accomplished by
a Newton or Quasi-Newton approach. Here it will be helpful to write the solution
as u(· ;ω) to emphasize the dependence on the probability space (Ω,F ,P). The
challenge is that we do not know u(· ;ω), as this remains an unknown quantity of
interest. Hence, we formulate a solution procedure that does not require knowledge
of a functional form for u(· ;ω) for all ω ∈ Ω.

This method is as follows:
(1) Choose the number of realizations M ∈ N+ and a piecewise continuous

finite element approximating space of D, Sh
0 .

(2) For each k = 1, . . . ,M , sample iid realizations of the piecewise constant
noise ∆Ŵ(· ;ωk) and produce approximations uh(· ;ωk) ∈ Sh

0 such that

(uh
t (· ;ωk), φh)L2(D) + B̃(uh(· ;ωk), φh)

= F̃ (φh) =
(
g(·) + ε∆Ŵ(· ;ωk), φh

)
L2(D)

∀φh ∈ Sh
0

where B̃ and F̃ are the stochastic forms of (3.4) and (3.5) respectively,
defined by

∀ω ∈ Ω : B̃(φ1, φ2) = B(φ1, φ2;ω) ∀φ1, φ2 ∈ H1
0 (D)

and
F̃ (φ2) = F (φ2;ω) ∀φ2 ∈ H1

0 (D).

Once we have fixed ω = ωk, the problem is completely deterministic, and
may be solved by standard methods.

(3) Approximate E(u) by the sampling average:

(3.6) E(uh;M) =
1
M

M∑
k=1

uh(· ;ωk)

We only consider the case where Sh
0 is fixed for all realizations, in particular, we

have fixed the triangulation {τj} of D and employ a backward-Euler scheme for the
time discretization.

The computational error for the finite element approximation to the stochastic
PDE may be considered in two parts

(3.7) E(u)−E(uh;M) =
(
E(u)−E(uh)

)
+
(
E(uh)−E(uh;M)

)
= E h

T + E h
T,S

The characteristic size h, and the backward-Euler method control the space-time
discretization error E h

T , while the number of realizations, N of uh, controls the
statistical error E h

T,S . A comprehensive study of such statistical error was completed
by [5].
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4. Reduced-order modeling for the nonlinear stochastic partial differen-
tial equation

In this section, we briefly describe the reduced-order model (ROM) for the non-
linear stochastic PDE (3.1). In Section 5, we will use a concrete example to exhibit
the relative accuracy and efficiency of the ROM compared to the standard FEM
approach. The generation of the reduced-order model requires a set of snapshot
solution vectors; see section 5.1 for a discussion of snapshots.

4.1. POD reduced-order bases. Given a discrete set of snapshot vectors W =
{~wn}N

n=1 belonging to RJ , we form the J × N snapshot matrix A whose columns
are the snapshot vectors ~wn:

A =
(
~w1 ~w2 · · · ~wN

)
.

Let

UT AV =
(

Σ 0
0 0

)
,

where U and V are J × J and N × N orthogonal matrices, respectively, and Σ =
diag(σ1, . . . , σM̃

) with σ1 ≥ σ2 ≥ · · · ≥ σ
M̃

be the singular value decomposition
of A. Here, M̃ is the rank of A, i.e., the dimension of the snapshot set W , which
would be less than N whenever the snapshot set is linearly dependent. It can easily
be shown that if

U =
(
~Φ1

~Φ2 · · · ~ΦJ

)
and V =

(
~ψ1

~ψ2 · · · ~ψN

)
,

then
A~ψi = σi

~Φi and AT ~Φi = σi
~ψi for i = 1, . . . , M̃

so that also

AT A~ψi = σ2
i
~ψi and AAT ~Φi = σ2

i
~Φi for i = 1, . . . , M̃

so that σ2
i , i = 1, . . . , M̃ , are the nonzero eigenvalues of AT A (and also of AAT )

arranged in nondecreasing order. The matrix C = AT A is simply the correlation
matrix of the snapshot vectors W = {~wn}N

n=1, i.e., we have that Cmn = ~wT
m ~wn.

In the reduced-order modeling context, given a set of snapshots W = {~wn}N
n=1

belonging to RJ , the POD reduced basis of dimension K ≤ N < J is the set
{~Φk}K

k=1 of vectors also belonging to RJ consisting of the firstK left singular vectors
of the snapshot matrix A. Thus, one can determine the POD basis by computing
the (partial) singular value decomposition of the J ×N matrix A. Alternately, one
can compute the (partial) eigensystem {σ2

k,
~ψi}K

i=1 of the N ×N correlation matrix
C = AT A and then set ~Φk = 1

σk
A~ψk, k = 1, . . . ,K.

The K-dimensional POD basis has the obvious property of orthonormality. It
also has several other important properties which we now mention. Let {~sk}K

k=1 be
an arbitrary set of K orthonormal vectors in RJ and let Π~w denote the projection
of a vector ~w ∈ RJ onto the subspace spanned by that set. Further, let

E(~s1, . . . , ~sK) =
N∑

n=1

|~wn −Π~wn|2,

i.e., E is the sum of the squares of the error between each snapshot vector ~wn and
its projection Π~wn onto the span of {~sk}K

k=1. Then, it can be shown that

(4.1)
{

the POD basis {~Φk}K
k=1 minimizes E over all possible

K-dimensional orthonormal sets in RJ .
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In fact, the POD basis corresponding to a set of snapshots W = {~wn}N
n=1 is often

defined by (4.1), and then its relation to the singular value decomposition of the
matrix A, or to the eigenvalue decomposition of AT A, are derived properties. We
note that E(~Φ1, . . . , ~ΦK) is referred to as the “POD energy” or “error in the POD
basis.” Also, it can be shown that

(4.2) E(~Φ1, . . . , ~ΦK) =
M̃∑

k=K+1

σ2
k,

i.e., the error in the POD basis is simply the sum of the squares of the singular
values corresponding to the neglected POD modes.

Another property of the POD basis is given as follows:

(4.3)


the POD basis {~Φk}K

k=1 solves the sequence of problems:

for k = 1, . . . ,K, max
~sk∈RJ

N∑
n=1

(
~wT

n~sk

)2
subject to |~sk| = 1 and ~sT

j ~sk = 0 for j = 1, . . . , k − 1.

Again, (4.3) is often used to define the POD basis and then its relation to the
singular value decomposition and (4.1) are noted as derived properties.

The singular values of the snapshot matrix may be used to determine a practical
value for the dimension K of the POD basis. Indeed, it is a simple matter to show
that if one requires the error in the POD basis to be less than some prescribed
tolerance δ, i.e., that

E(~Φ1, . . . , ~ΦK) ≤ δ,

then one need only

choose K to be the smallest
integer such that

∑K
k=1 σ

2
k∑M̃

k=1 σ
2
k

≥ 1− δ.

The usefulness of POD-based reduced-order modeling is derived from the observa-
tion that in many settings one finds that, even if δ is chosen to be relatively small,
e.g., 0.01, one can still be able to use a basis of low order K; K is usually much
smaller than M̃ and might be of order 10 or so.

For reduced-order modeling applications, the snapshot vectors are coefficient
vectors in the expansion of the finite element approximation of the stochastic pro-
cess evaluated at different instants in time. Thus, to each snapshot vector ~wn,
n = 1, . . . , N , there corresponds a finite element function

(4.4) wn(x) =
J∑

j=1

wj,nφj(x) ∈ Sh
0 ,

where wj,n denotes the j-th component of the vector ~wn and φj(x) ∈ V h
0 denotes the

j-th finite element basis function. One can define a POD basis with respect to func-
tions instead of vectors, i.e., we could start with a snapshot set W = {wn(x)}N

n=1

consisting of finite element functions belonging to Sh
0 . Then, instead of (4.3), one

could define the POD basis {Φk(x) ∈ V h
0 }K

k=1 to be the solution of the sequence of
problems: for k = 1, . . . ,K,

max
sk(x)∈V h

0

N∑
n=1

〈wn, sk〉20
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subject to ‖sk(x)‖0 = 1 and 〈sj , sk〉0 = 0 for j = 1, . . . , k − 1. Note that 〈· , ·〉0 =
〈· , ·〉L2(D). Equivalently, one could define the POD basis to be the solution of the
problem: minimize

E(s1, . . . , sK) =
N∑

n=1

‖wn −Πwn‖2
0

over all possible K-dimensional L2(D)-orthonormal sets {sk(x)}K
k=1 in V h

0 , where
Πwn is the L2(D)-projection of wn onto the span of the functions {sk(x)}K

k=1.
Moreover, one can instead determine the POD basis by first solving the N × N

eigenvalue problem: for k = 1, . . . , M̃ ,

(4.5) C~ak = σ2
k~ak, |~ak| = 1, ~aT

` ~ak = 0 if k 6= `, and σk ≥ σk−1 > 0,

then setting

Φk(x) =
N∑

n=1

1
σk
ak,nwn(x) for k = 1, . . . ,K.

Here, we have that the rank M̃ ≤ N correlation matrix C is defined by Cmn =
〈wm, wn〉0, and ak,n is the n-th component of the eigenvector ~ak. Note that in
terms of the snapshot matrix A and the mass matrix M for the finite element basis,
i.e., for Mij = (Φi,Φj)0, we now have that C = AT MA. This fact allows us to again
use the singular value decomposition to determine the POD basis function. To this
end, let M = ST S, where the J × J matrix S may be chosen to be a symmetric,
positive definite square root of M, i.e., S = M1/2, or S could be a Cholesky factor,
i.e., ST = L. Then, we let Ã = SA so that C = AT MA = ÃT Ã and therefore ~ak,
k = 1, . . . ,K, are the first K right singular vectors of Ã.

4.2. The POD reduced-order models. We now show how a POD basis is used
to define a reduced-order model for the nonlinear stochastic PDE (3.1). For the
sake of brevity, we only discuss the case for which the snapshot set is viewed as a
set of finite element coefficient vectors; the case for which the snapshot set is a set
of finite element functions proceeds in similar manner.

Let {~Φk}K
k=1 be a K-dimensional POD basis corresponding to the snapshot set

{~wn}N
n=1. For each ~Φk, k = 1, . . . ,K, there is a finite element function

(4.6) Φk(x) =
J∑

j=1

Φj,kφj(x) ∈ Sh
0 ,

where Φj,k denotes the jth component of ~Φk. Let

UK = span{Φk}K
i=1 ⊂ Sh

0 .

As will be explained in Section 5.1, the reduced basis functions satisfy homogeneous
boundary conditions. We then seek a reduced basis approximation of the stochastic
process field of the form

uK(t, ·) ∈ UK .
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We determine uK(t, ·), t ∈ I, from the discrete problem

(4.7)



∫
D

∂uK

∂t
Φ(x)dD +

∫
D
{∇uK · ∇Φ}dD

+ γ

∫
D
N(uK(s,x))Φ(x)dD

=
∫
D

(
g(t,x) + ε

∂3Ŵ
∂t∂x1∂x2

(t,x;ω)

)
Φ(x)dD

uK(0,x) = 0, in D ∀Φ(x) ∈ UK .

The reduced basis approximation of the stochastic process takes the form

uK(t, ·) =
K∑

k=1

αk(t;ω)Φk

and (4.7) may be expressed as
(4.8)

K∑
k=1

dαk

dt

∫
D

Φk(x)Φj(x)dD +
K∑

k=1

αk(t)
∫
D
∇Φk∇ΦjdD

+ γ

∫
D
N

(
K∑

k=1

αk(t)Φk(x)

)
ΦjdD

=
∫
D

(
g(t,x) + ε

∂3Ŵ
∂t∂x1∂x2

(t,x;ω)

)
Φj(x)dD

K∑
k=1

αk(0;ω)Φk(x) = 0, in D,

for j = 1, . . . ,K. Equivalently, we have the system of nonlinear ordinary differential
equations that determine the coefficient functions {αk(t;ω)}K

k=1:

(4.9)

 G
d

dt
~α(t;ω) + G̃~α(t;ω) + ~N (~α(t;ω)) = ~f(t;ω)

~α(0;ω) = ~α0,

where the Gram matrix G, stiffness matrix G̃, nonlinear vector function ~N (~α(t;ω)),
and solution vector ~α(t;ω) are respectively given by

Gjk =
∫
D

Φk(x)Φj(x)dD, G̃jk =
∫
D
∇Φk∇ΦjdD,

~N (~α(t;ω)) = γ

∫
D
N

(
K∑

k=1

αk(t;ω)Φk(x)

)
ΦjdD and (~α)k = αk(t;ω)

for j, k = 1, . . . ,K, while the forcing vector ~f(t;ω) and initial data vector ~α0 are
respectively given by

(~f)j =
∫
D

(
g(t,x) + ε

∂3Ŵ
∂t∂x1∂x2

(t,x;ω)

)
Φj(x)dD

and
(~α0)j = 0
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for j = 1, . . . ,K. Unlike the matrices in a standard FEM formulation, these matri-
ces are not sparse; but their order K is so much smaller (see Section 5) that their
density is of no consequence. Another important observation is that matrices G,
G̃, depend only on the reduced basis functions {Φk}K

k=1 so that they may all be
pre-computed.

4.3. The error in a reduced-order solution. At any given time t, we define
the “error” E(t) in a POD reduced-order solution to be the L2(D)-norm of the
difference between the expected value of the full finite element solution and the
expected value of the reduced-order solution, i.e.,

E(t) =

{∫
D

(∫
Ω

uh(t,x;ω)P(dω)−
∫

Ω

uK(t,x;ω)P(dω)
)2

dD

}1/2

=
{∫
D

(
E(uh(t,x;ω))−E(uK(t,x;ω)

)2
dD
}1/2

≈
{∫
D

(
E(uh;M)−E(uK ;M)

)2
dD
}1/2

,(4.10)

where uh(t,x;ω) denotes the approximate stochastic process determined using the
full finite element simulation code, and uK(t,x;ω) denotes the approximate sto-
chastic process determined by a POD reduced-order model. The expected value
E(·) is defined in Section 2. Using the standard MCFEM described in section 3.1,
we approximate E(uh) by sampling averages E(uh;M) where M is the number
of sample realizations. We can use a similar Monte Carlo reduced-order model-
ing technique to approximate E(uK) by E(uK ;M) for the same number of sample
realizations. Also of interest is the space-time error

ET =

{∫ T

0

E2(s)ds

}1/2

=

{∫ T

0

∫
D

(
E(uh(t,x;ω))−E(uK(t,x;ω)

)2
dDds

}1/2

≈

{∫ T

0

∫
D

(
E(uh;M)−E(uK ;M)

)2
dDds

}1/2

.(4.11)

There are two contributions to these “errors.” One is due to the fact that
the reduced-order model does not exactly reproduce the information contained in
the snapshot set; the other to the fact that the snapshot set itself cannot exactly
represent the full finite element solution.

Recall that the POD reduced bases are determined from a set of snapshots and
that those bases are designed so that most of the information in the snapshot set
is captured. But because we truncate the singular value decomposition quite early,
it is clear that even if the only solutions encountered were linear combinations of
snapshot vectors, there would be many such solutions which would lie partially or
entirely outside the span of the reduced basis.

Even if a reduced basis could exactly capture all the information in the snapshot
set, the errors (4.10) and (4.11) would not vanish because the snapshot set itself
cannot exactly capture all the behaviors allowed in the full finite element space.

A snapshot cannot exactly represent even the finite element solutions used in
its construction because that set consists of a time-sampling of those solutions.
Also, a snapshot set represents only a discrete set of sampled values of any system
parameters or boundary conditions. Strong nonlinearities in those effects can reveal
that a snapshot set is inadequate for a given problem.
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The analyst must therefore always keep in mind the limitations of the snapshot
approach. On the other hand, it is easy to automate, and generally quite practical.
It has been demonstrated many times in the literature that POD-based reduced-
order models are excellent at exploiting the information contained in a snapshot
set; the computational experiments reported in Section 5 provide one such example.
Thus, a key to designing reduced-order models of the POD type is to ensure that
the snapshot set contains sufficient information for the problems to be considered.

5. Computational experiments

We compare the use, efficiency, and accuracy of the POD-based reduced-order
modeling techniques on an example. We consider a nonlinear stochastic PDE in
which a perturbation parameter ε controls the intensity of the space-time white
noise. The problem has a relatively strong cubic nonlinearity, in which the strength
of the nonlinear function N(u(t,x) = u(1−u)2 is γ = 10. The nonlinear stochastic
PDE is rewritten as follows: find u : Ī ×D → R such that

(5.1)



∂u

∂t
(t,x)−∆u(t,x) + 10u(t,x)(1− u(t,x))2

= et sin(x1) cos(x2) + ε
∂3Ŵ

∂t∂x1∂x2
(t,x;ω), in I ×D

u(t,x) = 0, on ∂D
u(0,x) = 0, in D,

where x = (x1, x2) and the deterministic forcing term g(t,x) = et sin(x1) cos(x2).
The Galerkin finite element method on a square grid of J = 1089 nodes is used in

the discrete weak formulation, described in section 3.1, to obtain accurate stochastic
Galerkin finite element approximations of solutions of (5.1). This choice of spatial
dimension is arbitrary; however for this initial study, a relatively course grid was
chosen to all us to compute multiple realizations of the stochastic example problem
(5.1). The time derivative is discretized by a backward-Euler method. Newton’s
method is used to solve the fully discrete nonlinear stochastic PDE. Finite element
solutions are used for the generation of snapshots and later for comparison with
POD-based reduced-order solutions.

The snapshot solutions are generated by the finite element method applied to
problem (5.1) for a particular number of realizations; each realization samples the
piecewise constant white noise ∆Ŵ(· ;ω) with a specific perturbation parameter ε
whose assignment is to be discussed next.

5.1. Generating snapshots. For all simulations involved in the snapshot gener-
ation process, ε is chosen to have the value 0.1. The snapshot vectors are deter-
mined by the following procedure. First, for k = 1, . . . , K̃ = 10 realizations and
t ∈ I = (0, 1), a finite element approximation is determined

∑J
j=1 w(t;ωk)φ(x) of

the solution of (5.1), where J denotes the dimension of the finite element space Sh
0 ,

and {φj}J
j=1 denotes the basis functions for that space. This is the approximate

stochastic process used to generate the snapshots. For S = 200 and P = 10, the
N = S × P = 2000 snapshot vectors

(5.2) ~wn = ~wsp =


w1(ts;ωp)

w2(ts;ωp)
...

wJ(ts;ωp)

 , for s = 1, . . . , S, and p = 1, . . . , P



382 J. BURKARDT, M. GUNZBURGER, AND C. WEBSTER

are then determined for P realizations of (5.1). For each realization p = 1, . . . , P ,
the solution is started impulsively, and evaluated at 200 equally spaced time values
ts, s = 1, . . . , 200, ranging from t = 0 to T = 1, for a total of 2000 snapshots. The
time interval used for sampling snapshots is the same used for the time discretization
of the nonlinear SPDE (5.1). The snapshot vectors {~wn}N

n=1 correspond to the
snapshot functions

wn(x) = wsp(x) =
J∑

j=1

wj(ts;ωp)φj(x) for n = 1, . . . , N.

It is sometimes convenient to modify the snapshot set {~wn}N
n=1 to satisfy certain

boundary conditions. In this case, the snapshot vectors naturally satisfy the Dirich-
let homogeneous boundary conditions. It might also seem relevant to compute the
sample average of the P realizations and use the resulting S snapshot vectors rather
than the complete N snapshot vectors in the reduced-order model. In the next sec-
tion, it is explained why this approach was not employed.

Figure 2. The POD reduced basis of cardinality 16 for the non-
linear stochastic problem 5.1.

5.2. POD reduced bases. POD reduced bases corresponding to the snapshot set
{~wn}N

n=1 are determined as described in Section 4.1. As described in the previous
section, each POD basis function satisfies zero Dirichlet boundary conditions on
the boundary δD. The elements of a K-dimensional POD basis constitute the first
K elements of all POD bases of dimension greater that K. For the snapshot set
determined as described in Section 5.1, the 16-dimensional POD basis functions
are displayed in Figure 2 and the first 16 singular values of the corresponding
snapshot matrix are listed in Table 1. In the context of POD-based reduced-order
modeling, one expects the singular values to decrease rapidly, indicating that a
low-dimension POD basis can capture most of the information in the snapshot set.
This behavior cannot, of course, be universal, but it has been observed in many
examples. In our particular problem we observe from Table 1 and Figure 5.2, that
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1 34.0387 5 8.8536 9 6.4498 13 5.5122
2 13.0477 6 8.4762 10 6.1230 14 4.8172
3 11.7138 7 7.3131 11 5.8013 15 4.7471
4 9.7154 8 7.1571 12 5.5966 16 4.6712

Table 1. The first 16 singular values of the snapshot matrix for
the example problem (5.1).
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Figure 3. The first 100 singular values of the snapshot matrix for
the example problem (5.1).

the singular values of the corresponding snapshot matrix decay rather slowly to
zero. However, we shall show in section 5.5 that the POD-based reduced-order
models for the nonlinear SPDE still perform adequately for the approximation of
ensemble averages of finite element solutions, rather than for the approximate finite
element solutions themselves; this is the usual case for POD-basis reduced-order
models. That is, a “small-dimensional” POD basis can still be sufficient if our
primary interest is approximating the expected value of finite element solutions,
and not the approximation of a particular realization.

Note that if one computes the sample average of the P realizations and uses
the resulting S snapshot vectors rather than the complete N snapshot vectors, the
resulting singular values decay at the same rate. Therefore, the smaller snapshot
set does not provide any extra information or improvement over our reduced-order
calculation.

5.3. Determining POD-based reduced-order approximations. Given a per-
turbation parameter ε and a particular ω ∈ Ω, the K-dimensional system of nonlin-
ear ordinary differential equations (4.9) is used to determine reduced-order solutions
of the example problem (5.1). Approximate solutions of the system of ordinary dif-
ferential equations (4.9) can be determined using an ODE solver of appropriate
order. The computations described here use the finite element type assembly, de-
scribed in section 3, for the considerably smaller K-dimensional system.

The vectors and matrices appearing in the system (4.9) depend only on the choice
of reduced basis, so that once a POD basis is determined as described in section
5.2 it can be reused for different choices of ε and ω. This is a major advantage of
POD-based reduced-order models, where the primary interest is the approximation
of the expected value E(uh(· ;ω). Similar to the MCFEM described in section 3.1,
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we again use a Monte Carlo sampling method for the reduced-order model. That is,
given the number of realizations M ∈ N+ we sample iid realizations of the piecewise
constant white noise ∆Ŵ(· ;ωk) for k = 1, . . . ,M and find uK(· ;ω) satisfying (4.7).
The quantity E(uh) is then approximated by the sampling average:

(5.3) E(uK ;M) =
1
M

M∑
k=1

uK(· ;ωk)

To illustrate the effectiveness of the low-dimensional, POD-based reduced-order
models, we employ several perturbation parameters ε and several different choices
for the dimension of the reduced bases. Note that the set {ωp}P

p=1 used to generate
the snapshot vectors {~wn}N

n=1 is distinct from the set {ωk}M
k=1 used to calculate

the sample average (5.3).

5.4. Perturbation parameters for POD-based reduced-order models. The
specific choices used for ε in the reduced-order simulation are given as follows. For
M = 1000 realizations, we compute the sampling average E(uK ;M), described by
(5.3), using several different cases: ε = 0, 0.01, 0.05, 0.1, 0.5, 1. In each case, the
reduced-order solution uK satisfies (4.7).

It is worth noting something about the six perturbation parameters ε used in
these computational experiments: For all cases except ε = 0.1, the perturbation
parameter is different from the parameter used to generate the snapshots. This is,
of course, how one wants to use a reduced-order model: generate a reduced basis
using snapshots determined from finite element simulations for some specific choice
of data for the example problem (5.1), and then solve the reduced-order model for a
variety of different data. For those cases, the reduced-order simulations are carried
out over the time interval [0, 1], which is the same time interval used to generate
the snapshots.

5.5. Computational results. For all six cases, full finite element solutions em-
ploying thousands of unknowns are determined so that they may be compared to
the POD-based reduced-order solutions for the same data. Specifically, for the com-
parisons, we use the measures E(t) and ET defined in (4.10) and (4.11), respectively.
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Figure 4. E(t) for the POD-based reduced-order models with
epsilon = 0 and ε = 0.1. The plots are on the same scale in-
dicated the effects on the error by introducing the perturbation
parameter ε into the ROM.
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In Figure 6, plots of E(t) versus the time t are provided for each of the six test
problems described in Section 5.4. In each plot, results are displayed for eight values
of the POD basis K, ranging from 2 to 16. Each plot has been scaled separately,
to exhibit the drop in error as K increases. To consider the effect of ε, we also
provide, in Figure 4, a pan of plots drawn to the same scale, for ε = 0 and ε = 0.01.
A comparison of these plots demonstrates the effect of introducing noise into the
system (1.1), while also suggesting how well the mean of the reduced-order solution
still approximates the mean of the finite element solution of the deterministic PDE.
Both plots indicate that the error grows with ε but can be reduced by increasing
K. Obviously, for a given K, by increasing ε, the approximation error E(t) will
generally be larger.

For the example problem (5.1), an examination of Figure 6 shows that very low-
dimensional POD-based reduced-order models are quite effective at approximating
the expected value of the full finite element solutions; even for bases of dimension
less than 10, the “error” E(t) is small. As the perturbation parameter increases,
though, a larger number of basis vectors are required to control the error E(t). It
should be noted that for small perturbation parameters, 0 < ε ≤ 0.01, the error
E(t) follows the error for the case ε = 0, with the obvious stochastic effects present.
The results also suggest that, for this problem, increasing the order of the reduced
basis beyond about K = 10 produced very little further improvement in accuracy.
This conclusion can also be inferred from Table 2 where the space-time “error” ET

versus K is listed. There is a much slower reduction in the error as K increases
from 10 to 16 than the change from 2 to 10.

K ε = 0 ε = 0.01 ε = 0.05 ε = 0.1 ε = 0.5 ε = 1
2 3.17e-02 3.19e-02 3.90e-02 5.07e-02 1.25e-01 2.08e-01
4 3.03e-02 3.06-02 3.72e-02 4.79e-02 1.15e-01 1.89e-01
6 2.61e-02 2.66e-01 3.44e-02 4.54e-02 1.09e-01 1.76e-01
8 2.37e-02 2.42e-02 3.25e-02 4.34e-02 1.04e-01 1.67e-01
10 2.36e-02 2.41e-02 3.18e-02 4.22e-02 9.99e-02 1.60e-01
12 2.31e-02 2.36e-02 3.10e-02 4.11e-02 9.96e-02 1.53e-01
14 2.24e-02 2.29e-02 3.01e-02 4.00e-02 9.37e-02 1.48e-01
16 2.12e-02 2.17e-02 2.93e-02 3.91e-02 9.13e-02 1.44e-01
Table 2. ET for the POD-based reduced-order models vs. the
dimension K of the reduced basis space for the six test cases.

Finally, Figure 6 and Table 2 show that POD-based reduced-order models have
the ability to approximate the expected value of full finite element solutions by
solving a very small dimensional system. This is also evident from observing Figure
5 which plots the approximate expected value E(uh) using the full FEM versus the
approximate expected value E(uK) using the reduced-order model with 2, 8 and
16 POD vectors at times t = 0, 0.25, 0.5, 0.75 and 1. From this plot we see that as
the dimension K increases from 2 to 16 the quality of the approximation improves
dramatically.
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t = 0

t = 0.25

t = 0.5

t = 0.75

t = 1

Full FE Basis 2 POD Basis 8 POD Basis 16 POD Basis

Figure 5. The approximate expected value E(uh), using the
full FEM versus the approximate expected value E(uK) us-
ing the ROM with 2, 8 and 16 POD vectors at times t =
0, 0.25, 0.5, 0.75 and 1. All plots are generated for the case ε = 0.1.
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Figure 6. E(t) for the POD-based reduced-order models for Cases
1-6. As the perturbation parameter ε increases from 0 to 1.0, the
scale of the plots is adjusted to clearly display the error behavior.
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6. Concluding remarks

We saw in section 4.1 that snapshots can be viewed either as finite element
coefficient vectors or as finite element functions. The net effect of taking the latter
view is the appearance of the finite element mass matrix M in, e.g., (4.5). Although
handling the appearance of the mass matrix does not add a significant cost to
the determination of a reduced basis, it also does not appreciably improve the
performance of the reduced-order model. For this reason, in section 5.5, we only
provided results based on viewing snapshots as coefficient vectors.

The results given in Section 5.5 suggest that POD-based reduced-order mod-
eling can be very effective in approximating the expected value of solutions of a
nonlinear stochastic PDE driven by space-time additive white noise. It is therefore
appropriate to briefly examine the cost of these POD-based reduced-order models.
If one settles on a reduced-order modeling technique that relies on the generation of
snapshots, then one only needs to discuss the production of a reduced-order basis
when comparing the cost of such a procedures. That is, regardless of the type of
reduced-order model employed, one must certainly “pay the price” of computing a
snapshot set. The expense of extracting the reduced order basis from the snapshot
set is minuscule compared to the cost of generating the snapshot set itself.

POD methods have attracted much research interest in recent years as an inex-
pensive means of simulating deterministic PDEs. To our knowledge, little work has
been done on extending this method to the field of stochastic PDEs, and yet this
is a field of study which seems ideal for this approach, given the need to consider
a vast ensemble of solutions. We hope that this work invites further inquiry by
others into a relatively open area.

There are many worthwhile problems to consider in both linear and nonlinear
stochastic PDEs. For instance, multiplicative noise, which provides greater corre-
lation, could be applied to the coefficients of the equation or the forcing functions.
Studies of these cases may lead to a better understanding of the errors that oc-
cur when approximating ensemble averages of solutions by a reduced-order model.
Such investigations will increase the understanding, interest and application of these
methods for the analysis of the stochastic dynamics of linear and nonlinear problems
of practical interest [18,24,55–58].
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approaches to the Karhunen-Lóeve decomposition, Comp. Chem. Engng. 20, 1996, 495-506.
[26] I. Gyongy, Lattice Approximations of Stochastic Quasi-Linear Parabolic Partial Differential

Equations Driven by Space-Time White Noise II, Potential Analysis. 11, 1999, 1-37.
[27] I. Gyongy and T. Martinez, On the Approximation of Solutions of Stochastic Differential

Equations of Elliptic Type, 2003, to appear.
[28] P. Holmes and J. Lumley and G. Berkooz, Turbulence, Coherent Structures, Dynamical

Systems and Symmetry, Cambridge University Press, Cambridge, 1996.
[29] P. Holmes and J. Lumley and G. Berkooz and J. Mattingly and R. Wittenberg, Low-

dimensional models of coherent structures in turbulence, Phys. Rep. 287, 1997, 337-384.
[30] C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element

Method, Cambridge University Press., 1994.

[31] P. E. Kloeden and E. Platen, Numerical Solution Stochastic Differential Equations ,

Spring-Verlag., 1992.



390 J. BURKARDT, M. GUNZBURGER, AND C. WEBSTER

[32] K. Kunisch and S. Volkwein, Control of Burger’s equation by a reduced order approach

using proper orthogonal decomposition, JOTA 102, 1999, 345-371.

[33] K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for par-
abolic problems, Spezialforschungsbereich F003 Optimierung und Kontrolle, Projektbereich

Kontinuierliche Optimierung und Kontrolle, Bericht Nr. 153, Graz, 1999.

[34] J. Lumley, Stochastic Tools in Turbulence, Academic, New York, 1971.
[35] H. G. Matthies and A. Keese, Galerkin Methods for Linear and Nonlinear Elliptic Sto-

chastic Partial Differential Equations, 2003, to appear.

[36] L. Mytnik, Stochastic Partial Differential Equation Driven by Stable Noise, Probab. Theory
Relat. Fields. 123, 2002, 157-201.

[37] D. Nagy, Modal representation of geometrically nonlinear behavior by the finite element

method, Comput. & Struct. 10, 683 (1979).
[38] A. K. Noor, Recent advances in reduction methods for nonlinear problems, Comput. &

Struct. 13, 31 (1981).
[39] A. K. Noor and C.M. Anderson and J.M. Peters, Reduced basis technique for collapse

analysis of shells, AAIA J. 19, 393 (1981).

[40] A. K. Noor and J.M. Peters, Tracking post-linit-paths with reduced basis technique, Com-
put. Methods Appl. Mech. Eng. 28, 217 (1981).

[41] A. K. Noor, Recent advances in reduction methods for nonlinear problems, Comput. &

Struc. 13, 1981, 31-44.
[42] B. Øksendal, Stochastic Differential Equations. An Introduction with Applications , Spring-

Verlag., fifth edition, 1998.

[43] H. M. Park and D. Cho, Low dimensional modeling of flow reactors, Int. J. Heat Mass
Transf. 39, 1996, 3311-3323.

[44] H. M. Park and J. S. Chung A sequential method of solving inverse natural convection

problems. Inverse Problems 18 (2002), no. 3, 529–546.
[45] H. M. Park and Y. D. Jang Control of Burgers equation by means of mode reduction.

Internat. J. Engrg. Sci. 38 (2000), no. 7, 785–805
[46] H. M. Park and J. H. Lee Solution of an inverse heat transfer problem by means of empirical

reduction of modes. Z. Angew. Math. Phys. 51 (2000), no. 1, 17–38

[47] H. M. Park and M. W. Lee An efficient method of solving the Navier-Stokes equations for
flow control. Internat. J. Numer. Methods Engrg. 41 (1998), no. 6, 1133–1151

[48] H. M. Park and W. J. Lee A new numerical method for the boundary optimal control

problems of the heat conduction equation. Internat. J. Numer. Methods Engrg. 53 (2002),
no. 7, 1593–1613

[49] J. S. Peterson, The reduced basis method for incompressible viscous flow calculations, SIAM

J. Sci. Stat. Comput. 10. 777 (1989).
[50] M. Rathinam and L. Petzold, A new look at proper orthogonal decomposition, to appear.

[51] M. Rathinam and L. Petzold, Dynamic iteration using reduced order models: A method

for simulation of large scale modular systems, to appear.
[52] S. Ravindran, Proper orthogonal decomposition in optimal control of fluids, Int. J. Numer.

Meth. Fluids 34, 2000, 425-448.
[53] S. Ravindran, Reduced-order adaptive controllers for fluid flows using POD, J. Sci. Comput.

15 (2000), no. 4, 457–478.
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