
Shared Memory Programming with OpenMP

ISC5316-01: Applied Computational Science II
..........

John Burkardt
Department of Scientific Computing

Florida State University
http://people.sc.fsu.edu/∼jburkardt/presentations/. . .

. . . openmp 2013 acs2.pdf

03/08 October 2013

1 / 115

Shared Memory Programming with OpenMP

1 Serial Programs Can’t Accelerate
2 Parallel Algorithms Are Available
3 The Parallel Loop
4 SAXPY Example: Vector Addition
5 Basic OpenMP Directives
6 Compiling, Linking, Running
7 Timing and Other Functions
8 PRIME Example
9 Private and Shared Variables

10 Reduction Operations
11 Using Random Numbers
12 SATISFY Example

2 / 115

SERIAL: von Neumann Architecture

For fifty years, we have used a simple model of the computer called the
von Neumann computer, consisting of memory (input data and
intermediate results), a processor (carrying out arithmetic and logical
operations), an input/output device, and a clock.

The von Neumann computer runs a program, also stored in memory.

The clock is surprisingly important, providing synchronization. Roughly
speaking, nothing happens faster than a single clock tick.

In particular, no matter how many instructions there are in the program,
just one instruction is carried out each tick. The von Neumann computer
thus carries out sequential or serial execution of the program.

3 / 115

SERIAL: von Neumann Architecture

4 / 115

SERIAL: Years of Faster and Faster Clocks

Logically, this is a beautiful and simple model. And we have kept if for
so long, and designed computers and algorithms and programming
languages around it, because over the years, computers have been fast
enough to solve the problems we are interested in.

The problems we are interested in have grown enormously over the years,
and the only reason computers were able to keep up was because it was
possible to relentlessly increase the clock speed (of course, we had to
make faster processors and memory access as well.)

The clock speed increased because of the increasing sophistication and
miniaturization of computer chips.

Sometime around 2005, the clock speed curve hit an immovable ceiling.

5 / 115

SERIAL: We’ve Hit the Ceiling

6 / 115

SERIAL: Multicore Processors

The are simple alternatives to the von Neumann model of computation.

Most of these involve the idea of parallel computing, that is, of carrying
out more than one instruction or operation at a time.

The clock can’t tick faster, but we can do more work each clock cycle.

One hardware advance involved communication: it was possible for two
different computers to share information during a computation. This fact
led to the development of MPI (next week’s topic!).

Another advance was the development of processors with multiple cores,
which led to OpenMP (this week’s topic!).

7 / 115

SERIAL: Tilera, One Processor, 64 Cores

8 / 115

SERIAL: Shared Memory Parallelism

A multicore processor generalizes the von Neumann model. Instead of
one processor doing the work, the processor has many cores to which it
can assign independent or cooperative work, simultaneously.

If the cores can cooperate on one task, we get done faster.

But how can we write a new kind of computer program that can correctly
control multiple, cooperating cores?

We’ll assume that the cores live in a shared memory space, so that any
core can read or write any piece of data.

9 / 115

SERIAL: The “non Neumann” Architecture

10 / 115

SERIAL: OpenMP Controls Multicore Processors

Suppose we have a list of numbers, and we simply want a new list
containing the squares of each number.

Our program should read something like:

Get a number from the list in locations A through B.
Square the number.
Insert the number into list in locations C through D.

For our parallel program, we need to:

decide how many cores will be involved;

determine limits A:B and C:D for each core;

give each core a copy of the program, and the values of limits.

I hope you can see that, if we can generate these instructions, the
program will work correctly.

OpenMP is a system that exactly allows us to write programs that will be
correctly executed on multiple cores; if done correctly, such a parallel
program can run a hundred times faster if we have 100 cores available.

11 / 115

Shared Memory Programming with OpenMP

1 Serial Programs Can’t Accelerate
2 Parallel Algorithms Are Available
3 The Parallel Loop
4 SAXPY Example: Vector Addition
5 Basic OpenMP Directives
6 Compiling, Linking, Running
7 Timing and Other Functions
8 PRIME Example
9 Private and Shared Variables

10 Reduction Operations
11 Using Random Numbers
12 SATISFY Example

12 / 115

ALG: An Algorithm Need Not be “Step by Step”

We think of algorithms as step-by-step procedures, in which step 1
must be completed before step 2 can be started, but this is not an
essential feature of an algorithm!

The step-by-step approach is called serial or sequential programming.

We look at a problem like

S = X0 + X1 + X2 + X3 + X4 + X5 + X6 + X7

and can only see a serial approach:

(clock = 1) S =X0

(clock = 2) S =S + X1

(clock = 3) S =S + X2

...

(clock = 8) S =S + X7

For many algorithms, multiple steps can be going on at the same time.
The point of parallel programming is to identify those opportunities.

13 / 115

ALG: Adding N Numbers Doesn’t Need N Steps

If we have four cores, and room to store 4 temporary sums, and if all
the cores can work at the same time, we can do the addition in 4 clock
cycles (we are really working on a binary tree here):

(clock = 1) S0 =X0,S1 = X2,S2 = X4,S3 = X6

(clock = 2) S0 =S0 + X1,S1 = S1 + X3,S2 = S2 + X5,S3 = S3 + X7

(clock = 3) S0 =S0 + S1,S2 = S2 + S3

(clock = 4) S0 =S0 + S2

Assuming “unlimited resources” (n/2 cores!), we can add n numbers in
1 + log2(n) rather than n cycles, so 1,000 numbers could be added in
about 10 steps rather than 1,000, and 1,000,000 numbers could be added
in about 20 steps rather than 1,000,000!

Of course, typically we don’t have thousands of cores available, but it is
still true that we really can solve problems faster if we can find, describe,
and implement an appropriate parallel algorithm.

14 / 115

ALG: Parallel Problems Obviously Exist

Are there classes of problems we can solve in parallel?

Search: if you need to:

find the joker in a deck of cards;

find the triangle in a mesh that contains a given point;

find proteins in a database that are similar to a sample protein.

then you can divide up the deck, or the mesh, or the database, among
the available cores, and run until one of the cores finds a match.

Sort: each core can take a portion of the items and sort them, returning
the sorted set to the “master” core. The master then simply has to
merge the sorted items.

15 / 115

ALG: Image Processing

Image Processing: An image is simply an array of pixels. We could be
searching for patterns (a tumor, a star, a camouflaged missile battery).

We could be trying to “render” an image, that is, to simulate the look of
a model with a given light source. A standard technique called ray
tracing is to send out thousands of light rays from the source, letting
them hit objects in the model, reflect and bounce off other objects,
before exiting the model. We can do this in parallel by giving each core
its own set of random light rays to track.

16 / 115

ALG: Gauss Elimination

Gauss Elimination: Suppose we have a linear system of the form:

A ∗ x = b

Gauss elimination can produce the answer. The k-th step seeks a pivot
row, which is used to eliminate elements in the matrix:

Find Ap,k , the largest entry on or below the diagonal Ak,k ;

Swap rows p and k ;

Add a multiple of row k to rows k + 1 through n to eliminate the
entry in column k ;

17 / 115

ALG: Jacobi Iteration

Jacobi Iteration: Suppose we have a linear system of the form:

A ∗ x = b

where A is a symmetric positive definite matrix. Then Jacobi iteration
can be used to estimate the solution. On the k-th step of Jacobi
iteration, we compute the solution estimate xk by

Ai,i xk
i = bi −

n∑
j=1;j 6=i

Ai,j xk−1
j

or, in other words:

xk
i = (bi −

n∑
j=1;j 6=i

Ai,j xk−1
j)/Ai,i

so we can update all the entries in xk at the same time.

18 / 115

ALG: An Ordinary Differential Equation (OOPS!)

An ordinary differential equation in time: Suppose we have a
differential equation of the form:

u′(t) = f (u, t)

u(t = 0) = u0

We can define a discretized problem, in which we seek approximate
values of u() at the sequence of points t1, t2, ... equally spaced by dt. We
might do this with a simple Euler method:

ui = ui−1 + dt ∗ f (ui−1, ti−1)

But such an approach cannot be parallelized! Here, the problem is easy
to see. The calculation of ui cannot begin until the calculation of ui−1 is
complete. But that can’t begin until ui−2 is computed, and so on.

19 / 115

ALG: Partial Differential Equations

A partial differential equation in time and space: Suppose we have
a differential equation of the form:

∂u

∂t
+ ν(

∂2u

∂2x
+
∂2u

∂2y
) = f (u, t, x , y)

with corresponding initial and boundary conditions. If we discretize space
and time, our solution is an array u(ti , xj , yk). If we use a forward
difference for the time derivative, we relate each value u(ti , xj , yk) to
known values at the previous time ti−1. Given data at one time step, we
can compute all the data at the next time step in parallel.

20 / 115

ALG: Newton’s Method (OOPS!)

Solving F(X)=0 Using Newton’s Method: Suppose we have a
scalar equation f (x) = 0 to be solved for x . Newton’s method produces a
sequence of presumably improved estimates:

x i+1 = x i − f (x i)/f ′(x i)

However, we can’t do this problem in parallel, since we can’t start
working on x17 until x16 has been computed.

We might be able to give each core a different starting point. Or, if x is
actually an m-dimensional vector, we might be able to solve the related
linear systems in parallel.

21 / 115

Shared Memory Programming with OpenMP

1 Serial Programs Can’t Accelerate
2 Parallel Algorithms Are Available
3 The Parallel Loop
4 SAXPY Example: Vector Addition
5 Basic OpenMP Directives
6 Compiling, Linking, Running
7 Timing and Other Functions
8 PRIME Example
9 Private and Shared Variables

10 Reduction Operations
11 Using Random Numbers
12 SATISFY Example

22 / 115

LOOP: Terminology

So far, I have been trying to use the word core to describe the computing
“thingies” that work in parallel. But ”core” is a hardware term, and
OpenMP is a software system, and so OpenMP calls the things that
cooperate processors.

This annoys people who build computer hardware; but let’s adopt the
OpenMP term from now on. In order for an OpenMP program to run in
parallel, it needs to have access to multiple cooperating processors, and
we don’t care if these are bits of computer hardware, or clerks with
abacuses, or angels.

23 / 115

LOOP: OpenMP Concentrates on FOR and DO Loops

There are several ways that OpenMP allows you to create parallel
programs. However, the simplest and most useful one concentrates
entirely on operations that are carried out in loops - these are for loops in
C/C++ and do loops in Fortran.

The idea is that

a loop represents a lot of work;

each step is the same instructions, so we can parallelize;

each step is independent of the others (not always true!)

If these items are true, we can break the loop work into sections to be
executed independently.

24 / 115

LOOP: Loop Iterations Are Divided Among Processors

For example, we might imagine that the sequential loop:

for (i = 0; i < 1000; i++)
{
x[i] = x[i] + s * y[i];

}

could be parallelized for two processors as:

Processor #0 Processor #1

for (i = 0; i < 500; i++) for (i = 501; i < 1000; i++)
{ {
x[i] = x[i] + s * y[i]; x[i] = x[i] + s * y[i];

} }

It’s easy to extend this to any number of processors.

25 / 115

LOOP: Indexing Can Be More Complicated

We can use more complicated formulas and indices. It’s just important
that distinct iterations in a loop don’t try to set the same variable.

for (i = 1; i <= n; i++)
{
x[i] = sqrt (y[i-1));

}

for (i = 0; i <= 1000; i = i + 2)
{
z[i] = sin (i * pi);
z[i+1] = cos (i * pi);

}

Ask yourself: can processors executing the loop simultaneously, but for
different values of i, interfere with each other?

26 / 115

LOOP: “Right Hand Side” Variables Are Usually OK

When looking for interference, we never have to worry about variables
that only appear on the right hand side. They represent memory that is
“read”, but not modified:

for (i = 0; i <= 1000; i = i + 2)
{

y[i] = y[i] + x[i-1] - 2.0 * x[i] + x[i+1] + z[99] + w;
}

27 / 115

LOOP: “Left Hand Side” Variables Can Conflict

Problems occur if more than one loop iteration tries to write or modify
the same variable, which occurs on the left hand side of a statement.

Here, we have a y vector; we’d want to add half of each entry to the
corresponding “left” entry in x and half to the right.

for (i = 1; i < n - 1; i++)
{
x[i-1] = x[i-1] + 0.5 * y[i];
x[i+1] = x[i+1] + 0.5 * y[i];

}

Even in our simple two-processor model, this code will have the potential
of conflicts. Suppose that n=1000. Processor #0 might try to execute
the second addition for i = 499 while processor #1 is executing the first
addition for i = 501.

28 / 115

LOOP: “Left/Right Hand Side” Variable Problems

Sometimes a variable occurs on both the left and right hand side.
Since this means that the variable’s value changes during the loop
execution, it means we can’t safely run it in parallel.

This code is overwriting x by its cumulative sums:

for (i = 1; i < n; i++)
{
x[i] = x[i] + x[i-1];

}

Note that if we try to compute
x[2] = x[2] + x[1],
the value will depend on whether we have already executed the statement
x[1] = x[1] + x[0].

29 / 115

LOOP: Another Example of Side Effects

Aside from vector references depending on the loop index, another
common programming practice that can interfere with parallel
programming involves temporary variables that are updated during the
loop iteration.

For example, let’s plot the function y = x2 between 0 and 1, by
evaluating the function at 1001 equally spaced points:

x = 0.0;
for (i = 0; i <= 1000; i++)
{
y[i] = x * x;
x = x + 0.001;

}

This loop (as written) can’t execute in parallel.

But it’s easy to come up with an equivalent loop that avoids this
problem.

30 / 115

LOOP: Another Example of Left/Right Variables

Problems can occur if data appears on both the left and right hand
side, and so is changed during the calculation.

Here is a sort of Gauss-Seidel iteration for solving a linear system. Why
does the loop model fail here?

for (i = 1; i < n - 1; i++)
{

x[i] = (b[i] + x[i-1] + x[i+1]) / 2.0;
}

31 / 115

LOOP: A Summation

Here’s another example, (approximating an integral) which is actually
important enough that we will see how to fix it later:

n = 1000;
q = 0.0;
for (i = 0; i < n; i++)
{
x = i / (double) n;
q = q + x * x;

}
q = q / n;

In this loop, x is not the problem, it’s q, which is being modified on every
iteration. In our two processor parallel version, would we have two
separate variables called q? If so, what do we do with them at the end?
If there’s just one variable, and the processors have to share it, then how
do we avoid conflicts?

32 / 115

LOOP: Simple Rules for Parallel Loops

In summary,

If we want to run a loop in parallel, it should be written in such a
way that the loop iterations would get the same results, even if they
were executed in the reverse order, or any order;

Moreover, we need to avoid cases in which the same variable is
modified by two different iterations of the loop;

Some loops, like the integral approximation, use a single variable to
collect results from all the iterations. If we want to use such
methods, we need to come up with a special approach.

33 / 115

Shared Memory Programming with OpenMP

1 Serial Programs Can’t Accelerate
2 Parallel Algorithms Are Available
3 The Parallel Loop
4 SAXPY Example: Vector Addition
5 Basic OpenMP Directives
6 Compiling, Linking, Running
7 Timing and Other Functions
8 PRIME Example
9 Private and Shared Variables

10 Reduction Operations
11 Using Random Numbers
12 SATISFY Example

34 / 115

SAXPY: A Basic Linear Algebra Operation

Our simple example starts with an n-vector called x and adds to it the
vector y, multiplied by the scalar s:

~x ← ~x + s · ~y ;

We assume that the values of x and y are set by some formula, about
which we don’t really care that much.

If we have multiple processors, then, all we are asking is that they divide
up the range of vector indices, and then carry out the arithmetic for their
part of the work.

35 / 115

SAXPY: C Example (Before)

int main ()

{

int i, n = 1000;

double s = 1.23, x[1000], y[1000];

for (i = 0; i < n; i++)

{

x[i] = (double) ((i + 1) % 17);

y[i] = (double) ((i + 1) % 31);

}

for (i = 0; i < n; i++)

{

x[i] = x[i] + s * y[i];

}

return 0;

}

36 / 115

SAXPY: C Example (After)

include <omp.h>

int main ()

{

int i, n = 1000;

double s = 1.23, x[1000], y[1000];

for (i = 0; i < n; i++)

{

x[i] = (double) ((i + 1) % 17);

y[i] = (double) ((i + 1) % 31);

}

pragma omp parallel

pragma omp for

for (i = 0; i < n; i++)

{

x[i] = x[i] + s * y[i];

}

return 0;

}

37 / 115

SAXPY: F90 Example (Before)

program main

integer, parameter :: n = 1000

integer i

double precision :: s = 1.23

double precision x(n), y(n)

do i = 1, n

x(i) = mod (i, 17)

y(i) = mod (i, 31)

end do

do i = 1, n

x(i) = x(i) + s * y(i)

end do

stop

end

38 / 115

SAXPY: F90 Example (After)

program main

use omp_lib

integer, parameter :: n = 1000

integer i

double precision :: s = 1.23

double precision x(n), y(n)

do i = 1, n

x(i) = mod (i, 17)

y(i) = mod (i, 31)

end do

!$omp parallel

!$omp do

do i = 1, n

x(i) = x(i) + s * y(i)

end do

!$omp end do

!$omp end parallel

stop

end

39 / 115

SAXPY: The Changes

Notice that our OpenMP program looks exactly the same as our
original program, except for the OpenMP directives.

These directives, in fact, look like comments to the compiler. In other
words, if you simply compile the OpenMP program in the usual way, it
will compile and run just as it did before.

You might think this is not a big accomplishment, but what it means is
that, as you modify your program to create an OpenMP version, you can
always run the program in sequential mode as a check.

Moreover, we can work on our program one section at a time. There may
be many loops in our program, but OpenMP will only parallelize the
loops we select. So it’s easy to experiment and to work in steps.

Now let’s try to find out a little bit more about the directives that we
added to the program.

40 / 115

Shared Memory Programming with OpenMP

1 Serial Programs Can’t Accelerate
2 Parallel Algorithms Are Available
3 The Parallel Loop
4 SAXPY Example: Vector Addition
5 Basic OpenMP Directives
6 Compiling, Linking, Running
7 Timing and Other Functions
8 PRIME Example
9 Private and Shared Variables

10 Reduction Operations
11 Using Random Numbers
12 SATISFY Example

41 / 115

DIRECT: The Parallel Region is Defined by a Directive

OpenMP includes a small number of functions and symbolic constants,
which must be declared.

Therefore, a C or C++ program that uses OpenMP should usually have
the following include statement at the beginning of the file:

include <omp.h>

Every Fortran77 subroutine or function that uses OpenMP should have
the following include statement:

include ’omp_lib.h’

A FORTRAN90 subroutine or function using OpenMP can use the
Fortran77 include statement, or reference the OpenMP module:

use omp_lib

42 / 115

DIRECT: The Parallel Region is Defined by a Directive

The C/C++ parallel directive begins a parallel region.

pragma omp parallel
{

do things in parallel here, if directed!
}

Typically, this parallel region will contain one or more for loops; these
loops may be selected for parallel execution if the user indicates so.

As in many cases in C and C++, the curly brackets are optional; if
omitted, the parallel statement applies only to the very next block of
code. If you have several successive for loops that should all be parallel
in the same way, you are better off using the curly brackets.

43 / 115

DIRECT: The Parallel Region is Defined by a Directive

The FORTRAN parallel directive begins a parallel region.

!$omp parallel
do things in parallel here, if directed!

!$omp end parallel

The parallel region must be closed with an end parallel directive; thus in
Fortran you always explicitly declare where the parallel region ends.

Typically, this parallel region will contain one or more do loops; these
loops may be selected for parallel execution if the user indicates so.

44 / 115

DIRECT: Variables in the Parallel Region

All variables inside the parallel region will be classified as:

shared, leave this in shared memory;

private, each core needs a private copy;

reduction, special treatment.

Except for loop indices, all variables are assumed to be shared.

It’s important that no variable be misclassified. To override the defaults,
or to declare some variables explicitly, add the private() or shared()
clause to your parallel directive.

Our example doesn’t need to specify this information, so we’ll come back
to discuss this in a later example!

45 / 115

DIRECT: PRIVATE and SHARED Clauses

The private() and shared() clauses modify the parallel directive.

In C, this might appear like this:

pragma omp parallel \
private (i) \
shared (n, s, x, y)

or:
pragma omp parallel private (i) shared (n, s, x, y)

while in FORTRAN90, the same information would look like this:

!$omp parallel &
!$omp private (i) &
!$omp shared (n, s, x, y)
or:
!$omp parallel private (i) shared (n, s, x, y)

46 / 115

DIRECT: Parallel Loops are Marked by Directives

Loops in the parallel region will not be executed in parallel, until you
mark that loop with a for directive in C/C++, or a do directive in
FORTRAN.

If a parallel region has five loops, you can mark any or all of them.

A nested loop only requires one directive.

pragma omp for
for (i = 0; i < m; i++)
{

...xxx...
}
pragma omp for
for (i = 0; i < 1000; i++)
{

...xxx...
}

47 / 115

DIRECT: Nested Loops

A nested loop should only be marked by one directive.

pragma omp for
for (i = 0; i < m; i++)
{

for (j = 0; j < n; j++)
{
...xxx...

}
}

!$ omp do
do i = 1, m
do j = 1, n

...xxx...
end do

end do
!$ omp end do

48 / 115

DIRECT: The Loop Directive in the SAXPY Example

pragma omp for
for (i = 0; i < n; i++)
{
x[i] = x[i] + s * y[i];

}

!$omp do
do i = 1, n
x(i) = x(i) + s * y(i)

end do
!$omp end do

49 / 115

DIRECT: SAXPY Example in C

include <omp.h> <-- OpenMP Definitions

int main ()

{

int i, n = 1000;

double s = 1.23, x[1000], y[1000];

for (i = 0; i < n; i++)

{

x[i] = (double) ((i + 1) % 17);

y[i] = (double) ((i + 1) % 31);

}

pragma omp parallel <-- Begin parallel region

{

pragma omp for <-- Next loop is parallel

for (i = 0; i < n; i++)

{

x[i] = x[i] + s * y[i];

}

}

return 0;

}

50 / 115

DIRECT: SAXPY Example in F90

program main

use omp_lib <-- OpenMP Definitions

integer, parameter :: n = 1000

integer i

double precision :: s = 1.23

double precision x(n), y(n)

do i = 1, n

x(i) = mod (i, 17)

y(i) = mod (i, 31)

end do

!$omp parallel <-- Begin parallel region

!$omp do <-- Next loop is parallel

do i = 1, n

x(i) = x(i) + s * y(i)

end do

!$omp end do <-- End of that loop

!$omp end parallel <-- End of parallel region

stop

end

51 / 115

DON’T DESPAIR, WE’RE HALFWAY THERE!

52 / 115

Shared Memory Programming with OpenMP

1 Serial Programs Can’t Accelerate
2 Parallel Algorithms Are Available
3 The Parallel Loop
4 SAXPY Example: Vector Addition
5 Basic OpenMP Directives
6 Compiling, Linking, Running
7 Timing and Other Functions
8 PRIME Example
9 Private and Shared Variables

10 Reduction Operations
11 Using Random Numbers
12 SATISFY Example

53 / 115

RUN: OpenMP Directives Are Ignored

Because the OpenMP directives look like comments, your program will
run sequentially if you compile it the usual way -
even after you have added OpenMP directives!

gcc myprog.c

g++ myprog.cpp

gfortran myprog.f

gfortran myprog.f90

./a.out runs as a sequential program

54 / 115

RUN: Creating and Running an Executable

The compile statement results in the creation of what is called the
executable program - that is, it’s ready to run.

By default, the executable is stored in a file with the peculiar name of
a.out. To avoid confusion, this should be renamed to something sensible:

mv a.out myprog

The executable program can be run by typing its name, preceding by ./,
which is actually shorthand for the current directory:

./myprog

55 / 115

RUN: OpenMP Directives Can Be Activated

You build a parallel version of your program by telling the compiler to
activate the OpenMP directives.

GNU compilers do this with the -fopenmp switch:

gcc -fopenmp myprog.c

g++ -fopenmp myprog.cpp

gfortran -fopenmp myprog.f

gfortran -fopenmp myprog.f90

This time, we choose a different name for the executable:

mv a.out myprog_omp

56 / 115

RUN: Intel Compiler Switches

Intel C compilers need 2 switches, openmp and parallel:

icc myprog.c -openmp -parallel

icpc myprog.cpp -openmp -parallel

Intel Fortran compilers need 3 switches, openmp and parallel and fpp:

ifort myprog.f -openmp -parallel -fpp

ifort myprog.f90 -openmp -parallel -fpp

57 / 115

RUN: Threads Versus Processors

OpenMP knows how many processors (cores) are available on the
system.

However, when you want to run in parallel, you actually specify how
many threads you want; this is the number of parallel tasks to be carried
out at one time, and usually means how you want to “slice up” your loop.

Using 1 thread means sequential execution.

Asking for 2 threads means the work will be split into two chunks, and it
will be done in parallel if there are at least two processors available.

Similarly, we can ask for 8 threads, but we might only have four
processors. In that case, each processor will handle two threads.

It usually makes sense to ask for the number of threads to be the number
of processors; occasionally you can get a speedup by having twice the
number of threads.

58 / 115

RUN: Specifying the Number of Threads

When we run a program whose OpenMP directives have been activated,
then OpenMP looks for the value of an environment variable called
OMP NUM THREADS to determine the default number of threads.

You can query this value by typing:

echo $OMP_NUM_THREADS

A blank value is the same as 1. Usually, however, it’s set to a sensible
value, such as the number of cores available.

You can reset this environment variable using a command like:

export OMP_NUM_THREADS=4 <-- (No spaces around equal sign!)

and this new value will hold for any programs you run interactively.

59 / 115

RUN: Trying Different Numbers of THreads

Changing the number of threads is easy, and can be done at run time.
Suppose our executable program is called myprog omp.

We could experiment with 1, 2, 4 and 8 threads by:

export OMP_NUM_THREADS=1
./myprog_omp
export OMP_NUM_THREADS=2
./myprog_omp
export OMP_NUM_THREADS=4
./myprog_omp
export OMP_NUM_THREADS=8
./myprog_omp

These commands have no effect on a sequential program. Only a
program compiled with the OpenMP switches will notice that there are
multiple threads available.

60 / 115

RUN: Trying Different Numbers of Threads

We know a little bit about how to convert a sequential program into an
OpenMP parallel program (include file, parallel and do/for directives).

We know how to compile;

We know how to run;

We know how to set the number of threads, which make the program
“more parallel”.

But the point of parallel programming is to run faster and to do that, we
need to measure the time it takes a program to run.

How do we time our OpenMP programs?

61 / 115

Shared Memory Programming with OpenMP

1 Serial Programs Can’t Accelerate
2 Parallel Algorithms Are Available
3 The Parallel Loop
4 SAXPY Example: Vector Addition
5 Basic OpenMP Directives
6 Compiling, Linking, Running
7 Timing and Other Functions
8 PRIME Example
9 Private and Shared Variables

10 Reduction Operations
11 Using Random Numbers
12 SATISFY Example

62 / 115

TIME: Measuring Wall Clock Time

Parallel programming does the same amount of work as sequential
programming, and in fact, it might even do more. So it’s not a good
idea, when making comparisons, to measure the amount of work.

It’s not a good idea to measure the total CPU time (how much time was
used by all the processors), because this will also, almost surely, be larger
than the CPU time for a sequential run.

There are two important quantities in parallel programming:

the elapsed wall clock time - how long did you wait for a result?

the relative speedup: the wall clock time using 1 processor divided
by the wall clock time using p processors.

63 / 115

TIME: Measuring Wall Clock Time

There are several things to keep in mind when measuring performance:

your parallel program may run slower on small versions of your
problem;

parallelizing one big thing is much better than parallelizing many
small things;

some programs run too quickly, or work on too little data, to be
worth parallelizing;

if you let your problem get big enough, it will suddenly slow down
drastically when it reaches the memory limit.

64 / 115

TIME: OpenMP Functions

OpenMP includes the following functions:

omp set num threads (t) : set the number of threads;

t = omp get num threads () : get the number of threads;

t = omp get max threads () : get the maximum number of
threads;

p = omp get num procs () : how many processors are there?

id = omp get thread num () : which thread is executing?

wtime = omp get wtime() : how much time has elapsed?

At the moment, we are goint to need the timing function!

65 / 115

TIME: How Much Time Has Passed?

The function omp get wtime() returns, as a double precision real
number, the current reading of the wall clock.

You read the wall clock time before and after a parallel computation.
The difference gives you the measured time.

wtime = omp_get_wtime ();

pragma omp parallel
pragma omp for
for (i = 0; i < n; i++)
{

Do a lot of work in parallel;
}

wtime = omp_get_wtime () - wtime;
cout << "Work took " << wtime << " seconds.\n";

66 / 115

TIME: The SAXPY Example

include <omp.h>

int main ()

{

int i, n = 1000;

double wtime, s = 1.23, x[1000], y[1000];

wtime = omp_get_wtime (); <-- Start the clock

pragma omp parallel

{ <-- parallel region begins with this bracket...
pragma omp for

for (i = 0; i < n; i++)

{

x[i] = (double) ((i + 1) % 17);

y[i] = (double) ((i + 1) % 31);

}

pragma omp for

for (i = 0; i < n; i++)

{

x[i] = x[i] + s * y[i];

}

} <-- and parallel region ends with this bracket.
wtime = omp_get_wtime () - wtime; <-- Stop the clock

printf ("%g seconds.\n", wtime);

return 0;

}

67 / 115

TIME: the SAXPY Example!

program main

use omp_lib

integer, parameter :: n = 1000

integer i

double precision :: s = 1.23

double precision wtime, x(n), y(n)

wtime = omp_get_wtime (); <-- Start the clock.

!$omp parallel

!$omp do

do i = 1, n

x(i) = mod (i, 17)

y(i) = mod (i, 31)

end do

!$omp end do

!$omp do

do i = 1, n

x(i) = x(i) + s * y(i)

end do

!$omp end do

!$omp end parallel

wtime = omp_get_wtime () - wtime <-- Stop the clock.

write (*, *) wtime, ’ seconds.’

stop

end

68 / 115

TIME: Run SAXPY with Timings

Now our example program is tiny (as far as the number of instructions)
and also as far as the amount of work.

So to start with, let’s increase the value of n to 100,000.

Secondly, we are going to insert the timing calls (this should involve four
new lines of code.)

I will recompile the program with OpenMP enabled, and run with 1, 2, 4,
8 and 16 threads.

If I plot the time, I am likely to get a hyperbola. If I plot the speedup,
that is, p-processor time divided by the 1-processor time, I should get a
diagonal line (if things are going well.). Lines that are diagonal (or not)
are much easier to understand and judge than hyperbolas!

69 / 115

TIME: GNUPLOT Commands for Time Plot

gnuplot
set term png

set output ’timing1.png’
set style data linespoints
set title "Timing for 1-8 OpenMP Threads"
set grid
plot ’speedup.txt’ using 1:2 lw 3

set output ’timing2.png’
set style data linespoints
set title "Timing for 1-8 OpenMP Threads"
set grid
set yrange [0:*] <-- Important!
plot ’speedup.txt’ using 1:2 lw 3

quit

70 / 115

TIME: Wall Clock Time as a Function of Threads

This graph incorrectly suggests that our time is dropping to zero.

71 / 115

TIME: Wall Clock Time as a Function of Threads

This graph forces the Y axis to start at 0.

72 / 115

TIME: GNUPLOT Commands for Speedup Plot

gnuplot
set term png

set output ’speedup.png’
set style data linespoints
set title "Speedup for 1-8 OpenMP Threads"
set grid
plot ’speedup.txt’ using 1:1 title ’ideal’ lw 3, \

’speedup.txt’ using 1:3 title ’actual’ lw 3
quit

73 / 115

TIME: Speedup Plot

This graph uses the same data, but is much easier to understand (and to
be sad about - our performance is not great!)

74 / 115

Shared Memory Programming with OpenMP

1 Serial Programs Can’t Accelerate
2 Parallel Algorithms Are Available
3 The Parallel Loop
4 SAXPY Example: Vector Addition
5 Basic OpenMP Directives
6 Compiling, Linking, Running
7 Timing and Other Functions
8 PRIME Example
9 Private and Shared Variables

10 Reduction Operations
11 Using Random Numbers
12 SATISFY Example

75 / 115

PRIME: Counting the Number of Primes

The timing function is very useful:

it can make you happy (things speed up)!

it can puzzle you (why don’t they speed up more?)

it can anger you (what? things slowed down???)

Let’s look at a simple program to count the prime numbers. We’ll turn it
into an OpenMP program, run it with 1 thread and 2 threads, and ask
what information is coming back to us from the timing results.

76 / 115

PRIME: The Serial C Code

n = n_lo;

while (n <= n_hi)

{

total = 0;

for (i = 2; i <= n; i++)

{

prime = 1;

for (j = 2; j < i; j++)

{

if (i % j == 0)

{

prime = 0;

break;

}

}

total = total + prime;

}

printf (" %8d %8d\n", n, total);

n = n * n_factor;

}

77 / 115

PRIME: Counting the Number of Primes

Where is the loop to parallelize?

What are two reasons we cannot parallelize the j loop?

If we have two processes (or “threads”) running parts of the i loop at the
same time, which variables must we make copies of so the threads don’t
interfere with each other?

What variable needs to be handled in a special way?

If we run this code on 2 threads, will it run (about) twice as fast?

78 / 115

PRIME: The OpenMP C Code

n = n_lo;

while (n <= n_hi)

{

wtime = omp_get_wtime ();

pragma omp parallel shared (n) private (i, j, prime)

pragma omp for reduction (+ : total)

total = 0;

for (i = 2; i <= n; i++)

{

prime = 1;

for (j = 2; j < i; j++)

{

if (i % j == 0)

{

prime = 0;

break;

}

}

total = total + prime;

}

wtime = omp_get_wtime () - wtime;

printf (" %8d %8d %12f\n", n, total, wtime);

n = n * n_factor;

}

79 / 115

PRIME: Compare Results

Here are timings using 1 thread and 2 threads.

N Pi Time(1) Time(2)

1 0 0.000077 0.000120
2 1 0.000002 0.000006
4 3 0.000002 0.000003
8 7 0.000002 0.000003
16 13 0.000002 0.000003
32 24 0.000003 0.000003
64 42 0.000007 0.000006
128 73 0.000019 0.000014
...

4096 1269 0.006119 0.009021
8192 2297 0.023119 0.016182
16384 4197 0.077573 0.057229
32768 7709 0.283234 0.206660
65536 14251 1.051483 0.771272
131072 26502 5.166276 4.116094
262144 49502 18.337702 13.203991

80 / 115

PRIME: Compare Results

We could probably guess that the program runs faster, even without
calling the timer routine.

But it’s when we look at the timing results that we realize that
something is not working the way we expect.

It turns out that OpenMP takes the loop running from 2 to n and assigns
the first half of the indices to the first thread, the second to the second
thread. Ordinarily, there’s no reason to think that’s a bad idea.

But the work only gets done in half the time if each thread gets the same
amount of work. Does that happen here?

If we notice that the work load varies a lot, then there we can modify the
program, or use more sophisticated OpenMP instructions that will help
us try to distribute the work better.

81 / 115

Shared Memory Programming with OpenMP

1 Serial Programs Can’t Accelerate
2 Parallel Algorithms Are Available
3 The Parallel Loop
4 SAXPY Example: Vector Addition
5 Basic OpenMP Directives
6 Compiling, Linking, Running
7 Timing and Other Functions
8 PRIME Example
9 Private and Shared Variables

10 Reduction Operations
11 Using Random Numbers
12 SATISFY Example

82 / 115

PRIV: Lambert’s W Function

Lambert’s W function is the solution of the equation

w(x)ew(x) = x

It’s might not be obvious why this function needed to be invented, but
there was a reason. It’s really not obvious how to evaluate the function,
but there is an algorithm. As you might expect, w(x) is more difficult to
compute than a polynomial or the sine function, but these complications
are typical of what you will encounter in scientific computing. And they
point out some problems that OpenMP will have to work around!

83 / 115

PRIV: Code to Compute W for N values of X

for (i = 0; i < 8; i++)

{

x = x_vec[i]; <-- x_vec contains test values.

w = x + log (x); <-- Initial guess for w(x).

it = 0;

while (1)

{

if (100 < it)

{

break;

}

if (fabs ((x - w * exp (w))) <

tol * fabs ((w + 1.0) * exp (w)))

{

break;

}

a = w * exp (w) - x;

b = (w + 1.0) * exp (w)

- (w + 2.0) * (w * exp (w) - x) / (2.0 * w + 2.0);

w = w - a / b;

it = it + 1;

}

printf (" %8.4f %3d %14g %14g %8.2e\n",

x, it, w, w_vec[i], fabs (w - w_vec[i])); <-- Compare with exact.

}

84 / 115

PRIV: Lambert’s W Function

We want to compute a table of 100,000 values for w(x) over the range
1 ≤ x ≤ 100. We’d like to use OpenMP to do so.

Do you see some real problems here? This computation is much messier
than the “saxpy” example. In that example, the only variables that
appeared on the left hand side were vector entries, indexed by the loop
index. So there was no possibility of a conflict. Each loop iteration was
working with completely distinct data.

Here, however, notice the variables x, w, it, a, b which all appear on the
left hand side of equations inside the loop. These are all potential
conflicts.

We presumably will fix the problem with x and w by storing them in
arrays for our table. But how do we deal with it, a, b? Remember, if
these variables each represent a single shared location in memory, then all
the processors can be putting and reading stuff from the same location,
which will cause total confusion!

85 / 115

PRIV: Code to Compute W

We are used to the loop index i being “private”; each process has its
own copy. But now the variables a, b, it must also be stored this way.

pragma omp parallel shared (n, tol, w, x) private (a, b, i, it)

{

pragma omp for

for (i = 0; i < n; i++)

{

x[i] = ((n - i) * 1.0 + i * 100.0) / n;

w[i] = x[i] + log (x[i]);

it = 0;

while (1)

{

if (100 < it)

{

break;

}

if (fabs ((x[i] - w[i] * exp (w[i]))) <

tol * fabs ((w[i] + 1.0) * exp (w[i])))

{

break;

}

a = w[i] * exp (w[i]) - x[i];

b = (w[i] + 1.0) * exp (w[i])

- (w[i] + 2.0) * (w[i] * exp (w[i]) - x[i]) / (2.0 * w[i] + 2.0);

w[i] = w[i] - a / b;

it = it + 1;

}

}

}

86 / 115

PRIV: Private/Shared

The very name “shared memory” suggests that the threads share one set
of data that they can all “touch”.

By default, OpenMP assumes that all variables are to be shared – with
the exception of the loop index in the do or for statement.

It’s obvious why each thread will need its own copy of the loop index.
Even a compiler can see that!

However, some other variables may need to be treated specially when
running in parallel. In that case, you must explicitly tell the compiler to
set these aside as private variables.

Usually, such variables are temporary or convenience variables, whose
values are not needed before or after the loop is executed.

87 / 115

PRIV: Private/Shared

What variables here are private?

Note that pfun is the name of a user function.

do i = 1, n
do j = 1, n
d = 0.0
do k = 1, 3
dif(k) = coord(k,i) - coord(k,j)
d = d + dif(k) * dif(k)

end do
do k = 1, 3
f(k,i) = f(k,i) - dif(k) * pfun (d) / d

end do
end do

end do

88 / 115

PRIV: Private/Shared

I’ve had to cut this example down a bit. So let me point out that coord
and f are big arrays of spatial coordinates and forces, and that f has been
initialized already.

The variable n is counting particles, and where you see a 3, that’s
because we’re in 3-dimensional space.

The mysterious pfun is a function that evaluates a factor that will
modify the force.

List all the variables in this loop, and try to determine if they are shared
or private.

Which variables are already shared or private by default?

89 / 115

PRIV: QUIZ

do i = 1, n <-- I? N?
do j = 1, n <-- J?
d = 0.0 <-- D?
do k = 1, 3 <-- K
dif(k) = coord(k,i) - coord(k,j) <-- DIF?
d = d + dif(k) * dif(k) -- COORD?

end do
do k = 1, 3
f(k,i) = f(k,i) - dif(k) * pfun (d) / d

end do <-- F?, PFUN?
end do

end do

90 / 115

PRIV: Private/Shared

!$omp parallel private (i, j, k, d, dif) &

!$omp shared (n, coord, f)

!$ omp do

do i = 1, n

do j = 1, n

d = 0.0

do k = 1, 3

dif(k) = coord(k,i) - coord(k,j)

d = d + dif(k) * dif(k)

end do

do k = 1, 3

f(k,i) = f(k,i) - dif(k) * pfun (d) / d

end do

end do

end do

!$ omp end do

!$omp end parallel

91 / 115

PRIV: The SAXPY Example

Remember the SAXPY example?

We didn’t specify any shared() or private() information there, but the
programs compiled, ran correctly, and ran faster, under OpenMP. Are
there rules for when we have to specify this information?

Indeed. By default, OpenMP will assume that the index of any loop
marked with a for or do directive is private (which it must be). In
FORTRAN, it will also assume that the indices of any loops nested inside
such a loop are also private - but in C/C++, it does not make this
assumption.

By default, all other variables are assume to be shared. Therefore,
although it can be useful to indicate the status of all variables, you really
only have to indicate any non-loop index variables that are private, and
any reduction variables.

Just for review, here is the SAXPY example, with the extra clauses that
it turned out we didn’t actually need.

92 / 115

PRIV: The SAXPY Example

include <omp.h>

int main ()

{

int i, n = 1000;

double s = 1.23, x[1000], y[1000];

for (i = 0; i < n; i++)

{

x[i] = (double) ((i + 1) % 17);

y[i] = (double) ((i + 1) % 31);

}

pragma omp parallel \

private (i) \

shared (n, s, x, y)

pragma omp for

for (i = 0; i < n; i++)

{

x[i] = x[i] + s * y[i];

}

return 0;

}

93 / 115

PRIV: The SAXPY Example

program main

use omp_lib

integer, parameter :: n = 1000

integer i

double precision :: s = 1.23

double precision x(n), y(n)

do i = 1, n

x(i) = mod (i, 17)

y(i) = mod (i, 31)

end do

!$omp parallel &

!$omp private (i) &

!$omp shared (n, s, x, y)

!$omp do

do i = 1, n

x(i) = x(i) + s * y(i)

end do

!$omp end do

!$omp end parallel

stop

end

94 / 115

Shared Memory Programming with OpenMP

1 Serial Programs Can’t Accelerate
2 Parallel Algorithms Are Available
3 The Parallel Loop
4 SAXPY Example: Vector Addition
5 Basic OpenMP Directives
6 Compiling, Linking, Running
7 Timing and Other Functions
8 PRIME Example
9 Private and Shared Variables

10 Reduction Operations
11 Using Random Numbers
12 SATISFY Example

95 / 115

REDUCTION: Integral of Lambert Function

Recall the Lambert function w(x) and suppose that we wish to
estimate the integral of this function over the range 1 ≤ x ≤ 100.

For simplicity, let’s also assume that we have rewritten the computation
so that there is now a C or FORTRAN function called w(x) which carries
out the evaluation of the Lambert function for any value of x .

We’ll use a simple approximation that divides [1, 100] into n subintervals
[a, b], and sums the products of w(x) at the midpoints multiplied by the
length of the subintervals.∫ 100

1

w(x)dx ≈
n∑

i=1

w(
ai + bi

2
) (bi − ai)

96 / 115

REDUCTION: Is Q Private? Shared?

What kind of variable is Q? It can’t be shared, because every process is
trying to update it. It can’t be private, because it has a value before the
loop, and after the loop.

include <stdlib.h>

include <stdio.h>

include <math.h>

int main ();

double w (double x);

int main ()

{

double a;

double b;

int i;

int n = 1000;

double q;

double x;

q = 0.0;

for (i = 0; i < n; i++)

{

a = ((n - i) * 1.0 + (i) * 100.0) / n;

b = ((n - i - 1) * 1.0 + (i + 1) * 100.0) / n;

x = 0.5 * (a + b);

q = q + (b - a) * w (x);

}

printf ("Q = %g\n", q);

return 0;

}

97 / 115

REDUCTION: Q is a Reduction Variable
Q has an intermediate status between private and shared, called a

reduction variable, because a single result is formed from contributions
of all the processes. To indicate such a variable, a reduction clause must
be added to the for or do loop where the variable is computed.
include <stdlib.h>

include <stdio.h>

include <math.h>

include <omp.h>

int main ();

double w (double x);

int main ()

{

double a;

double b;

int i;

int n = 1000;

double q;

double x;

pragma omp parallel shared (n) private (a, b, i, x)

pragma for reduction (+ : q)

q = 0.0;

for (i = 0; i < n; i++)

{

a = 1.0 + (100.0 - 1.0) * (double) (i) / n;

b = 1.0 + (100.0 - 1.0) * (double) (i + 1) / n;

x = 0.5 * (a + b);

q = q + (b - a) * w (x);

}

printf ("Q = %g\n", q);

return 0;

}
98 / 115

REDUCTION: The Reduction Clause

A reduction operation occurs when you

sum a set of numbers;

compute the dot product of two vectors;

compute the product of a set of numbers;

find the maximum of a set of numbers.

The OpenMP reduction clause is used to indicate variables that are used
to store such computations.

99 / 115

REDUCTION: The Reduction clause

The reduction clause modifies a for or do directive.

Reduction clause examples include:

omp for reduction (+ : xdoty) ;

omp for reduction (+ : sum1, sum2, sum3) :
several sums in one loop;

omp for reduction (* : factorial): a product;

!$omp do reduction (max : pivot) :
maximum or minimum value (Fortran only);)

If a variable occurs in a reduction clause, it cannot also occur in a private
or shared clause for that parallel region!

Within a parallel region, a variable is private, shared or reduction.

100 / 115

REDUCTION: Norm Example

A dot product is another example of reduction:

pragma omp parallel private (i) shared (n, x, y)
dot = 0.0;
pragma for reduction (+ : dot)
for (i = 0; i < n; i++)
{
dot = dot + x[i] * y[i];

}

101 / 115

Shared Memory Programming with OpenMP

1 Serial Programs Can’t Accelerate
2 Parallel Algorithms Are Available
3 The Parallel Loop
4 SAXPY Example: Vector Addition
5 Basic OpenMP Directives
6 Compiling, Linking, Running
7 Timing and Other Functions
8 PRIME Example
9 Private and Shared Variables

10 Reduction Operations
11 Using Random Numbers
12 SATISFY Example

102 / 115

RANDOM: Lambert Integral by Monte Carlo

Now suppose that we wish to approximate the integral of the Lambert W
function from 1 to 100, but instead of using a quadrature rule, we want
to use a Monte Carlo approach.

For this simple problem, the advantages of a Monte Carlo approach
aren’t obvious, but for problems with complicated geometries, or
probabilistic components, or simulations, sometimes this is the only way
to do computations.

Our approximation selects n sample points xi from [1, 100] at random,
and computes the estimate as∫ 100

1

w(x)dx ≈ 100− 1

n

n∑
i=1

w(xi)

103 / 115

REDUCTION: The Sequential Code

Each time we call drand(), we get a new sample point. We also get a
new value of seed, which is actually what controls the computation.

include <stdlib.h>

include <stdio.h>

include <math.h>

int main ();

double w (double x);

double drand (int *seed);

int main ()

{

double a;

double b;

int i;

int n = 1000;

double q;

int seed = 123456789;

double u;

double x;

q = 0.0;

for (i = 0; i < n; i++)

{

u = drand (&seed); <-- some random number generator.

x = 1.0 + (100.0 - 1.0) * u;

q = q + w (x);

}

q = q * (100.0 - 1.0) / n;

printf ("Q = %g\n", q);

return 0;

}

104 / 115

RUN: Parallel Execution Needs Multiple Seeds

If we want this calculation to run in parallel, then we want each
process to be able to call drand() and get a distinct set of random
numbers. That means each process needs a separate, distinct, private
value of seed. Let’s call this quantity my seed.

A simple idea would be to set

my_seed = seed + id

where seed is our original seed value and id is the identifier or index of
the process. This will give us distinct seeds.

This idea will work, but look carefully at the details in the revised code:

105 / 115

REDUCTION: Changes for Parallel Code

include <stdlib.h>

include <stdio.h>

include <math.h>

include <omp.h>

int main ();

double w (double x);

double drand (int *seed);

int main ()

{

double a;

double b;

int i;

int my_seed;

int n = 1000;

double q;

int seed = 123456789;

double u;

double x;

q = 0.0;

pragma omp parallel shared (n, seed) private (i, my_seed, u, x)

{

my_seed = seed + omp_thread_num (); <-- omp_thread_num() gets the id.

pragma omp for reduction (q : +)

for (i = 0; i < n; i++)

{

u = drand (&my_seed);

x = 1.0 + (100.0 - 1.0) * u;

q = q + w (x);

}

}

q = q * (100.0 - 1.0) / n;

printf ("Q = %g\n", q);

return 0;

}

106 / 115

Shared Memory Programming with OpenMP

1 Serial Programs Can’t Accelerate
2 Parallel Algorithms Are Available
3 The Parallel Loop
4 SAXPY Example: Vector Addition
5 Basic OpenMP Directives
6 Compiling, Linking, Running
7 Timing and Other Functions
8 PRIME Example
9 Private and Shared Variables

10 Reduction Operations
11 Using Random Numbers
12 SATISFY Example

107 / 115

SATISFY: The Logical Satisfaction Problem

Logicians and electric circuit designers both worry about the logical
satisfaction problem. When logicians describe this problem, they assume
that they have n logical variables b1 through bn, each of which can be
false=0 or true=1.

Moreover, they have a formula involving these variables, as well as logical
operators such as and, or, not.

f = b_1 AND (b_2 OR (b_1 AND NOT b_5) OR ...

Their simple question is, what values of the variables b will make the
formula have a value that is true, that is, what values satisfy this
formula?

108 / 115

SATISFY: The Brute Force Approach

While there are some cases of the satisfaction problem that allow for
an efficient approach, there is an obvious brute force approach that has
three advantages:

it always finds all the solutions;

it is easy to program;

it is easy to do in parallel.

As you can imagine, the brute force approach is brutally simple:

1 generate every possibility

2 check if it’s a solution

We can easily parallelize this approach if we can figure out how to
generate all the possibilities, and divide this up among the processors.

109 / 115

SATISFY: Logical Vector = Binary Number

But we are searching all possible logical vectors of dimension n. A
logical vector, containing TRUE or FALSE, can be though of as a binary
vector, which can be thought of as an integer:

FFFF = (0,0,0,0) = 0
FFFT = (0,0,0,1) = 1
FFTF = (0,0,1,0) = 2
FFTT = (0,0,1,1) = 3
...
TTTT = (1,1,1,1) = 15

so we can parallelize this problem by computing the total number of
possibilities, which will be 2n, and dividing up the range among the
processors.

110 / 115

SATISFY: Logical Vector = Binary Number

For example, we might have 1,024 possibilities, and 10 processors.

You should convince yourself that it is worthwhile figuring out a formula
that a formula that will automatically compute the ranges for you:

lo = floor ((p * 1024) / 10)
hi = floor (((p + 1) * 1024) / 10)

giving us the table:

Processor P Start Stop before
----------- -------- -----------

0 0 102
1 102 204
2 204 307
3 307 409

...
9 921 1024

111 / 115

SATISFY: A Simple C Code

/*

Compute the number of binary vectors to check.

*/

ihi = 1;

for (i = 1; i <= n; i++)

{

ihi = ihi * 2;

}

printf ("\n");

printf (" The number of logical variables is N = %d\n", n);

printf (" The number of input vectors to check is %d\n", ihi);

printf ("\n");

printf (" # Index ---------Input Values------------------------\n");

printf ("\n");

/*

Check every possible input vector.

*/

solution_num = 0;

for (i = 0; i < ihi; i++) Make this loop parallel!

{

i4_to_bvec (i, n, bvec);

value = circuit_value (n, bvec);

if (value == 1)

{

solution_num = solution_num + 1;

printf (" %2d %10d: ", solution_num, i);

for (j = 0; j < n; j++)

{

printf (" %d", bvec[j]);

}

printf ("\n");

}

}
112 / 115

SATISFY: Issues

What issues do we face in creating a parallel version?

We must define a range for each processor;

The only input is n;

Each processor works completely independently;

Each processor prints out any solution it finds;

The only common output variable is solution num.

113 / 115

SATISFY: A Simple C/OPENMP Code

pragma omp parallel \

shared (ihi, n, thread_num) \

private (bvec, i, id, ihi2, ilo2, j, solution_num_local, value) \

reduction (+ : solution_num)

{

id = omp_get_thread_num ();

ilo2 = (id * ihi) / thread_num;

ihi2 = ((id + 1) * ihi) / thread_num;

/*

Check every possible input vector.

*/

solution_num_local = 0;

for (i = ilo2; i < ihi2; i++)

{

i4_to_bvec (i, n, bvec);

value = circuit_value (n, bvec);

if (value == 1)

{

solution_num_local = solution_num_local + 1;

printf (" %2d %8d %10d: ", solution_num_local, id, i);

for (j = 0; j < n; j++)

{

printf (" %d", bvec[j]);

}

printf ("\n");

}

}

solution_num = solution_num + solution_num_local;

}

114 / 115

CONCLUSION

OpenMP has a simple set of rules that allow a programmer to
experiment on individual program loops.

The programmer must be careful to identify a parallel region, to mark the
loops in that region that are to be run in parallel, and to classify the
variables within the parallel region.

A program can be compiled with or without the OpenMP option.

A program can be run with 1, 2, or many OpenMP threads.

Program improvement is measured by comparing wall clock time.

Lab exercises will ask you to run or modify several OpenMP programs.

115 / 115

