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An Inverse Problem: Humpty Dumpty

Humpty Dumpty sat on a wall,
Humpty Dumpty had a great fall.
All the king's horses and all the king's men
Couldn’t put Humpty together again.

Given pieces b after transformation A, can we recover x?



The T Puzzle - (1800)




Pentominoes & Polyominoes (Golomb, 1965)

Can we tile a 6x10 rectangle with the 12 pentominos?
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Eternity - (Monckton, 1999)

Can we tile this shape of 7524 30-60-90 triangles using 209 tiles?
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Eternity - (Monckton, 1999)

We are to use 209 tiles, each formed of 36 30-60-90 triangles.
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OK, But Are Tiling Problems Math?

“One can guess that there are several tilings of a 6 x 10 rectangle using

the twelve pentominoes. However, one might not predict just how many

there are. An exhaustive computer search has found that there are 2339

such tilings. These questions make nice puzzles, but are not the kind of
interesting mathematical problem that we are looking for.”

“Tilings" - Federico Ardila, Richard Stanley
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Tile : 2 Reflections: 4 Rotations = 8 Orientations




Simultaneous Solution: Linear Algebra?
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Linear Algebra can set multiple objects that satisfy multiple requirements:



Tiling — Exact Cover

Donald Knuth: “Tiling is a version of the exact cover problem.”

Select columns of a 0/1 matrix so every row has a single 1:

010100
001 010
101000
A=]101 01 0 1
1 00 0 01
101000
01 0011
010100
0 01010
101000
A=]101 0 1 0 1
100 0 01
1 01 0 00
01 0011




Exact Cover — Linear Algebra

Select columns of A so every row has a single 1.

This is equivalent to
Find x so that A*x=b where b is a vector of 1's.

Now this is linear algebra!

010100 1 1
0 01 010 0 1
101 0 00 0 1
01010 1 |F* 1| = 1
100 0 01 1 1
1 01 0 00 0 1
01 0011 1




Example: Tile the Reid Polygon with 4 Dominoes
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The Reid Equations: ¢ : eg
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The Reid Variables xq : xqg

x1 x3
x2 x4 xb

x6

x9 x10

We start to see how the equations and variables combine:

x1 + xg =1 Cell 1 must be covered once

x3 + xg =1 Cell 2 must be covered once

x1 + xo + x7 =1 Cell 3 must be covered once



The Reid Linear System: 8 Equations, 10 Unknowns
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X1 X2 X3 Xy X X6 X7 X8 X9 X10

€1 X1 +X6 =
(S —|—X3 —|—X6

e3: X1 +xo +X7
€4 : X3 +Xa +X7  +Xg =
[ X5 —+Xg

€6 - X2 “+Xog

er: X4 +Xo +Xi0
€g : X5 +X190 =
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Reduced Row Echelon Form of Reid Linear System

Notice that variables 7, 9 and 10 are free!

X1 X2 X3 X4 X5 Xp X7 Xg X9 X10 b
ep: 1 1 -1 =0
e : 1 1 =1
e : 1 1 -1 =0
e : 1 1 1 =1
65 : 1 1 =1
€6 . 1 -1 1 = 0
er: 1 1 = 0
€g . =0

Equation 8 disappears because once we have covered the first 7 cells, ceII
8 is guaranteed to be covered. ‘




Drop Zero Row, Add Degrees of Freedom

We add placeholder equations for variables 7, 9 and 10.

X1 Xo X3 X4 X5 Xp X7 X X9 X10 b
e: 1 1 -1 =
e: 1 1 —
e 1 1 ~1 =
ey : 1 1 1 =
€5 . 1 1 =
€ : 1 -1 1 =
fi : 1 =
€7 : 1 1 =
f: 1 -
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The Reid Tilings (Labeled)

x6 x6
x8
x2 x4 xb x2
x10
x6
x1 x3
X7
x5 x5
x9 x9




Bigger Problems Need a Better Solver

The Reid linear system A *x x = b was M = 8 equations in N = 10
unknowns. There were S = 4 copies of T =1 tile type with U = 2
orientations. It was easy to write a code to reduce A and b, via reduced
row-echelon form; then to deal with the free variables, and then to
eliminate solutions with unacceptable values. But for larger problems,
this approach won't work.

@ The row-reduced echelon form (RREF) is very sensitive to roundoff.
We can't rely on MATLAB's rref (A) command, (real arithmetic).
A “hand-made” integer code can only handle small problems.
Tiling regions can have thousands of cells (equations/rows = M).
Tiling problems can have hundreds of distinct tiles = T.

Each distinct tile may have roughly M x U configurations,
(orientations followed by placement in grid) so variables/columns
Na~TxMxU.

@ The linear system may have many degrees of freedom D




Accurate & Efficient A x x = b Solvers!

Solving underdetermined integer problems A x x = b turns out to be an
activity of enormous interest, especially in the linear programming
community, in which the problem can include the request to optimize a
corresponding cost function ¢(x).

MATLAB Optimization Toolbox includes optimvar().
Fast and efficient solvers are freely available: CPLEX, Gurobi, SCIP.

Moreover, the linear programming community uses a simple LP file
format to describe such problems. So our task can be simplified:

@ Set up the problem, write it to an LP file;

e Call an appropriate integer linear programming solver;

@ Retrieve the solutions, count, plot, analyze;




Cleve Moler's Online T Puzzler

N

ebook: https://www.mathworks.com/moler/exm/index.html




The Humpty Dumpty Problem

If the T puzzle is similar to the Reid problem, then presumably we can
construct a procedure that will automatically find all possible solutions.

But:

Each tile is a different shape;

The tiles are not simple rectangular shapes;

Some tiles have more reflections and rotations than others;

A rectangular grid of cells won't work; we have diagonal lines too.
The resulting linear system will be much larger than for Reid.




T Puzzle Grid

To accommodate various rotations, reflections, translations of the tiles,
we need a grid of 6 x 9 x 4 isosceles right triangles: 6 big squares, each
containing 9 little squares, each containing 4 triangles.
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Simulation Tile Placement

In order to automate the problem definition, we used a “boundary word"
description of each tile, in a standard configuration, a string of letters N,
S, E, W, NE, NW, SE, SW, that outline the shape.

Simple transformations of the boundary word correspond to rotation and
reflection. Translation is also easy to model.

We must verify that each tranformation results in a configuration that is
entirely inside the puzzle region.




Linear System for T Puzzle

Now we have the tools we need to build the linear system A% x = b.

There are 6 x 9 x 4 = 216 triangular elements. Each of them must be
covered exactly once. There are 4 tiles, each must be used exactly once.
This gives a total of 216+4=220 equations,

Each tile configuration (rotation + reflection + translation remaining in
grid) is a variable. The tiles vary in their number of configurations:

1| 20| long
2 2 | weird
3| 56 | trapezoid

4 | 70 | triangle
Total | 148 | The T

Solutions x of our 220 x 148 linear system must be “binary”.

We write the linear system as an LP file. In a few seconds, Gurobi retug
2 possible solutions. One is simply the left/right reflection of the other.



Arrow solution

The Arrow gurobi solution
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Fat Arrow solution

The Fat T gurobi solution
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Rhombus solution

The Rhombus gurobi solution
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T solution

The T gurobi solution
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4x5 Example: Region R




4x5 Example: Tiles




4x5 Example: Degrees of Freedom Go Crazy

RREF system has 23 rows and 62 columns;
Augmented system has 42 degrees of freedom;
ALL binary right hand sides is 242 on the order of a trillion:

Only check binary RHS with at most 4 degrees of freedom set to 1:
14+42442%41/2+42x41%x40/6 4 42«41 x40 % 39/24 = 124,314;

Generated and solved all 123,314 right hand sides, found 4 binary
solutions in less than 7 seconds.




4x5 Example: Four Solutions




A Large Pentomino Problem
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12 pentominoes, 20 copies each, 1,213 equations, 67,396 variables

8 (equivalent) solutions computed by CPLEX in 9.5 minutes.



Eternity -
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Eternity - solved for £1,000,000 prize (Selby, 2000)
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Trying the whole Eternity puzzle (209/209 tiles)
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Trying the whole Eternity puzzle (209/209 tiles)

We are running the Eternity problem on Gurobi.
Gurobi reduced our LP problem to a kernel of about 5,000 constraints.
While it works on them, it can display a plot of its progress.

1500 constraints done in 2,000,000 seconds

rate = 1333 seconds per constraint

5000 constraints * 1333 seconds = 6,665,000 seconds total.
6,665,000 seconds / 86400 seconds per day = 77 days.

Optimism: Could get a positive result in 6 more weeks.




Conclusion: Rebuilding with Linear Algebra

To solve a tiling problem, we look for an underlying grid of cells that
define both the region and the tiles. This isn’t always possible!

Equations: Each region cell must be covered, just once.

Equations: Each tile must be used, just once.

Variables: Each rotated, reflected, translated tile remaining in region
Equations + Variables: underdetermined linear system Ax = b.
Reduced Row Echelon Form lets us analyze the system.

Linear Programming Software solves big systems.

We seek binary vectors x whose entries are only 0 or 1.

There may be no such solutions at all.

If there are free variables, we may have multiple solutions.

Any solution x tells us exactly how to use the pieces so we can put a |
broken object back together... )




The Humpty Dumpty Solution

Humpty Dumpty thought he was through,
But linear algebra knew what to do.

It set up the system and solved it and then
Neatly put Humpty together again.
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