Analysis of SPDEs and numerical methods for UQ

Part II: Well-posed SPDEs, regularity and numerical approximations

John Burkardt ${ }^{\dagger}$ \& Clayton Webster*
Thanks to Max Gunzburger \& Guannan Zhang (FSU), Fabio Nobile (MOX), Raul Tempone (KAUST)
${ }^{\dagger}$ Department of Scientific Computing
Florida State University
* CEES, CASL, Computer Science and Mathematics Division Oak Ridge National Laboratory

April 2-3, 2012

Outline

(1) Stochastic partial differential equation (SPDE)
(2) Finite dimensional noise approximation
(3) Monte Carlo FEM (MCFEM)
(4) Stochastic Regularity

6) Stochastic Galerkin (SG) FEM
(7) Stochastic collocation (SC) FEM
(5) Stochastic polynomial approximation

Consider an operator \mathcal{L}, linear or nonlinear, on a domain $D \subset \mathbb{R}^{d}$, which depends on some coefficients $a(\omega, x)$ with $x \in D, \omega \in \Omega$ and (Ω, \mathcal{F}, P) a complete probability space. The forcing $f=f(\omega, x)$ and the solution $u=u(\omega, x)$ are random fields s.t.

$$
\begin{equation*}
\mathcal{L}(a)(u)=f \quad \text { a.e. in } D \tag{1}
\end{equation*}
$$

equipped with suitable boundary conditions.

$\|u(\cdot, \omega)\|_{W(D)} \leq C\|f(\cdot, \omega)\|_{W^{*}(D)}$

Consider an operator \mathcal{L}, linear or nonlinear, on a domain $D \subset \mathbb{R}^{d}$, which depends on some coefficients $a(\omega, x)$ with $x \in D, \omega \in \Omega$ and (Ω, \mathcal{F}, P) a complete probability space. The forcing $f=f(\omega, x)$ and the solution $u=u(\omega, x)$ are random fields s.t.

$$
\begin{equation*}
\mathcal{L}(a)(u)=f \quad \text { a.e. in } D \tag{1}
\end{equation*}
$$

equipped with suitable boundary conditions.
A_{1}. the solution to (1) has realizations in the Banach space $W(D)$, i.e. $u(\cdot, \omega) \in W(D)$ almost surely

$$
\|u(\cdot, \omega)\|_{W(D)} \leq C\|f(\cdot, \omega)\|_{W^{*}(D)}
$$

A_{2}. the forcing term $f \in L_{\mathbb{P}}^{2}(\Omega) \otimes W^{*}(D) \equiv L_{\mathbb{P}}^{2}\left(\Omega ; W^{*}(D)\right)$ is such that the solution u is unique and bounded in $L_{\mathbb{P}}^{2}(\Omega) \otimes W(D) \equiv L_{\mathbb{P}}^{2}(\Omega ; W(D))$
$A_{3} . \mathbb{P}\left[a(\omega, x) \in\left(a_{\min }, a_{\max }\right) \forall x \in \bar{D}\right]=1, a_{\min }>0, a_{\max }<\infty$

Examples

Linear and Nonlinear Elliptic SPDEs

Example: The linear elliptic problem

$$
\left\{\begin{aligned}
-\nabla \cdot(a(\omega, \cdot) \nabla u(\omega, \cdot)) & =f(\omega, \cdot) & & \text { in } \Omega \times D \\
u(\omega, \cdot) & =0 & & \text { on } \Omega \times \partial D
\end{aligned}\right.
$$

with $f(\omega, \cdot)$ square integrable with respect to \mathbb{P}, satisfies assumptions A_{1}, A_{2} and A_{3} with $W(D)=H_{0}^{1}(D)$

Example: The nonlinear elliptic problem

Similarly, for $k \in \mathbb{N}^{+}$,

$$
\left\{\begin{aligned}
-\nabla \cdot(a(\omega, \cdot) \nabla u(\omega, \cdot))+u(\omega, \cdot)|u(\omega, \cdot)|^{k} & =f(\omega, \cdot) & & \text { in } \Omega \times D \\
u(\omega, \cdot) & =0 & & \text { on } \Omega \times \partial D
\end{aligned}\right.
$$

satisfies assumptions A_{1}, A_{2} and A_{3} with $W(D)=H_{0}^{1}(D) \cap L^{k+2}(D)$

Forward Problem: to approximate u or some statistical Qol depending on u :

$$
\mathbf{\Phi}_{u}=\langle\mathbf{\Phi}(u)\rangle:=\mathbb{E}[\boldsymbol{\Phi}(u)]=\int_{\Omega} \int_{D} \Phi(u(\omega, x), \omega, x) d x d \mathbb{P}(\omega)
$$

e.g. $\bar{u}\left(x_{0}\right)=\mathbb{E}[u]\left(x_{0}\right), \mathrm{OR} \operatorname{Var}[u]\left(x_{0}\right)=\mathbb{E}\left[(\widetilde{u})^{2}\right]\left(x_{0}\right)$, where $\widetilde{u}=u-\bar{u}$,

$$
\text { OR } \mathbb{P}\left[u \geq u_{0}\right]=\mathbb{P}\left[\left\{\omega \in \Omega: u\left(\omega, x_{0}\right) \geq u_{0}\right\}\right]=\mathbb{E}\left[\chi_{\left\{u \geq u_{0}\right\}}\right]
$$

OR even statistics of functionals of u, i.e. $\phi(u)=\int_{\Sigma \subset D} u(\cdot, x) d x$ where Σ is a subdomain of interest.

Goal: to develop highly efficient, robust and scalable techniques that include uncertainty in the models, allow us to quantify uncertainty in the outputs and provide reliable and verifiable predictions. Probability Theory provides an effective tool to describe and propagate uncertainty.

Forward Problem: to approximate u or some statistical Qol depending on u :

$$
\mathbf{\Phi}_{u}=\langle\boldsymbol{\Phi}(u)\rangle:=\mathbb{E}[\boldsymbol{\Phi}(u)]=\int_{\Omega} \int_{D} \Phi(u(\omega, x), \omega, x) d x d \mathbb{P}(\omega)
$$

e.g. $\bar{u}\left(x_{0}\right)=\mathbb{E}[u]\left(x_{0}\right), \mathrm{OR} \operatorname{Var}[u]\left(x_{0}\right)=\mathbb{E}\left[(\widetilde{u})^{2}\right]\left(x_{0}\right)$, where $\widetilde{u}=u-\bar{u}$,

$$
\text { OR } \mathbb{P}\left[u \geq u_{0}\right]=\mathbb{P}\left[\left\{\omega \in \Omega: u\left(\omega, x_{0}\right) \geq u_{0}\right\}\right]=\mathbb{E}\left[\chi_{\left\{u \geq u_{0}\right\}}\right]
$$

OR even statistics of functionals of u, i.e. $\phi(u)=\int_{\Sigma \subset D} u(\cdot, x) d x$ where Σ is a subdomain of interest.

Goal: to develop highly efficient, robust and scalable techniques that include uncertainty in the models, allow us to quantify uncertainty in the outputs and provide reliable and verifiable predictions. Probability Theory provides an effective tool to describe and propagate uncertainty.

WLOG assume the random fields $a(\omega, x)$ and $f(\omega, x)$ depends on a finite number of random variables $\mathbf{Y}(\omega)=\left[Y_{1}(\omega), \ldots, Y_{N}(\omega)\right]: \Omega \rightarrow \mathbb{R}^{N}$:

$$
a_{N}(\omega, x)=a(\mathbf{Y}(\omega), x), \quad f_{N}(\omega, x)=f(\mathbf{Y}(\omega), x)
$$

Finite dimensional noise assumption

WLOG assume the random fields $a(\omega, x)$ and $f(\omega, x)$ depends on a finite number of random variables $\mathbf{Y}(\omega)=\left[Y_{1}(\omega), \ldots, Y_{N}(\omega)\right]: \Omega \rightarrow \mathbb{R}^{N}$:

$$
a_{N}(\omega, x)=a(\mathbf{Y}(\omega), x), \quad f_{N}(\omega, x)=f(\mathbf{Y}(\omega), x)
$$

(1) Piecewise constant material properties: Let $\left\{D_{n}\right\}_{n=1}^{N}$ be a partition of D then define $a_{N}(\omega, x)=\sum_{i=1}^{N} \sigma_{i} Y_{i}(\omega) \chi_{D_{i}}(x)$
(2) ∞-dimensional random field suitably truncated, e.g. lognormal permeability model in groundwater flows

- $\forall \omega \in \Omega, a(\omega, \cdot) \in L^{\infty}(D)$
- $\forall x_{0} \in D, a\left(\cdot, x_{0}\right)$ is a random variable, e.g. $a\left(\cdot, x_{0}\right) \sim N(\mu, \sigma)$
- the interaction between points is described by a covariance function, e.g. $\operatorname{Cov}[a]\left(x_{1}, x_{2}\right)=\mathbb{E}\left[\widetilde{a}\left(\cdot, x_{1}\right) \widetilde{a}\left(\cdot, x_{2}\right)\right]=\sigma^{2} \exp \left(-\frac{\left\|x_{1}-x_{2}\right\|^{2}}{L_{c}^{2}}\right)$

Expand a in a Karhunen-Loève expansion and retain the first N terms, denoted a_{N}, to capture most of the variability

Example random fields

b_{n} : eigenfunctions of $\int_{D} \mathbb{C}_{a}\left(x_{1}, x_{2}\right) b_{n}\left(x_{2}\right) d x_{2}=\lambda_{n} b_{n}\left(x_{1}\right),\left\|b_{n}\right\|_{L^{2}(D)}=1$ Y_{n} : uncorrelated RVs with $\operatorname{Var}\left[Y_{n}\right]=\lambda_{n}$

Example: Uniform random field

$$
a(\omega, x)=a_{0}+\sigma \sum_{n=1}^{\infty} b_{n}(x) Y_{n}(\omega)
$$

- $Y_{n} \sim U(-\sqrt{3}, \sqrt{3}), \quad \mathbb{E}\left[Y_{n}\right]=0, \quad \operatorname{Var}\left[Y_{n}\right]=1$
- $a_{\text {min }}=a_{0}-\sigma \sum_{n=1}^{\infty} \sqrt{3}\left\|b_{n}\right\|_{L^{\infty}(D)}>0$ if σ is not too large

Example: Lognormal random field

$$
a(\omega, x)=a_{0}+\exp \left(\sum_{n=1}^{\infty} b_{n}(x) Y_{n}(\omega)\right)
$$

- $Y_{n} \sim N(0,1), \quad \mathbb{E}\left[Y_{n}\right]=0, \quad \operatorname{Var}\left[Y_{n}\right]=1$
- $a_{\min }=0$ and $a_{\max }=\infty$

Approximating a Stochastic PDE

Transform SBVP to Parameterized deterministic BVP

- Given $a_{N}(\mathbf{Y}(\omega), x), f_{N}(\mathbf{Y}(\omega), x) \Rightarrow u_{N}\left(Y_{1}(\omega), \ldots, Y_{N}(\omega), x\right)$ s.t.

$$
\mathcal{L}\left(a_{N}\right)\left(u_{N}\right)=f_{N} \quad \text { in } D \text { a.s. }
$$

- $\Gamma_{n} \equiv Y_{n}(\Omega) \subset \mathbb{R}$ and $\Gamma=\prod_{n=1}^{N} \Gamma_{n} \subset \mathbb{R}^{N}$ - image of the random vector $\mathbf{Y}(\Omega)$ (curse of dimensionality when N is large)
- $\mathbf{Y}=\left(Y_{1}, Y_{2}, \ldots, Y_{N}\right)$ has a joint PDF $\rho: \Gamma \rightarrow \mathbb{R}_{+}$, with $\rho \in L^{\infty}(\Gamma)$, i.e. for $\mathbf{y} \in \Gamma$

$$
\mathbb{P}[Z \in \gamma \subset \Gamma]=\int_{\gamma} \rho(\mathbf{y}) d \mathbf{y}
$$

i.e. transform the measure \mathbb{P} to \mathbb{R}^{N}

Our goal of predicting the statistical behavior of a physical system often requires the approximation of multi-dimensional statistical Qols, e.g.

Approximating a Stochastic PDE

Transform SBVP to Parameterized deterministic BVP

- Given $a_{N}(\mathbf{Y}(\omega), x), f_{N}(\mathbf{Y}(\omega), x) \Rightarrow u_{N}\left(Y_{1}(\omega), \ldots, Y_{N}(\omega), x\right)$ s.t.

$$
\mathcal{L}\left(a_{N}\right)\left(u_{N}\right)=f_{N} \quad \text { in } D \text { a.s. }
$$

- $\Gamma_{n} \equiv Y_{n}(\Omega) \subset \mathbb{R}$ and $\Gamma=\prod_{n=1}^{N} \Gamma_{n} \subset \mathbb{R}^{N}$ - image of the random vector $\mathbf{Y}(\Omega)$ (curse of dimensionality when N is large)
- $\mathbf{Y}=\left(Y_{1}, Y_{2}, \ldots, Y_{N}\right)$ has a joint PDF $\rho: \Gamma \rightarrow \mathbb{R}_{+}$, with $\rho \in L^{\infty}(\Gamma)$, i.e. for $\mathbf{y} \in \Gamma$

$$
\mathbb{P}[Z \in \gamma \subset \Gamma]=\int_{\gamma} \rho(\mathbf{y}) d \mathbf{y}
$$

i.e. transform the measure \mathbb{P} to \mathbb{R}^{N}

Quantities of interest (Qol)

Our goal of predicting the statistical behavior of a physical system often requires the approximation of multi-dimensional statistical Qols, e.g.:

$$
\mathbb{E}[u](x)=\int_{\Gamma} u(\mathbf{y}, x) \rho(\mathbf{y}) d \mathbf{y}, \quad \text { where } \mathbf{y} \in \Gamma^{N} \text { and } x \in \bar{D}
$$

- By Lax-Milgram \exists ! $u \in H_{P}=L_{P}^{2}\left(\Omega ; H_{0}^{1}(D)\right)$ to the linear SPDE s.t.

$$
\|u\|_{H_{P}} \leq \frac{C_{P}}{a_{\min }}\left(\int_{D} \mathbb{E}\left[f^{2}\right] d x\right)^{1 / 2}
$$

Strong formulation: find $u(\mathbf{y}, x) \in H_{\rho}=L_{\rho}^{2}\left(\Gamma ; H_{0}^{1}(D)\right)$ s.t.

$$
\left\{\begin{aligned}
-\nabla \cdot(a(\mathbf{y}, x) \nabla u(\mathbf{y}, x)) & =f(\mathbf{y}, x) & & \text { for a.e. } x \in D, \\
u(\mathbf{y}, x) & =0 & & \text { for a.e. } x \in \partial D,
\end{aligned}\right.
$$

where $\mathbf{y} \in \Gamma \subset \mathbb{R}^{N}$ and $x \in \bar{D}$

- By Lax-Milgram $\exists!u \in H_{P}=L_{P}^{2}\left(\Omega ; H_{0}^{1}(D)\right)$ to the linear SPDE s.t.

$$
\|u\|_{H_{P}} \leq \frac{C_{P}}{a_{\min }}\left(\int_{D} \mathbb{E}\left[f^{2}\right] d x\right)^{1 / 2}
$$

Strong formulation: find $u(\mathbf{y}, x) \in H_{\rho}=L_{\rho}^{2}\left(\Gamma ; H_{0}^{1}(D)\right)$ s.t.

$$
\left\{\begin{aligned}
-\nabla \cdot(a(\mathbf{y}, x) \nabla u(\mathbf{y}, x)) & =f(\mathbf{y}, x) & & \text { for a.e. } x \in D \\
u(\mathbf{y}, x) & =0 & & \text { for a.e. } x \in \partial D
\end{aligned}\right.
$$

where $\mathbf{y} \in \Gamma \subset \mathbb{R}^{N}$ and $x \in \bar{D}$

Weak formulation: find $u \in H_{\rho}$ s.t., $\forall v \in H_{\rho}$

$$
\begin{aligned}
\mathbb{E}\left[\int_{D} a(\mathbf{y}, x) \nabla u(\mathbf{y}, x) \cdot \nabla v(\mathbf{y}, x) d x\right] & =\mathbb{E}\left[\int_{D} f(\mathbf{y}, x) \cdot v(\mathbf{y}, x) d x\right] \\
\int_{\Gamma} \int_{D} a(\mathbf{y}, x) \nabla u(\mathbf{y}, x) \cdot \nabla v(\mathbf{y}, x) \rho(\mathbf{y}) d x d \mathbf{y} & =\int_{\Gamma} \int_{D} f(\mathbf{y}, x) \cdot v(\mathbf{y}, x) \rho(\mathbf{y}) d x d \mathbf{y}
\end{aligned}
$$

Stochastic finite element methods (SFEMs)

Direct (spectral) methods

Sampling-based methods

- methods for which spatial discretization is effected using finite element methods $(\text { FEMs })^{\dagger}$

```
Stochastic sampling methods (SSMs):
random samples in \Gamma of PDE inputs are used
to compute ensemble averages of statistical
Qols, e.g. MCFEM - non-intrusive
```

- Stochastic polynomial approximation
(1) Stochastic Galerkin methods (SGMs)
probabilistic discretization is also effected by a spectral Galerkin projection onto e.g. an L_{ρ}^{2}-orthogonal basis (Wiener or polynomial chaos) - intrusive
(2) Stochastic Collocation methods (SCMs)
probabilistic discretization is effected by collocating the FE solution on a particular set of of points and then connect the realizations with suitable interpolatory basis (Lagrangian) - non-intrusive

Stochastic finite element methods (SFEMs)

Direct (spectral) methods

Monte Carlo
Sampling-based methods

- methods for which spatial discretization is effected using finite element methods $\left(\right.$ FEMs) ${ }^{\dagger}$
- Stochastic sampling methods (SSMs): random samples in Γ of PDE inputs are used to compute ensemble averages of statistical Qols, e.g. MCFEM - non-intrusive
- Stochastic polynomial approximation
(1) Stochastic Galerkin methods (SGMs)
probabilistic discretization is also effected by a spectral Galerkin projection onto e.g. an L_{ρ}^{2}-orthogonal basis (Wiener or polynomial chaos) - intrusive
(2) Stochastic Collocation methods (SCMs)
probabilistic discretization is effected by collocating the FE solution on a particular set of of points and then connect the realizations with suitable interpolatory basis (Lagrangian) - non-intrusive

Stochastic finite element methods (SFEMs)

Direct (spectral) methods

```
Galerkin
Collocation
Monte Carlo
```

Sampling-based methods

- methods for which spatial discretization is effected using finite element methods $\left(\right.$ FEMs) ${ }^{\dagger}$
- Stochastic sampling methods (SSMs): random samples in Γ of PDE inputs are used to compute ensemble averages of statistical Qols, e.g. MCFEM - non-intrusive
- Stochastic polynomial approximation
(1) Stochastic Galerkin methods (SGMs):
probabilistic discretization is also effected by a spectral Galerkin projection onto e.g. an L_{ρ}^{2}-orthogonal basis (Wiener or polynomial chaos) - intrusive
(2) Stochastic Collocation methods (SCMs):
probabilistic discretization is effected by collocating the FE solution on a particular set of of points and then connect the realizations with suitable interpolatory basis (Lagrangian) - non-intrusive

NOTICE

(1) Spatial discretization:
${ }^{\dagger}$ Throughout, we assume that spatial discretization is effected using finite element methods; most of what we say also holds for other spatial discretization approaches, e.g., finite differences, finite volumes, spectral, etc.
(2) Probabilistic discretization:

Throughout, we assume that the probabilistic discretization is effected using globally supported spectral or interpolatory basis functions. In this sense adaptive refinement refers to the anisotropic polynomial order used by the global basis.

- Adaptive wavelet stochastic collocation method for non-smooth solutions of SPDEs, Max Gunzburger, Clayton Webster, Guannan Zhang Wednesday 2:30pm: MS53 - Recent Advances in Numerical SPDEs

Monte Carlo FEM (MCFEM)

Approximation statistics of Qols $Q(u(\mathbf{y}, x))$
(1) Classical approach: Choose a number of realizations, $M \in \mathbb{N}_{+}$, and let $\left\{\mathbf{y}_{k}\right\}_{k=1}^{M}$ be a given sample set of random abscissas

If desired evaluate the Qol $Q\left(u^{h}\left(\mathbf{y}_{k}, \cdot\right)\right)$
(3) Approximate statistics, e.g. expectations $\mathbb{E}\left[u^{h}\right](x)$, by sample averages:

Goal: Compute, with high probability, sample statistics, e.g.

Monte Carlo FEM (MCFEM)

Approximation statistics of Qols $Q(u(\mathbf{y}, x))$
(1) Classical approach: Choose a number of realizations, $M \in \mathbb{N}_{+}$, and let $\left\{\mathbf{y}_{k}\right\}_{k=1}^{M}$ be a given sample set of random abscissas
(2) For each $k=1, \ldots, M$ sample iid realizations of the diffusion $a\left(\mathbf{y}_{k}, x\right)$, the load $f\left(\mathbf{y}_{k}, x\right)$ and find a FEM approximation $u^{h}\left(\mathbf{y}_{k}, \cdot\right) \in W_{h}(D)$ s.t.

$$
\left\{\begin{aligned}
-\nabla \cdot\left(a\left(\mathbf{y}_{k}, \cdot\right) \nabla u^{h}\left(\mathbf{y}_{k}, \cdot\right)\right) & =f\left(\mathbf{y}_{k}, \cdot\right), & & \text { in } D \\
u^{h}\left(\mathbf{y}_{k}, \cdot\right) & =0, & & \text { on } \partial D
\end{aligned}\right.
$$

If desired evaluate the Qol $Q\left(u^{h}\left(\mathbf{y}_{k}, \cdot\right)\right)$

Goal: Compute, with high probability, sample statistics, e.g.

Monte Carlo FEM (MCFEM)

Approximation statistics of Qols $Q(u(\mathbf{y}, x))$
(1) Classical approach: Choose a number of realizations, $M \in \mathbb{N}_{+}$, and let $\left\{\mathbf{y}_{k}\right\}_{k=1}^{M}$ be a given sample set of random abscissas
(2) For each $k=1, \ldots, M$ sample iid realizations of the diffusion $a\left(\mathbf{y}_{k}, x\right)$, the load $f\left(\mathbf{y}_{k}, x\right)$ and find a FEM approximation $u^{h}\left(\mathbf{y}_{k}, \cdot\right) \in W_{h}(D)$ s.t.

$$
\left\{\begin{aligned}
-\nabla \cdot\left(a\left(\mathbf{y}_{k}, \cdot\right) \nabla u^{h}\left(\mathbf{y}_{k}, \cdot\right)\right) & =f\left(\mathbf{y}_{k}, \cdot\right), & & \text { in } D \\
u^{h}\left(\mathbf{y}_{k}, \cdot\right) & =0, & & \text { on } \partial D
\end{aligned}\right.
$$

If desired evaluate the Qol $Q\left(u^{h}\left(\mathbf{y}_{k}, \cdot\right)\right)$
© Approximate statistics, e.g. expectations $\mathbb{E}\left[u^{h}\right](x)$, by sample averages:

$$
\mathbb{E}\left[u^{h}(\mathbf{y})\right](x) \approx \frac{1}{M} \sum_{k=1}^{M} u^{h}\left(\mathbf{y}_{k}\right) \rho\left(\mathbf{y}_{k}\right):=\mathscr{E}\left(u^{h} ; M\right), \quad \mathbf{y}_{k} \in \Gamma
$$

Goal: Compute, with high probability, sample statistics, e.g.

Monte Carlo FEM (MCFEM)

Approximation statistics of Qols $Q(u(\mathbf{y}, x))$
(1) Classical approach: Choose a number of realizations, $M \in \mathbb{N}_{+}$, and let $\left\{\mathbf{y}_{k}\right\}_{k=1}^{M}$ be a given sample set of random abscissas
(2) For each $k=1, \ldots, M$ sample iid realizations of the diffusion $a\left(\mathbf{y}_{k}, x\right)$, the load $f\left(\mathbf{y}_{k}, x\right)$ and find a FEM approximation $u^{h}\left(\mathbf{y}_{k}, \cdot\right) \in W_{h}(D)$ s.t.

$$
\left\{\begin{aligned}
-\nabla \cdot\left(a\left(\mathbf{y}_{k}, \cdot\right) \nabla u^{h}\left(\mathbf{y}_{k}, \cdot\right)\right) & =f\left(\mathbf{y}_{k}, \cdot\right), & & \text { in } D \\
u^{h}\left(\mathbf{y}_{k}, \cdot\right) & =0, & & \text { on } \partial D
\end{aligned}\right.
$$

If desired evaluate the Qol $Q\left(u^{h}\left(\mathbf{y}_{k}, \cdot\right)\right)$
© Approximate statistics, e.g. expectations $\mathbb{E}\left[u^{h}\right](x)$, by sample averages:

$$
\mathbb{E}\left[u^{h}(\mathbf{y})\right](x) \approx \frac{1}{M} \sum_{k=1}^{M} u^{h}\left(\mathbf{y}_{k}\right) \rho\left(\mathbf{y}_{k}\right):=\mathscr{E}\left(u^{h} ; M\right), \quad \mathbf{y}_{k} \in \Gamma
$$

Goal: Compute, with high probability, sample statistics, e.g.

$$
\left\|\mathbb{E}\left[u^{h}\right]-\mathscr{E}\left(u^{h} ; M\right)\right\| \leq \mathrm{TOL}
$$

$$
\mathbb{E}[u]-\mathscr{E}\left(u^{h} ; M\right)=\underbrace{\left(\mathbb{E}\left[u-u^{h}\right]\right)}_{\text {Spatial Discret. }}+
$$

Statistical Error

- Spatial discretization error:

$$
\left\|\mathbb{E}\left[u-u^{h}\right]\right\|_{L^{2}(D)}+h\left\|\mathbb{E}\left[u-u^{h}\right]\right\|_{H_{0}^{1}(D)} \leq C h^{2} \sqrt{\mathbb{E}\left[\|f\|_{L^{2}(D)}^{2}\right]}
$$

Statistical Error: Within confidence level $\alpha \in(0,1), \exists \delta(\alpha)>0$ s.t.

$$
\mathbb{E}[u]-\mathscr{E}\left(u^{h} ; M\right)=\underbrace{\left(\mathbb{E}\left[u-u^{h}\right]\right)}_{\text {Spatial Discret. }}+\underbrace{\left(\mathbb{E}\left[u^{h}\right]-\frac{1}{M} \sum_{k=1}^{M} u^{h}\left(\mathbf{y}_{k}\right) \rho\left(\mathbf{y}_{k}\right)\right)}_{\text {Statistical Error }}
$$

- Spatial discretization error:

$$
\left\|\mathbb{E}\left[u-u^{h}\right]\right\|_{L^{2}(D)}+h\left\|\mathbb{E}\left[u-u^{h}\right]\right\|_{H_{0}^{1}(D)} \leq C h^{2} \sqrt{\mathbb{E}\left[\|f\|_{L^{2}(D)}^{2}\right]}
$$

- Statistical Error: Within confidence level $\alpha \in(0,1), \exists \delta(\alpha)>0$ s.t.

$$
\begin{aligned}
& \mathbb{P}\left[\left\|\mathbb{E}\left[u^{h}\right]-\frac{1}{M} \sum_{k=1}^{M} u^{h}\left(\mathbf{y}_{k}\right) \rho\left(\mathbf{y}_{k}\right)\right\|_{H_{0}^{1}(D)} \leq \delta \frac{C_{u}}{\sqrt{M}}\right] \geq \alpha \\
& \left(M_{n}\right)^{\beta}\left\|\mathbb{E}\left[u^{h}\right]-\mathscr{E}\left(u^{h} ; M\right)\right\|_{H_{0}^{1}(D)} \rightarrow 0, n \rightarrow \infty \text { a.s. }
\end{aligned}
$$

for all $\beta \in(0,1 / 2)$ with $M_{n}=2^{n}$

Other sampling-based methods

Attempting to cope with the curse of dimensionality
Let $\left\{\mathbf{y}_{k}\right\}_{k=1}^{M}$ be iid samples. Approximate expectations of Qols by sample averages:

$$
\mathbb{E}[Q(u(\mathbf{y}))] \approx \frac{1}{M} \sum_{k=1}^{M} Q\left(u\left(\mathbf{y}_{k}\right)\right) \rho\left(\mathbf{y}_{k}\right), \quad \mathbf{y}_{k} \in \Gamma
$$

(1) Monte Carlo methods: $\varepsilon(M) \approx \mathcal{O}\left(M^{-1 / 2}\right)$ abscissas are (pseudo) random numbers
abscissas are low discrepancy sequences
abscissas are chosen to ensure "good" spacing in each 1-D component
abscissas are "good" lattice points

Other sampling-based methods

Attempting to cope with the curse of dimensionality
Let $\left\{\mathbf{y}_{k}\right\}_{k=1}^{M}$ be iid samples. Approximate expectations of Qols by sample averages:

$$
\mathbb{E}[Q(u(\mathbf{y}))] \approx \frac{1}{M} \sum_{k=1}^{M} Q\left(u\left(\mathbf{y}_{k}\right)\right) \rho\left(\mathbf{y}_{k}\right), \quad \mathbf{y}_{k} \in \Gamma
$$

(1) Monte Carlo methods: $\varepsilon(M) \approx \mathcal{O}\left(M^{-1 / 2}\right)$ abscissas are (pseudo) random numbers
(2. Quasi-Monte Carlo methods: $\varepsilon(M) \approx \mathcal{O}\left(M^{-1}(\log (M))^{N}\right)$ abscissas are low discrepancy sequences
abscissas are chosen to ensure "good" spacing in each 1-D component abscissas are "good" lattice points

Let $\left\{\mathbf{y}_{k}\right\}_{k=1}^{M}$ be iid samples. Approximate expectations of Qols by sample averages:

$$
\mathbb{E}[Q(u(\mathbf{y}))] \approx \frac{1}{M} \sum_{k=1}^{M} Q\left(u\left(\mathbf{y}_{k}\right)\right) \rho\left(\mathbf{y}_{k}\right), \quad \mathbf{y}_{k} \in \Gamma
$$

(1) Monte Carlo methods: $\varepsilon(M) \approx \mathcal{O}\left(M^{-1 / 2}\right)$ abscissas are (pseudo) random numbers
(2) Quasi-Monte Carlo methods: $\varepsilon(M) \approx \mathcal{O}\left(M^{-1}(\log (M))^{N}\right)$ abscissas are low discrepancy sequences
(0 Latin Hypercube Sampling: $\varepsilon(M) \approx \mathcal{O}\left(M^{-1}(\log (M))^{N}\right)$ abscissas are chosen to ensure "good" spacing in each 1-D component abscissas are "good" lattice points

Let $\left\{\mathbf{y}_{k}\right\}_{k=1}^{M}$ be iid samples. Approximate expectations of Qols by sample averages:

$$
\mathbb{E}[Q(u(\mathbf{y}))] \approx \frac{1}{M} \sum_{k=1}^{M} Q\left(u\left(\mathbf{y}_{k}\right)\right) \rho\left(\mathbf{y}_{k}\right), \quad \mathbf{y}_{k} \in \Gamma
$$

(1) Monte Carlo methods: $\varepsilon(M) \approx \mathcal{O}\left(M^{-1 / 2}\right)$ abscissas are (pseudo) random numbers
(2) Quasi-Monte Carlo methods: $\varepsilon(M) \approx \mathcal{O}\left(M^{-1}(\log (M))^{N}\right)$ abscissas are low discrepancy sequences
(0 Latin Hypercube Sampling: $\varepsilon(M) \approx \mathcal{O}\left(M^{-1}(\log (M))^{N}\right)$ abscissas are chosen to ensure "good" spacing in each 1-D component
(0. Lattice rules: $\varepsilon(M) \approx \mathcal{O}\left(M^{-1}(\log (M))^{(N+1) / 2}\right)$ abscissas are "good" lattice points

Let $\left\{\mathbf{y}_{k}\right\}_{k=1}^{M}$ be iid samples. Approximate expectations of Qols by sample averages:

$$
\mathbb{E}[Q(u(\mathbf{y}))] \approx \frac{1}{M} \sum_{k=1}^{M} Q\left(u\left(\mathbf{y}_{k}\right)\right) \rho\left(\mathbf{y}_{k}\right), \quad \mathbf{y}_{k} \in \Gamma
$$

(1) Monte Carlo methods: $\varepsilon(M) \approx \mathcal{O}\left(M^{-1 / 2}\right)$ abscissas are (pseudo) random numbers
(2) Quasi-Monte Carlo methods: $\varepsilon(M) \approx \mathcal{O}\left(M^{-1}(\log (M))^{N}\right)$ abscissas are low discrepancy sequences
(0 Latin Hypercube Sampling: $\varepsilon(M) \approx \mathcal{O}\left(M^{-1}(\log (M))^{N}\right)$ abscissas are chosen to ensure "good" spacing in each 1-D component
(- Lattice rules: $\varepsilon(M) \approx \mathcal{O}\left(M^{-1}(\log (M))^{(N+1) / 2}\right)$ abscissas are "good" lattice points

Pros: Allow for reusability of deterministic codes and the convergence rate is independent of the regularity of $u(\mathbf{y})$ (and dimension with MC methods)

Let $\left\{\mathbf{y}_{k}\right\}_{k=1}^{M}$ be iid samples. Approximate expectations of Qols by sample averages:

$$
\mathbb{E}[Q(u(\mathbf{y}))] \approx \frac{1}{M} \sum_{k=1}^{M} Q\left(u\left(\mathbf{y}_{k}\right)\right) \rho\left(\mathbf{y}_{k}\right), \quad \mathbf{y}_{k} \in \Gamma
$$

(1) Monte Carlo methods: $\varepsilon(M) \approx \mathcal{O}\left(M^{-1 / 2}\right)$ abscissas are (pseudo) random numbers
(2) Quasi-Monte Carlo methods: $\varepsilon(M) \approx \mathcal{O}\left(M^{-1}(\log (M))^{N}\right)$ abscissas are low discrepancy sequences
(0 Latin Hypercube Sampling: $\varepsilon(M) \approx \mathcal{O}\left(M^{-1}(\log (M))^{N}\right)$ abscissas are chosen to ensure "good" spacing in each 1-D component
(0. Lattice rules: $\varepsilon(M) \approx \mathcal{O}\left(M^{-1}(\log (M))^{(N+1) / 2}\right)$ abscissas are "good" lattice points

Cons: The sampling methods do not yield fully discrete approximations and slow convergence rates do not exploit the possible regularity of the functional

Regularity

With respect to the noise

- Let $\Gamma_{n}^{*}=\prod_{\substack{j=1 \\ j \neq n}}^{N} \Gamma_{j}$, and let \mathbf{y}_{n}^{*} denote an arbitrary element of Γ_{n}^{*}

Theorem: Regularity [Linear: BNT07], [Nonlinear: W07, GW11]

For each $y_{n} \in \Gamma_{n}$, there exists $\tau_{n}>0$ such that the function $u\left(y_{n}, \mathbf{y}_{n}^{*}, x\right)$ as a function of $y_{n}, u: \Gamma_{n} \rightarrow C^{0}\left(\Gamma_{n}^{*} ; W(D)\right)$ admits an analytic extension $u\left(z, \mathbf{y}_{n}^{*}, x\right), z \in \mathbb{C}$, in the region of the complex plane

$$
\Sigma\left(\Gamma_{n} ; \tau_{n}\right) \equiv\left\{z \in \mathbb{C}, \operatorname{dist}\left(z, \Gamma_{n}\right) \leq \tau_{n}\right\} .
$$

Moreover, $\forall z \in \Sigma\left(\Gamma_{n} ; \tau_{n}\right)$,

$$
\|u(z)\|_{C^{0}\left(\Gamma_{n}^{*} ; W(D)\right)} \leq \lambda
$$

with λ a constant independent of n.
Remark: The analyticity of the solution $u(\mathbf{y}, x)$ w.r.t. each random direction y_{n} suggests the use of (multivariate) polynomial approximation

Region of analyticity

- Assume a_{N} is an exponential Karhunen-Loève expansion and f_{N} deterministic: $a_{N}(\omega, x)=a_{\min }+e^{b_{0}(x)+\sum_{n=1}^{N} \sqrt{\lambda_{n}} b_{n}(x) Y_{n}(\omega)}$
- Γ_{n} bounded: $\Gamma_{n}=\left[y_{n}^{\min }, y_{n}^{\max }\right]$

The analyticity region is given by:

$$
\begin{gathered}
\Sigma\left(\Gamma_{n} ; \tau_{n}\right)=\left\{z \in \mathbb{C}:|\operatorname{Im}(z)| \leq \tau_{n}\right\} \\
\tau_{n}=\frac{1}{\delta \sqrt{\lambda_{n}}\left\|b_{n}\right\|_{L^{\infty}(D)}} \\
\delta=4 \text { (linear) }, \delta=12 \text { (nonlinear, } k=1)
\end{gathered}
$$

- Approximate by Chebyshev/Legendre polynomials in y_{n} yields exponential convergence: error $\leq C e^{-g_{n} p}$

$$
0<g_{n}=\log \left[\frac{2 \tau_{n}}{\left|\Gamma_{n}\right|}+\sqrt{1+\frac{4 \tau_{n}^{2}}{\left|\Gamma_{n}\right|^{2}}}\right]
$$

- Anisotropic behavior with respect to the "direction" n
- Similar results for unbounded RVs and various random expansions

Multivariate polynomial approximation

With respect to the noise

- The analyticity of the solution $u(\mathbf{y}, x)$ w.r.t. each random direction y_{n} suggests the use of (multivariate) polynomial approximation
- what is the correct polynomial approximation subspace?
- The solution must be approximated w.r.t. all RV's $Y_{1}(\omega), \ldots, Y_{N}(\omega) \Rightarrow$ Possible high-dimensional problem!
- how do we compute numerical approximations within those subspaces?
- The numerical method must convergence using as few d.o.f.'s as possible - what is the resulting complexity of my polynomial approximation?

Multivariate polynomial approximation

- The analyticity of the solution $u(\mathbf{y}, x)$ w.r.t. each random direction y_{n} suggests the use of (multivariate) polynomial approximation
- what is the correct polynomial approximation subspace?
- The solution must be approximated w.r.t. all RV's $Y_{1}(\omega), \ldots, Y_{N}(\omega) \Rightarrow$ Possible high-dimensional problem!
- how do we compute numerical approximations within those subspaces?
- The numerical method must convergence using as few d.o.f.'s as possible - what is the resulting complexity of my polynomial approximation?
E.g. Curse of dimensionality: (Isotropic) TP's of degree p in N dimensions

$$
\begin{gathered}
\text { error } \leq C e^{-g p}, \\
\\
\text { error } \leq C e^{-g M^{\frac{1}{N}}} \\
\mathbb{\Downarrow} \\
\text { Impractical in higher dimensions }
\end{gathered}
$$

Multivariate polynomial approximation

Fully discrete stochastic solutions
Basic idea: approximate the response $u(\mathbf{y}, \cdot)$ by multi-variate global polynomials. The numerical solution should convergence quickly since the solution is analytic in \mathbf{y}.

Approximating spaces

\square

Multivariate polynomial approximation

Fully discrete stochastic solutions

Basic idea: approximate the response $u(\mathbf{y}, \cdot)$ by multi-variate global polynomials. The numerical solution should convergence quickly since the solution is analytic in \mathbf{y}.

Approximating spaces:

(1) Let \mathcal{T}_{h} be a triangulation of D and $W^{h}(D) \subset W(D)$ contains cont. piecewise polynomials defined in \mathcal{T}_{h}

- Assume $J=\operatorname{dim}\left[W^{h}(D)\right]$ and $\left\{\phi_{j}(x)\right\}_{j=1}^{J} \subset W_{h}(D)$ is a FE basis for the deterministic domain
(2) Let $\mathbf{p}=\left(p_{1}, \ldots, p_{N}\right)$ be a multi-index, $\mathcal{J}(p) \subset \mathbb{N}^{N}$ a multi-index set, with $p \in \mathbb{N}_{+}$, and define:

Multivariate polynomial space

$$
\mathcal{P}_{\mathcal{J}(p)}(\Gamma)=\operatorname{span}\left\{\prod_{n=1}^{N} y_{n}^{p_{n}}, \quad \text { with } \mathbf{p} \in \mathcal{J}(p)\right\} \subset L_{\rho}^{2}(\Gamma)
$$

- Assume $M=\operatorname{dim}\left[\mathcal{P}_{\mathcal{J}(p)}(\Gamma)\right]$ and $\left\{\psi_{k}\right\}_{k=1}^{M}$ form a basis for $\mathcal{P}_{\mathcal{J}(p)}(\Gamma)$, e.g. multivariate Legendre, Hermite, Lagrange, etc.

Multivariate polynomial approximation

Fully discrete stochastic solutions II

Multivariate polynomial space

$$
\mathcal{P}_{\mathcal{J}(p)}(\Gamma)=\operatorname{span}\left\{\prod_{n=1}^{N} y_{n}^{p_{n}}, \quad \text { with } \mathbf{p} \in \mathcal{J}(p)\right\} \subset L_{\rho}^{2}(\Gamma)
$$

Fully discrete approximations: $u_{p} \in \mathcal{P}_{\mathcal{J}(p)}(\Gamma) \otimes W^{h}(D)$ s.t.

- To compute the fully discrete approximation using SFEMs requires the resolution of the coefficients u_{k} which can be accomplished via:
- intrusive methods by solving the fully coupled $J M \times J M$ system (i.e. JM equations and $J M$ degrees of freedom
- non-intrusive methods by de-coupling the above expression and solving a M system's of size J
- Our goal is to estimate the error $\left\|u-u_{p}\right\|_{L_{\rho}^{2}(\Gamma)}$

Multivariate polynomial approximation

Fully discrete stochastic solutions II

Multivariate polynomial space

$$
\mathcal{P}_{\mathcal{J}(p)}(\Gamma)=\operatorname{span}\left\{\prod_{n=1}^{N} y_{n}^{p_{n}}, \quad \text { with } \mathbf{p} \in \mathcal{J}(p)\right\} \subset L_{\rho}^{2}(\Gamma)
$$

Fully discrete approximations: $u_{p} \in \mathcal{P}_{\mathcal{J}(p)}(\Gamma) \otimes W^{h}(D)$ s.t.
$u_{p}(\mathbf{y}, x)=\sum_{j=1}^{J} \sum_{k=1}^{M} c_{j k} \phi_{j}(x) \psi_{k}(\mathbf{y})=\sum_{k=1}^{M} u_{k}(x) \psi_{k}(\mathbf{y}), \quad$ with $u_{k}(x) \in W^{h}(D)$

- To compute the fully discrete approximation using SFEMs requires the resolution of the coefficients u_{k} which can be accomplished via:
- intrusive methods by solving the fully coupled $J M \times J M$ system (i.e. $J M$ equations and $J M$ degrees of freedom
- non-intrusive methods by de-coupling the above expression and solving a M system's of size J
- Our goal is to estimate the error $\left\|u-u_{p}\right\|_{L_{\rho}^{2}(\Gamma)}$

Polynomial spaces

Anisotropic representations
RIDGE
Rewrite the fully discrete approximation using the multi-index notation:

$$
u_{p}=\sum_{\mathbf{p} \in \mathcal{J}(p)} u_{\mathbf{p}}(x) \psi_{\mathbf{p}}(\mathbf{y}), \quad \mathbf{p}=\left(p_{1}, \ldots, p_{N}\right)
$$

where, if $\mathbf{y}=\left(y_{1}, \ldots, y_{N}\right)$ independent then

$$
\psi_{\mathbf{p}}(\mathbf{y})=\prod_{n=1}^{N} \psi_{p_{n}}^{(n)}\left(y_{n}\right), \quad \psi_{p_{n}}^{(n)} \in L_{\rho_{n}}^{2}\left(\Gamma_{n}\right)
$$

Several choices for polynomial multi-index $\mathbf{p} \in \mathcal{J}(p)$ [BNTT11]:

- Tensor products (TP): $\max _{n} p_{n} \leq p$ (Intractable for large N),
- Total degree (TD): $\sum_{n=1}^{N} \quad p_{n} \leq p$,
- Hyperbolic cross (HC): $\prod_{n=1}^{N}\left(p_{n}+1\right) \leq p+1$,
- Smolyak method (SM): $\sum_{n=1}^{N} \quad f\left(p_{n}\right) \leq f(p)$ with $f(p)=\left\{\begin{array}{l}0, p=0 \\ 1, p=1 \\ \left.1 \log _{2}(p)\right], p \geq 2\end{array}\right.$

Anisotropic: introduce weight vector $\alpha=\left(\alpha_{1} \ldots \alpha_{N}\right) \in \mathbb{R}^{N}$, with $\alpha_{\text {min }}=1$
TD, HC \& SM all reduce the curse of dimensionality w.r.t. TP methods

Polynomial spaces

Rewrite the fully discrete approximation using the multi-index notation:

$$
u_{p}=\sum_{\mathbf{p} \in \mathcal{J}(p)} u_{\mathbf{p}}(x) \psi_{\mathbf{p}}(\mathbf{y}), \quad \mathbf{p}=\left(p_{1}, \ldots, p_{N}\right)
$$

where, if $\mathbf{y}=\left(y_{1}, \ldots, y_{N}\right)$ independent then

$$
\psi_{\mathbf{p}}(\mathbf{y})=\prod_{n=1}^{N} \psi_{p_{n}}^{(n)}\left(y_{n}\right), \quad \psi_{p_{n}}^{(n)} \in L_{\rho_{n}}^{2}\left(\Gamma_{n}\right)
$$

Several choices for polynomial multi-index $\mathbf{p} \in \mathcal{J}(p)$ [BNTT11]:

- Tensor products (TP): $\max _{n} \alpha_{n} p_{n} \leq p$ (Intractable for large N),
- Total degree (TD): $\sum_{n=1}^{N} \alpha_{n} p_{n} \leq p$,
- Hyperbolic cross (HC): $\prod_{n=1}^{N}\left(p_{n}+1\right)^{\alpha_{n}} \leq p+1$,
- Smolyak method (SM): $\sum_{n=1}^{N} \alpha_{n} f\left(p_{n}\right) \leq f(p)$ with $f(p)=\left\{\begin{array}{l}0, p=0 \\ 1, p=1 \\ 1 \log _{2}(p) 7, p \geq 2\end{array}\right.$

Anisotropic: introduce weight vector $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{R}_{+}^{N}$, with $\alpha_{\text {min }}=1$ TD, HC \& SM all reduce the curse of dimensionality w.r.t. TP methods

Example (anisotropic) polynomial spaces

 $N=2, p=8$ with $\alpha=(1,2)$

Aniso-Tensor products

Total degree

Aniso-Total degree

Hyperbolic cross

Aniso-Hyperbolic cross

4th order accurate TD space compared with the TP space:

$p_{1}+p_{2} \leq 0$				1				
$p_{1}+p_{2} \leq 1$			y_{1}		y_{2}			
$p_{1}+p_{2} \leq 2$		y_{1}^{2}		$y_{1} y_{2}$		y_{2}^{2}		
$p_{1}+p_{2} \leq 3$	y_{1}^{3}		$y_{1}^{2} y_{2}$		$y_{1} y_{2}^{2}$		y_{2}^{3}	
$p_{1}+p_{2} \leq 4$	y_{1}^{4}	$y_{1}^{3} y_{2}$		$y_{1}^{2} y_{2}^{2}$		$y_{1} y_{2}^{3}$		y_{2}^{4}
	$y_{1}^{4} y_{2}$		$y_{1}^{3} y_{2}^{2}$		$y_{1}^{2} y_{2}^{3}$		$y_{1} y_{2}^{4}$	
		$y_{1}^{4} y_{2}^{2}$		$y_{1}^{3} y_{2}^{3}$		$y_{1}^{2} y_{2}^{4}$		
			$y_{1}^{4} y_{2}^{3}$		$y_{1}^{3} y_{2}^{4}$			
$\max \left(p_{1}, p_{2}\right) \leq 4$				$y_{1}^{4} y_{2}^{4}$				

Monomials up to 4th degree. Those below the line are the useless monomials we capture (using tensor products) and are not needed (and not possible) in higher dimensions - they don't add the asymptotic accuracy and the cost increases exponential as the dimensions increase

Example: $N=2$ with monomial basis

4th order accurate TD space compared with the TP space:

$p_{1}+p_{2} \leq 0$				1				
$p_{1}+p_{2} \leq 1$			y_{1}		y_{2}			
$p_{1}+p_{2} \leq 2$		y_{1}^{2}		$y_{1} y_{2}$		y_{2}^{2}		
$p_{1}+p_{2} \leq 3$	y_{1}^{3}		$y_{1}^{2} y_{2}$		$y_{1} y_{2}^{2}$		y_{2}^{3}	
$p_{1}+p_{2} \leq 4$	y_{1}^{4}	$y_{1}^{3} y_{2}$		$y_{1}^{2} y_{2}^{2}$		$y_{1} y_{2}^{3}$		y_{2}^{4}
	$y_{1}^{4} y_{2}$		$y_{1}^{3} y_{2}^{2}$		$y_{1}^{2} y_{2}^{3}$		$y_{1} y_{2}^{4}$	
		$y_{1}^{4} y_{2}^{2}$		$y_{1}^{3} y_{2}^{3}$		$y_{1}^{2} y_{2}^{4}$		
			$y_{1}^{4} y_{2}^{3}$		$y_{1}^{3} y_{2}^{4}$			
$\max \left(p_{1}, p_{2}\right) \leq 4$				$y_{1}^{4} y_{2}^{4}$				

Monomials up to 4th degree. Those below the line are the useless monomials we capture (using tensor products) and are not needed (and not possible) in higher dimensions - they don't add the asymptotic accuracy and the cost increases exponential as the dimensions increase
Recall $M=\operatorname{dim}\left[\mathcal{P}_{\mathcal{J}(p)}(\Gamma)\right] \Longrightarrow M_{T D}=\frac{(N+p)!}{N!p!} \ll M_{T P}=(p+1)^{N}$

| $N=$ |
| :---: | :---: | :---: | :---: |
| $\# \mathrm{RVs}$, |
| $\operatorname{dim}(\Gamma)$ | | $p=$ |
| :---: |
| maximal degree |
| of polynomials |

3	3	20	64
	5	56	216
5	3	56	1,024
	5	252	7,776
10	3	286	$1,048,576$
	5	3,003	$60,046,176$
20	3	1,771	$>1 \times 10^{12}$
	5	53,130	$>3 \times 10^{15}$
100	3	176,851	$>1 \times 10^{60}$
	5	$96,560,646$	$>6 \times 10^{77}$

- tensor products become computational infeasible in higher dimensions

Stochastic Galerkin approximation

Find $u_{p}^{S G} \in \mathcal{P}_{\mathcal{J}(p)}(\Gamma) \otimes W^{h}(D)$ s.t.

$$
\mathbb{E}\left[\int_{D} a(\mathbf{y}, x) \nabla u_{p}^{S G}(\mathbf{y}, x) \cdot \nabla v(\mathbf{y}, x) d x\right]=\mathbb{E}\left[\int_{D} f(\mathbf{y}, x) \cdot v(\mathbf{y}, x) d x\right]
$$

for all $v \in \mathcal{P}_{\mathcal{J}(p)}(\Gamma) \otimes W^{h}(D)$

- Typically $u_{p}^{S G}$ is defined using an L_{ρ}^{2}-orthogonal basis $\left\{\psi_{k}\right\}_{k=1}^{M_{S G}}$ constructed from univariate $L_{\rho_{n}}^{2}$-orthogonal polynomials - i.e. assuming independent RVs, e.g. $\rho(\mathbf{y})=\prod_{n=1}^{N} \rho_{n}\left(y_{n}\right)$-Wiener (polynomial) chaos
- Optimal index set of cardinality $M_{T D}$ corresponds to the TD subspace
[Ghanem-Spanos], [Karniadakis-Xiu], [Matthies-Keese], [Schwab-Todor et. al], [Knio-Le Maître et. al], [Babuška et. al], etc.

Stochastic Galerkin approximation

Find $u_{p}^{S G} \in \mathcal{P}_{\mathcal{J}(p)}(\Gamma) \otimes W^{h}(D)$ s.t.

$$
\mathbb{E}\left[\int_{D} a(\mathbf{y}, x) \nabla u_{p}^{S G}(\mathbf{y}, x) \cdot \nabla v(\mathbf{y}, x) d x\right]=\mathbb{E}\left[\int_{D} f(\mathbf{y}, x) \cdot v(\mathbf{y}, x) d x\right]
$$

for all $v \in \mathcal{P}_{\mathcal{J}(p)}(\Gamma) \otimes W^{h}(D)$

- Typically $u_{p}^{S G}$ is defined using an L_{ρ}^{2}-orthogonal basis $\left\{\psi_{k}\right\}_{k=1}^{M_{S G}}$ constructed from univariate $L_{\rho_{n}}^{2}$-orthogonal polynomials - i.e. assuming independent RVs, e.g. $\rho(\mathbf{y})=\prod_{n=1}^{N} \rho_{n}\left(y_{n}\right)$-Wiener (polynomial) chaos
- Optimal index set of cardinality $M_{T D}$ corresponds to the TD subspace

Pros: Guaranteed L^{2} optimality of the projection and spectral convergence for smooth stochastic solutions
[Ghanem-Spanos], [Karniadakis-Xiu], [Matthies-Keese], [Schwab-Todor et. al], [Knio-Le Maître et. al], [Babuška et. al], etc.

Stochastic Galerkin approximation

Find $u_{p}^{S G} \in \mathcal{P}_{\mathcal{J}(p)}(\Gamma) \otimes W^{h}(D)$ s.t.

$$
\mathbb{E}\left[\int_{D} a(\mathbf{y}, x) \nabla u_{p}^{S G}(\mathbf{y}, x) \cdot \nabla v(\mathbf{y}, x) d x\right]=\mathbb{E}\left[\int_{D} f(\mathbf{y}, x) \cdot v(\mathbf{y}, x) d x\right]
$$

for all $v \in \mathcal{P}_{\mathcal{J}(p)}(\Gamma) \otimes W^{h}(D)$

- Typically $u_{p}^{S G}$ is defined using an L_{ρ}^{2}-orthogonal basis $\left\{\psi_{k}\right\}_{k=1}^{M_{S G}}$ constructed from univariate $L_{\rho_{n}}^{2}$-orthogonal polynomials - i.e. assuming independent RVs , e.g. $\rho(\mathbf{y})=\prod_{n=1}^{N} \rho_{n}\left(y_{n}\right)$-Wiener (polynomial) chaos
- Optimal index set of cardinality $M_{T D}$ corresponds to the TD subspace

Cons: Inherently a fully coupled intrusive approximation that requires the resolution of large systems (integrals and residuals) as well as novel (problem specific) pre-conditioning techniques
[Ghanem-Spanos], [Karniadakis-Xiu], [Matthies-Keese], [Schwab-Todor et. al], [Knio-Le Maître et. al], [Babuška et. al], etc.

The L_{ρ}^{2}-orthogonal basis was originally developed to approximate white noise processes with Gaussian measure [Wiener, 1938].

- the univariate Hermite polynomials $H(y)$ serve as the foundation for the construction of the multi-dimensional Hermite polynomials - orthogonal with respect to the Gaussian measure

The PDF of a Gaussian RV is $\rho(y)=\frac{1}{\sqrt{2 \pi}} e^{\frac{-y^{2}}{2}}$

Hermite polynomials

Generalized Multi-dimensional orthonormal polynomials
Let $\left\{H_{p_{n}}^{(n)}\right\}_{p_{n}=0}^{p}$ denote the set of univariate Hermite polynomials (of degree $\leq p)$ defined in $L_{\rho_{n}}^{2}\left(\Gamma_{n}\right)$, that are orthonormal w.r.t. the Gaussian PDF $\rho_{n}\left(y_{n}\right)$, for each $n=1, \ldots, N$:

$$
\int_{\Gamma_{n}} H_{p_{n}}^{(n)}\left(y_{n}\right) H_{r_{n}}^{(n)}\left(y_{n}\right) \rho_{n}\left(y_{n}\right) d y_{n}=\delta_{p_{n} r_{n}}, \quad p_{n}, r_{n} \in\{0, \ldots, p\}
$$

The multi-variate $L_{\rho}^{2}(\Gamma)$-orthogonal Hermite basis is defined as a
tensor-product of the univariate polynomials with $\mathbf{p} \in \mathcal{J}(p)$:

where $\rho(\mathbf{y})$ is the Gaussian joint-PDF

- identical construction for other orthonormal bases (generalized PC) e.g. Y uniform RVs \rightarrow Legendre polynomial basis, etc.

Hermite polynomials

Generalized Multi-dimensional orthonormal polynomials
Let $\left\{H_{p_{n}}^{(n)}\right\}_{p_{n}=0}^{p}$ denote the set of univariate Hermite polynomials (of degree $\leq p)$ defined in $L_{\rho_{n}}^{2}\left(\Gamma_{n}\right)$, that are orthonormal w.r.t. the Gaussian PDF $\rho_{n}\left(y_{n}\right)$, for each $n=1, \ldots, N$:

$$
\int_{\Gamma_{n}} H_{p_{n}}^{(n)}\left(y_{n}\right) H_{r_{n}}^{(n)}\left(y_{n}\right) \rho_{n}\left(y_{n}\right) d y_{n}=\delta_{p_{n} r_{n}}, \quad p_{n}, r_{n} \in\{0, \ldots, p\}
$$

The multi-variate $L_{\rho}^{2}(\Gamma)$-orthogonal Hermite basis is defined as a tensor-product of the univariate polynomials with $\mathbf{p} \in \mathcal{J}(p)$:

$$
H_{\mathbf{p}}(\mathbf{y})=\prod_{n=1}^{N} H_{p_{n}}^{(n)}\left(y_{n}\right), \quad \text { s.t. } \rho(\mathbf{y})=\prod_{n=1}^{N} \rho_{n}\left(y_{n}\right)
$$

where $\rho(\mathbf{y})$ is the Gaussian joint-PDF

- identical construction for other orthonormal bases (generalized PC) e.g. \mathbf{Y} uniform RVs \rightarrow Legendre polynomial basis, etc.

Classification of hypergeometric orthogonal polynomials

Connections between PDF and the orthogonal polynomials

Distribution Density function Polynomial Support

Normal	$\frac{1}{\sqrt{2 \pi}} e^{\frac{-y^{2}}{2}}$	Hermite $H_{n}(y)$	$[-\infty, \infty]$
Uniform	$\frac{1}{2}$	Legendre $P_{n}(y)$	$[-1,1]$
Beta	$\frac{(1-y)^{2}(1+y)^{\beta}}{2^{\alpha+\beta+1} B(\alpha+1, \beta+1)}$	Jacobi $P_{n}^{(\alpha, \beta)}(y)$	$[-1,1]$
Exponential	e^{-y}	Laguerre $L_{n}(y)$	$[0, \infty]$
Gamma	$\frac{y^{\alpha} e^{-y}}{\Gamma(\alpha+1)}$	Generalized Laguerre $L_{n}^{(\alpha)}(y)$	$[0, \infty]$

- Leads to a single large coupled system (of size $J M \times J M$ - typically $M=M_{T D}$) which requires preconditioning methods, e.g. CG [Ghanem-Pellisetti], [Helman-Powell et.al], [Ullman et.al] etc.
- most preconditioning methods are very problem specific
- terms in the coupled matrix will require computations of the form:

- For linear problems and independent RV's, i.e. $\rho(\mathbf{y})=\prod_{n=1}^{N} \rho_{n}\left(y_{n}\right)$, using the multivariate orthonormal basis - computations simplify significantly
- Leads to a single large coupled system (of size $J M \times J M$ - typically $M=M_{T D}$) which requires preconditioning methods, e.g. CG [Ghanem-Pellisetti], [Helman-Powell et.al], [Ullman et.al] etc.
- most preconditioning methods are very problem specific
- terms in the coupled matrix will require computations of the form:

$$
A_{k l}(x)=\mathbb{E}\left[a(\cdot, x) \psi_{k} \psi_{l}\right]=\int_{\Gamma} a(\mathbf{y}, x) \psi_{k}(\mathbf{y}) \psi_{l}(\mathbf{y}) \rho(\mathbf{y}) d \mathbf{y}
$$

- could be High-Dimensional integration problem!

If $a(\mathbf{y}, x)$ is nonlinear in \mathbf{y} or if $\mathbf{Y}(\omega)$ is not independent then this is certainly possible

For linear problems and independent $R V^{\prime}$ s, i.e. $\rho(\mathrm{y})=\prod_{n=1}^{N} \rho_{n}($
using the multivariate orthonormal basis - computations simplify significantly

- Leads to a single large coupled system (of size $J M \times J M$ - typically $M=M_{T D}$) which requires preconditioning methods, e.g. CG [Ghanem-Pellisetti], [Helman-Powell et.al], [Ullman et.al] etc.
- most preconditioning methods are very problem specific
- terms in the coupled matrix will require computations of the form:

$$
A_{k l}(x)=\mathbb{E}\left[a(\cdot, x) \psi_{k} \psi_{l}\right]=\int_{\Gamma} a(\mathbf{y}, x) \psi_{k}(\mathbf{y}) \psi_{l}(\mathbf{y}) \rho(\mathbf{y}) d \mathbf{y}
$$

- could be High-Dimensional integration problem!

If $a(\mathbf{y}, x)$ is nonlinear in \mathbf{y} or if $\mathbf{Y}(\omega)$ is not independent then this is certainly possible

- For linear problems and independent RV's, i.e. $\rho(\mathbf{y})=\prod_{n=1}^{N} \rho_{n}\left(y_{n}\right)$, using the multivariate orthonormal basis - computations simplify significantly
- sparse matrix approaches can be exploited

Recall from above:

$$
\begin{aligned}
A_{k l}(x) & =\int_{\Gamma} a(\mathbf{y}, x) \psi_{k}(\mathbf{y}) \psi_{l}(\mathbf{y}) \rho(\mathbf{y}) d \mathbf{y} \\
& =\mathbb{E}[a](x) \int_{\Gamma} \psi_{k} \psi_{l} \rho(\mathbf{y}) d \mathbf{y}+\sum_{n=1}^{N} b_{n}(x) \int_{\Gamma} y_{n} \psi_{k} \psi_{l} \rho(\mathbf{y}) d \mathbf{y} \\
& =\mathbb{E}[a](x) \delta_{k l}+\sum_{n=1}^{N} b_{n}(x) \prod_{m=1}^{N} \int_{\Gamma_{m}} y_{n}^{\delta_{n m}} \psi_{k_{m}}^{(m)} \psi_{l_{m}}^{(m)} \rho_{m}\left(y_{m}\right) d y_{m}
\end{aligned}
$$

- matrix becomes dense when the coefficient and/or PDE is nonlinear
- condition number deteriorates when approximating using non-uniform RVs

Applications to linear elliptic SPDEs

$$
p=1
$$

Non-intrusive approaches

We can use the orthogonality of the basis to yield an expression for the unknown coefficients - that is non-intrusive

$$
\int_{\Gamma} u(\mathbf{y}, \cdot) \psi_{k^{\prime}}(\mathbf{y}) \rho(\mathbf{y}) d \mathbf{y}=\sum_{k}^{M_{S G}} u_{k}(x) \int_{\Gamma} \psi_{k}(\mathbf{y}) \psi_{k^{\prime}}(\mathbf{y}) \rho(\mathbf{y}) d \mathbf{y}=u_{k^{\prime}}
$$

$k^{\prime}=1, \ldots M_{S G}$.

- the integrals could be high dimensional - for each of the $M_{S G}$ coefficients
- the convergence of $u_{p} \rightarrow u$ is dictated by the accurate calculation of the coefficients which becomes dominated by the "error" in the integration scheme

Instead we will consider a powerful non-intrusive alternative approach whose polynomial coeficients are the nodal values of the deterministic FEM, i.e. a sampling-based approach with the added benefit of remaining a polynomial

[^0]
Non-intrusive approaches

We can use the orthogonality of the basis to yield an expression for the unknown coefficients - that is non-intrusive

$$
\int_{\Gamma} u(\mathbf{y}, \cdot) \psi_{k^{\prime}}(\mathbf{y}) \rho(\mathbf{y}) d \mathbf{y}=\sum_{k}^{M_{S G}} u_{k}(x) \int_{\Gamma} \psi_{k}(\mathbf{y}) \psi_{k^{\prime}}(\mathbf{y}) \rho(\mathbf{y}) d \mathbf{y}=u_{k^{\prime}}
$$

$$
k^{\prime}=1, \ldots M_{S G}
$$

- the integrals could be high dimensional - for each of the $M_{S G}$ coefficients
- the convergence of $u_{p} \rightarrow u$ is dictated by the accurate calculation of the coefficients which becomes dominated by the "error" in the integration scheme

Instead we will consider a powerful non-intrusive alternative approach whose polynomial coefficients are the nodal values of the deterministic FEM, i.e. a sampling-based approach with the added benefit of remaining a polynomial approximation
(1) Choose a set of points $H_{M}=\left\{\mathbf{y}_{k} \in \Gamma\right\}_{k=1}^{M}$
(2) For each k solve the FE solution $u_{k}(x)=u\left(\mathbf{y}_{k}, x\right)$, given $a_{k}(x)=a\left(\mathbf{y}_{k}, x\right)$ and $f_{k}(x)=f\left(\mathbf{y}_{k}, x\right)$
(3) Interpolate the sampled values: $u_{p}(\mathbf{y}, x)=\sum_{k=1}^{M} u_{k}(x) L_{k}(\mathbf{y})$, yielding the fully discrete SC approximation $u_{p} \in \mathcal{P}_{\mathcal{J}(p)}(\Gamma) \otimes W^{h}(D)$, where $L_{k} \in \mathcal{P}_{\mathcal{J}(p)}(\Gamma)$ are suitable combinations of Lagrange interpolants

Quantity of interest, e.g. $\mathbb{E}[u](x)$

$$
\mathbb{E}[u](x) \approx \int_{\Gamma} u_{p}(\mathbf{y}, x) \rho(\mathbf{y}) d \mathbf{y}=\sum_{k=1}^{M} u_{k}(x) \underbrace{\int_{\Gamma} L_{k}(y) \rho(\mathbf{y}) d y}_{\text {precomputed weights }}=\sum_{k=1}^{M} u_{k}(x) w_{k}
$$

[Tatang], [Mathelin-Hussani], [Hesthaven-Xiu], [Babuška et. al], [Zabaras et.al], [Nobile-Tempone-CW], etc.

A simple function to integrate

Quantities of interest

Selected function values

Evaluate $u(y)$ at M values $\left\{u\left(y_{1}\right), u\left(y_{2}\right), \ldots, u\left(y_{M}\right)\right\}$

Quantities of interest

The interpolant

Determine the approximate polynomial u_{p}

The area under the curve

The Qol = Integrating the approximating polynomial EXACTLY

- preserves the convergence rate to the stochastic Galerkin FEM (SGFEM)
ros: there are several advantages wrt the SGFEM approach:
- completely decouples computations as Monte Carlo does,
- efficiently treats the case of non-independent RVs by introducing an auxiliary density
- No difficulty in treating nonlinear problems, exponential expansions of RFs, unbounded RVs (e.g. Gaussian), etc.,
- effectively handle problems that depend on random input data described by a moderately large number of RVs with the use of sparse gird collocation ([Smolyak '63], [Griebel et al '98-'03-'04], [Hesthaven-Xiu '05], [Barthelmann-Novak-Ritter '00], [Zabaras et al '07], [Nobile-Tempone-W. '08])

Cons:

- can use more DoFs then the SGFEM to represent the same polynomial subspace
- the (interpolation) Lebesgue constant can impact the rate of convergence
- preserves the convergence rate to the stochastic Galerkin FEM (SGFEM)

Pros: there are several advantages wrt the SGFEM approach:

- completely decouples computations as Monte Carlo does,
- efficiently treats the case of non-independent RVs by introducing an auxiliary density
- No difficulty in treating nonlinear problems, exponential expansions of RFs, unbounded RVs (e.g. Gaussian), etc.,
- effectively handle problems that depend on random input data described by a moderately large number of RVs with the use of sparse gird collocation ([Smolyak '63], [Griebel et al '98-'03-'04], [Hesthaven-Xiu '05], [Barthelmann-Novak-Ritter '00], [Zabaras et al '07], [Nobile-Tempone-W. '08])
can use more DoFs then the SGFEM to represent the same polynomial subspace
the (interpolation) Lebesgue constant can impact the rate of convergence
- preserves the convergence rate to the stochastic Galerkin FEM (SGFEM)

Pros: there are several advantages wrt the SGFEM approach:

- completely decouples computations as Monte Carlo does,
- efficiently treats the case of non-independent RVs by introducing an auxiliary density
- No difficulty in treating nonlinear problems, exponential expansions of RFs, unbounded RVs (e.g. Gaussian), etc.,
- effectively handle problems that depend on random input data described by a moderately large number of RVs with the use of sparse gird collocation ([Smolyak '63], [Griebel et al '98-'03-'04], [Hesthaven-Xiu '05], [Barthelmann-Novak-Ritter '00], [Zabaras et al '07], [Nobile-Tempone-W. '08])
Cons:
- can use more DoFs then the SGFEM to represent the same polynomial subspace
- the (interpolation) Lebesgue constant can impact the rate of convergence

Basic idea is to construct the point set H^{M} for each variable $y_{n}: H_{n}^{m\left(i_{n}\right)}$

- choose the level i_{n} of interpolation in the nth direction
- set the number of points used by the i_{n} th interpolant, denoted $m\left(i_{n}\right)$
- define the set $H_{n}^{m\left(i_{n}\right)}=\left\{y_{n}^{1}, y_{n}^{2}, \ldots, y_{n}^{m\left(i_{n}\right)}\right\}$ of 1 d interpolating points:
- according to the measure $\rho\left(y_{n}\right) d y_{n}$, e.g. Gauss-Hermite (Normal), Gauss-Legendre, Clenshaw-Curtis (Uniform), etc.
- $H^{M}=H_{1}^{m\left(i_{1}\right)} \times \cdots \times H_{N}^{m\left(i_{N}\right)}$ where $M_{T P}=m\left(i_{1}\right) m\left(i_{2}\right) \ldots m\left(i_{N}\right)$
- $\mathbf{y}_{\mathbf{k}}=\left(y_{1}^{k_{1}}, y_{2}^{k_{2}}, \ldots, y_{N}^{k_{N}}\right)$, where $\mathbf{k} \in \mathrm{TP} \equiv\left\{\mathbf{k} \in \mathbb{N}_{+}^{N}: k_{n}<m\left(i_{n}\right)\right\}$

The tensor product (TP) Lagrange-interpolant is defined by:

Basic idea is to construct the point set H^{M} for each variable $y_{n}: H_{n}^{m\left(i_{n}\right)}$

- choose the level i_{n} of interpolation in the nth direction
- set the number of points used by the i_{n} th interpolant, denoted $m\left(i_{n}\right)$
- define the set $H_{n}^{m\left(i_{n}\right)}=\left\{y_{n}^{1}, y_{n}^{2}, \ldots, y_{n}^{m\left(i_{n}\right)}\right\}$ of 1 d interpolating points:
- according to the measure $\rho\left(y_{n}\right) d y_{n}$, e.g. Gauss-Hermite (Normal), Gauss-Legendre, Clenshaw-Curtis (Uniform), etc.
- $H^{M}=H_{1}^{m\left(i_{1}\right)} \times \cdots \times H_{N}^{m\left(i_{N}\right)}$ where $M_{T P}=m\left(i_{1}\right) m\left(i_{2}\right) \ldots m\left(i_{N}\right)$
- $\mathbf{y}_{\mathbf{k}}=\left(y_{1}^{k_{1}}, y_{2}^{k_{2}}, \ldots, y_{N}^{k_{N}}\right)$, where $\mathbf{k} \in \mathrm{TP} \equiv\left\{\mathbf{k} \in \mathbb{N}_{+}^{N}: k_{n}<m\left(i_{n}\right)\right\}$

The tensor product (TP) Lagrange-interpolant is defined by:

$$
u_{p}^{T P}(\mathbf{y}, x)=\sum_{\mathbf{k} \in \mathrm{TP}}^{M_{T P}} u_{\mathbf{k}}(x) L_{\mathbf{k}}(\mathbf{y}), \quad \text { with } L_{\mathbf{k}}(\mathbf{y})=\prod_{n=1}^{N} \prod_{s=1, s \neq k_{n}}^{m\left(i_{n}\right)} \frac{y_{n}-y_{n}^{s}}{y_{n}^{k_{n}}-y_{n}^{s}}
$$

Let $\mathscr{U}_{n}^{m\left(i_{n}\right)}$ be the i th level interpolant in the direction y_{n} using $m\left(i_{n}\right)$ points:

$$
\mathscr{U}_{n}^{m\left(i_{n}\right)}[u]\left(y_{n}\right)=\sum_{k=1}^{m\left(i_{n}\right)} u\left(y_{n}^{k}\right) l_{n}^{k}\left(y_{n}\right), \quad\left\{y_{n}^{1}, \ldots, y_{n}^{m\left(i_{n}\right)}\right\} \in \Gamma_{n}
$$

- $\mathscr{U}_{n}^{m\left(i_{n}\right)}: C^{0}\left(\Gamma_{n}\right) \rightarrow \mathcal{P}_{m\left(i_{n}\right)-1}\left(\Gamma_{n}\right), \quad \mathscr{U}_{n}^{0}[u]=0 \forall u \in C^{0}\left(\Gamma_{n}\right)$
- The degree in the y_{n} direction is $p_{n}=m\left(i_{n}\right)-1$
- the interpolation requires $M_{T P}=\prod_{n=1}^{N} m\left(i_{n}\right)$ function evaluations (In this case, solutions of the PDE)

Let $\mathscr{U}_{n}^{m\left(i_{n}\right)}$ be the i th level interpolant in the direction y_{n} using $m\left(i_{n}\right)$ points:

$$
\mathscr{U}_{n}^{m\left(i_{n}\right)}[u]\left(y_{n}\right)=\sum_{k=1}^{m\left(i_{n}\right)} u\left(y_{n}^{k}\right) l_{n}^{k}\left(y_{n}\right), \quad\left\{y_{n}^{1}, \ldots, y_{n}^{m\left(i_{n}\right)}\right\} \in \Gamma_{n}
$$

- $\mathscr{U}_{n}^{m\left(i_{n}\right)}: C^{0}\left(\Gamma_{n}\right) \rightarrow \mathcal{P}_{m\left(i_{n}\right)-1}\left(\Gamma_{n}\right), \quad \mathscr{U}_{n}^{0}[u]=0 \forall u \in C^{0}\left(\Gamma_{n}\right)$
- The degree in the y_{n} direction is $p_{n}=m\left(i_{n}\right)-1$

The TP-SC approximation is given by

$$
u_{p}^{T P}(\mathbf{y})=\bigotimes_{n=1}^{N} \mathscr{U}_{n}^{m\left(i_{n}\right)}[u](\mathbf{y}), \quad \max _{n} \alpha_{n} p_{n} \leq p
$$

- the interpolation requires $M_{T P}=\prod_{n=1}^{N} m\left(i_{n}\right)$ function evaluations (In this case, solutions of the PDE)

Isotropic TP SC grid constructed from C-C points for $\left(y_{1}, y_{2}\right) \in U(-1,1)$

Choices for interpolation

Based on 1-d interpolation formulas

Clenshaw-Curtis abscissas (Γ_{n} bounded):

- $\left\{y_{n}^{k}\right\}_{k=1}^{m\left(i_{n}\right)}$: extrema of Chebyshev polynomials
- optimal for uniform convergence in Γ_{n}
- if $m\left(i_{n}\right)=2^{i_{n}-1}+1$ lead to nested sets, i.e. $H_{n}^{m\left(i_{n}\right)} \subset H_{n}^{m\left(i_{n}+1\right)}$

Gaussian abscissas (Γ_{n} bounded or unbounded): Assume, either

- Y_{n} independent, i.e. $\rho(\mathbf{y})=\prod_{n=1}^{N} \rho_{n}\left(y_{n}\right)$, or
- construct an auxiliary joint PDF $\hat{\rho}(\mathbf{y})=\prod_{n=1}^{N} \hat{\rho}_{n}\left(y_{n}\right)$ such that $\|\rho / \hat{\rho}\|_{L^{\infty}(\Gamma)}<\infty$ and small enough.
- $\left\{y_{n}^{k}\right\}_{k=1}^{m\left(i_{n}\right)}$: zeros of orthogonal polynomials with respect to $\hat{\rho}$ e.g. abscissas become roots of Gauss-Legendre, -Hermite, -Jacobi, -Laguerre polynomials corresponding to uniform, normal, beta, exponential distributions, respectively
- optimal for L_{ρ}^{2} convergence

Recall the $\mathbf{p}=\left(p_{1}, \ldots, p_{N}\right)$ is the polynomial degree used in each direction \mathbf{y}_{n}

Theorem [Babuška-Nobile-Tempone, 2007]:

Let $L_{\rho}^{2} \equiv L_{\rho}^{2}\left(\Gamma ; H_{0}^{1}(D)\right)$ then since u is analytic in y you get:

- Γ_{n} bounded:

$$
\left\|u-u_{p}^{T P}\right\|_{L_{\rho}^{2}} \leq C \sum_{n=1}^{N} e^{-g_{n} p_{n}}, \quad \text { with } g_{n}=\log \left[\frac{2 \tau_{n}}{\left|\Gamma_{n}\right|}+\sqrt{1+\frac{4 \tau_{n}^{2}}{\left|\Gamma_{n}\right|^{2}}}\right]
$$

- Γ_{n} unbounded, $\hat{\rho}_{n} \approx e^{-\left(\delta_{n} y_{n}\right)^{2}}$ at infinity:

$$
\left\|u-u_{p}^{T P}\right\|_{L_{\rho}^{2}} \leq C \sum_{n=1}^{N} \sqrt{p_{n}} e^{-g_{n} \sqrt{p_{n}}}, \quad g_{n}=\frac{\sqrt{2} \tau_{n}}{\delta_{n}}
$$

Error in \# of samples $M: \varepsilon_{T P}(M)=\left\|u-u_{p}^{T P}\right\|_{L_{\rho}^{2}} \leq C(N) M^{-g_{\min } / N}$

1-dimensional analysis: polynomial approximation (L^{2} projection or interpolation using Gauss points) in y_{n} (only) yields exponential convergence

$$
\varepsilon_{n}=\left\|u-u_{p}\right\|_{L_{\rho}^{2}} \leq C e^{-g_{n} p_{n}}
$$

Optimal choice for anisotropic weights

- The decay rates g_{n} can be estimated theoretically (a priori),

and numerically (a posteriori $), \log _{10}\left(\varepsilon_{n}\right) \approx \log _{10}\left(d_{n}\right)-p_{n} \log _{10}(e) \alpha_{n}$
- Theoretical estimates for linear and several nonlinear PDEs available [BNT07, W07, NTW08a, NTW08b, GW11]
- Dimension-adaptivity without paying the cost of searching and evaluating the multi-indices $\left\{\mathbf{p}+e_{j}, 1 \leq j \leq N\right\}$ using an heuristic error estimator [Gerstner-Griebel '03]

1-dimensional analysis: polynomial approximation (L^{2} projection or interpolation using Gauss points) in y_{n} (only) yields exponential convergence

$$
\varepsilon_{n}=\left\|u-u_{p}\right\|_{L_{\rho}^{2}} \leq C e^{-g_{n} p_{n}}
$$

Optimal choice for anisotropic weights: $\alpha_{n}=g_{n}$

- The decay rates g_{n} can be estimated theoretically (a priori),

$$
g_{n}=\log \left(\frac{2 \tau_{n}}{\left|\Gamma_{n}\right|}+\sqrt{1+\frac{4 \tau_{n}^{2}}{\left|\Gamma_{n}\right|^{2}}}\right)
$$

and numerically (a posteriori $), \log _{10}\left(\varepsilon_{n}\right) \approx \log _{10}\left(d_{n}\right)-p_{n} \log _{10}(e) \alpha_{n}$

- Theoretical estimates for linear and several nonlinear PDEs available [BNT07, W07, NTW08a, NTW08b, GW11]
- Dimension-adaptivity without paying the cost of searching and evaluating the multi-indices $\left\{\mathbf{p}+e_{j}, 1 \leq j \leq N\right\}$ using an heuristic error estimator [Gerstner-Griebel '03]

Numerical example

We let $\mathbf{x}=\left(x_{1}, x_{2}\right)$ and consider the following nonlinear elliptic SPDE:

$$
\left\{\begin{aligned}
-\nabla \cdot\left(a\left(\omega, x_{1}\right) \nabla u(\omega, \mathbf{x})\right) & =\cos \left(x_{1}\right) \sin \left(x_{2}\right) & & \mathbf{x} \in[0,1]^{2} \\
u(\omega, \mathbf{x}) & =0 & & \text { on } \partial D
\end{aligned}\right.
$$

The diffusion coefficient is a 1 d random field (varies only in x_{1}) and is $a\left(\omega, x_{1}\right)=0.5+\exp \left\{\gamma\left(\omega, x_{1}\right)\right\}$, where γ is a truncated 1 d random field with correlation length L and covariance

$$
\operatorname{Cov}[\gamma]\left(x_{1}, \tilde{x}_{1}\right)=\exp \left(-\frac{\left(x_{1}-\tilde{x}_{1}\right)^{2}}{L^{2}}\right), \quad \forall\left(x_{1}, \tilde{x}_{1}\right) \in[0,1]
$$

Numerical example

We let $\mathbf{x}=\left(x_{1}, x_{2}\right)$ and consider the following nonlinear elliptic SPDE:

$$
\left\{\begin{aligned}
-\nabla \cdot\left(a\left(\omega, x_{1}\right) \nabla u(\omega, \mathbf{x})\right) & =\cos \left(x_{1}\right) \sin \left(x_{2}\right) & & \mathbf{x} \in[0,1]^{2} \\
u(\omega, \mathbf{x}) & =0 & & \text { on } \partial D
\end{aligned}\right.
$$

The diffusion coefficient is a 1 d random field (varies only in x_{1}) and is $a\left(\omega, x_{1}\right)=0.5+\exp \left\{\gamma\left(\omega, x_{1}\right)\right\}$, where γ is a truncated 1 d random field with correlation length L and covariance

$$
\begin{aligned}
& \operatorname{Cov}[\gamma]\left(x_{1}, \tilde{x}_{1}\right)=\exp \left(-\frac{\left(x_{1}-\tilde{x}_{1}\right)^{2}}{L^{2}}\right), \quad \forall\left(x_{1}, \tilde{x}_{1}\right) \in[0,1] \\
& \gamma\left(\omega, x_{1}\right)=1+Y_{1}(\omega)\left(\frac{\sqrt{\pi} L}{2}\right)^{1 / 2}+\sum_{n=2}^{N} \beta_{n} \varphi_{n}\left(x_{1}\right) Y_{n}(\omega)
\end{aligned}
$$

$$
\beta_{n}:=(\sqrt{\pi} L)^{1 / 2} e^{\frac{-\left(\left\lfloor\frac{n}{2}\right\rfloor \pi L\right)^{2}}{8}}, \quad \varphi_{n}\left(x_{1}\right):= \begin{cases}\sin \left(\left\lfloor\frac{n}{2}\right\rfloor \pi x_{1}\right), & \text { if } n \text { even }, \\ \cos \left(\left\lfloor\frac{n}{2}\right\rfloor \pi x_{1}\right), & \text { if } n \text { odd }\end{cases}
$$

- $\mathbb{E}\left[Y_{n}\right]=0$ and $\mathbb{E}\left[Y_{n} Y_{m}\right]=\delta_{n m}$ for $n, m \in \mathbb{N}_{+}$and iid in $U(-\sqrt{3}, \sqrt{3})$

Calculating the weighting parameters

A priori selection: $N=11$

A priori of the dimension weights $\alpha_{n}=g_{n}$:

$$
g_{n}=\log \left(\frac{2 \tau_{n}}{\left|\Gamma_{n}\right|}+\sqrt{1+\frac{4 \tau_{n}^{2}}{\left|\Gamma_{n}\right|^{2}}}\right) \quad \text { and } \tau_{n}=\frac{1}{12 \sqrt{\lambda_{n}}\left\|b_{n}\right\|_{L^{\infty}(D)}}
$$

For this problem we have

$$
g_{n}= \begin{cases}\log (1+c / \sqrt{L}), & \text { for } n \ll L^{-2} \\ n^{2} L^{2}, & \text { for } n>L^{-2}\end{cases}
$$

	α_{1}	α_{2}, α_{3}	α_{4}, α_{5}	α_{6}, α_{7}	α_{8}, α_{9}	α_{10}, α_{11}
$L=1 / 2$	0.20	0.19	0.42	1.24	3.1	5.8
$L=1 / 64$	0.79	0.62	0.62	0.62	0.62	0.62

Goal

Calculating the weighting parameters

A priori selection: $N=11$

A priori of the dimension weights $\alpha_{n}=g_{n}$:

$$
g_{n}=\log \left(\frac{2 \tau_{n}}{\left|\Gamma_{n}\right|}+\sqrt{1+\frac{4 \tau_{n}^{2}}{\left|\Gamma_{n}\right|^{2}}}\right) \quad \text { and } \tau_{n}=\frac{1}{12 \sqrt{\lambda_{n}}\left\|b_{n}\right\|_{L^{\infty}(D)}}
$$

For this problem we have

$$
g_{n}= \begin{cases}\log (1+c / \sqrt{L}), & \text { for } n \ll L^{-2} \\ n^{2} L^{2}, & \text { for } n>L^{-2}\end{cases}
$$

	α_{1}	α_{2}, α_{3}	α_{4}, α_{5}	α_{6}, α_{7}	α_{8}, α_{9}	α_{10}, α_{11}
$L=1 / 2$	0.20	0.19	0.42	1.24	3.1	5.8
$L=1 / 64$	0.79	0.62	0.62	0.62	0.62	0.62

Goal: $\|\mathbb{E}[\epsilon]\|_{L^{2}(D)} \approx\left\|\mathbb{E}\left[u_{p}^{T P}(\mathbf{y}, x)-u_{p_{\max }+1}^{T P}(\mathbf{y}, x)\right]\right\|_{L^{2}(D)}$

- $p=0,1, \ldots, p_{\max }$ and $u_{p_{\max }+1}$ is an overkilled solution

Calculating the weighting parameters

A posteriori selection: $N=11$

$$
\left\|\mathbb{E}\left[\epsilon_{n}\right]\right\|_{L^{2}(D)} \approx\left\|\mathbb{E}\left[u_{p}\left(y_{n}, x\right)-u_{p_{\max }+1}\left(y_{n}, x\right)\right]\right\|_{L^{2}(D)}
$$

- $p=0,1, \ldots, p_{\max }$ and $u_{p_{\max }+1}$ is an overkilled solution

A linear least square approximation to fit $\log _{10}\left(\left\|E\left[\varepsilon_{n}\right]\right\|_{L^{2}(D)}\right)$ versus p_{n}. For $n=1,2, \ldots, N=11$ we plot: on the left, the highly anisotropic case $L_{c}=1 / 2$ and on the right, the isotropic case $L_{c}=1 / 64$

Convergence Comparisons

$N=11$ random variables

Convergence Comparisons

$N=11$ random variables

- Proper input data representation/truncation is important to reduce the computational work
- Discussed the various intrusive and non-intrusive stochastic techniques for the for forward propagation of uncertainty, in particular Monte Carlo and Stochastic Galerkin/Collocation
- Global stochastic polynomial approximation is extremely effective for problems that smooth (analytic) dependence on the random variables
- Properly chosen Anisotropic polynomial spaces can improve considerably the convergence, when the input random variables have different influence on the output
- Can we construct a polynomial approximation that maintains the fast convergence even when N becomes large?
- sparse grid SCFEM with anisotropic refinement
- what about stochastic inverse problems and calibration?
- Recall that $\mathscr{U}_{n}^{m\left(i_{n}\right)}$ be the i th level interpolant in the direction y_{n} using $m\left(i_{n}\right)$ points

$$
\mathscr{U}_{n}^{m\left(i_{n}\right)}: C^{0}\left(\Gamma_{n}\right) \rightarrow \mathcal{P}_{m\left(i_{n}\right)-1}\left(\Gamma_{n}\right), \quad \mathscr{U}_{n}^{0}[u]=0 \forall u \in C^{0}\left(\Gamma_{n}\right)
$$

- The nth difference operator: $\Delta_{n}^{m\left(i_{n}\right)}[u]=\mathscr{U}_{n}^{m\left(i_{n}\right)}[u]-\mathscr{U}_{n}^{m\left(i_{n}-1\right)}[u]$
 $\mathbf{i}=\left(i_{1}, \ldots, i_{N}\right) \in \mathbb{N}_{+}^{N}$ is a multi-index
- Recall that $\mathscr{U}_{n}^{m\left(i_{n}\right)}$ be the i th level interpolant in the direction y_{n} using $m\left(i_{n}\right)$ points

$$
\mathscr{U}_{n}^{m\left(i_{n}\right)}: C^{0}\left(\Gamma_{n}\right) \rightarrow \mathcal{P}_{m\left(i_{n}\right)-1}\left(\Gamma_{n}\right), \quad \mathscr{U}_{n}^{0}[u]=0 \forall u \in C^{0}\left(\Gamma_{n}\right)
$$

- The TP-SCFEM: $u_{p}^{T P}(\mathbf{y})=\bigotimes_{n=1}^{N} \mathscr{U}_{n}^{m\left(i_{n}\right)}[u](\mathbf{y}), \quad \max _{n} \alpha_{n} p_{n} \leq p$ - The nth difference operator: $\Delta_{n}^{m\left(i_{n}\right)}[u]=\mathscr{U}_{n}^{m\left(i_{n}\right)}[u]-\mathscr{U}_{n}^{m\left(i_{n}-1\right)}[u]$ - The hierarchical surplus: $\Delta_{n}^{m(\mathbf{i})}[u](\mathbf{y})=\bigotimes \Delta_{n}^{m\left(i_{n}\right)}[u](\mathbf{y})$ where $\mathfrak{i}=\left(i_{1}, \ldots, i_{N}\right) \in \mathbb{N}^{N}$ is a multi-index

What's coming next?

- Recall that $\mathscr{U}_{n}^{m\left(i_{n}\right)}$ be the i th level interpolant in the direction y_{n} using $m\left(i_{n}\right)$ points

$$
\mathscr{U}_{n}^{m\left(i_{n}\right)}: C^{0}\left(\Gamma_{n}\right) \rightarrow \mathcal{P}_{m\left(i_{n}\right)-1}\left(\Gamma_{n}\right), \quad \mathscr{U}_{n}^{0}[u]=0 \forall u \in C^{0}\left(\Gamma_{n}\right)
$$

- The TP-SCFEM: $u_{p}^{T P}(\mathbf{y})=\bigotimes_{n=1}^{N} \mathscr{U}_{n}^{m\left(i_{n}\right)}[u](\mathbf{y}), \quad \max _{n} \alpha_{n} p_{n} \leq p$
- The nth difference operator: $\Delta_{n}^{m\left(i_{n}\right)}[u]=\mathscr{U}_{n}^{m\left(i_{n}\right)}[u]-\mathscr{U}_{n}^{m\left(i_{n}-1\right)}[u]$
- The hierarchical surplus: $\Delta_{n}^{m(\mathrm{i})}[u](\mathrm{y})=\bigotimes \Delta_{n}^{m\left(i_{n}\right)}[u](\mathrm{y})$ where $\mathbf{i}=\left(i_{1}, \ldots, i_{N}\right) \in \mathbb{N}_{+}^{N}$ is a multi-index

What's coming next?

- Recall that $\mathscr{U}_{n}^{m\left(i_{n}\right)}$ be the i th level interpolant in the direction y_{n} using $m\left(i_{n}\right)$ points

$$
\mathscr{U}_{n}^{m\left(i_{n}\right)}: C^{0}\left(\Gamma_{n}\right) \rightarrow \mathcal{P}_{m\left(i_{n}\right)-1}\left(\Gamma_{n}\right), \quad \mathscr{U}_{n}^{0}[u]=0 \forall u \in C^{0}\left(\Gamma_{n}\right)
$$

- The TP-SCFEM: $u_{p}^{T P}(\mathbf{y})=\bigotimes_{n=1}^{N} \mathscr{U}_{n}^{m\left(i_{n}\right)}[u](\mathbf{y}), \quad \max _{n} \alpha_{n} p_{n} \leq p$
- The nth difference operator: $\Delta_{n}^{m\left(i_{n}\right)}[u]=\mathscr{U}_{n}^{m\left(i_{n}\right)}[u]-\mathscr{U}_{n}^{m\left(i_{n}-1\right)}[u]$
- The hierarchical surplus: $\Delta_{n}^{m(i)}[u](\mathbf{y})=\bigotimes_{n=1}^{N} \Delta_{n}^{m\left(i_{n}\right)}[u](\mathbf{y})$ where $\mathbf{i}=\left(i_{1}, \ldots, i_{N}\right) \in \mathbb{N}_{+}^{N}$ is a multi-index

Sparse grid SCFEM

Basic idea: linear combination of tensor product grids, with a relatively low number of points (but maintain the asymptotic accuracy)
The tensor product SCFEM interpolant is defined as:

$$
u_{p}^{T P}(\mathbf{y})=\bigotimes_{n=1}^{N} \mathscr{U}_{n}^{m\left(i_{n}\right)}[u](\mathbf{y}), \quad \max _{n} \alpha_{n} p_{n} \leq p
$$

The sparse grid SCFEM is defined as

Sparse grid SCFEM

Basic idea: linear combination of tensor product grids, with a relatively low number of points (but maintain the asymptotic accuracy)
The tensor product SCFEM interpolant is defined as:

$$
u_{p}^{T P}(\mathbf{y})=\bigotimes_{n=1}^{N} \mathscr{U}_{n}^{m\left(i_{n}\right)}[u](\mathbf{y}), \quad \max _{n} \alpha_{n} p_{n} \leq p
$$

The sparse grid SCFEM is defined as

$$
u_{p}^{S G}(\mathbf{y})=\sum_{g(\mathbf{i}) \leq p} \bigotimes_{n=1}^{N} \Delta_{n}^{m\left(i_{n}\right)}[u](\mathbf{y})=\sum_{g(\mathbf{i}) \leq p} c(\mathbf{i}) \bigotimes_{n=1}^{N} \mathscr{U}_{n}^{m\left(i_{n}\right)}[u](\mathbf{y})
$$

with $c(\mathbf{i})=\sum_{\substack{\mathbf{j} \in\{0,1\} N \\ g(\mathbf{i}+\mathbf{j}) \leq p}}(-1)^{|\mathbf{j}|_{1}}$ and $g: \mathbb{N}^{N} \rightarrow \mathbb{N}$ a strictly increasing function

Asymptotic accuracy

Tensor product grid

$$
\varepsilon_{T P}(M) \leq C(N) M^{-g_{\min } / N}
$$

Sparse grid $\varepsilon_{S G}(M) \leq \widetilde{C}(N) M^{-}$?

- The TP-SCFEM is a non-intrusive method with faster convergence than MCFEM (for smooth solutions)
- The number of samples grows exponentially fast with the number of RVs. Clearly unfeasible, even for moderate N

[^0]: approximation

