
MPI Distributed Memory Programming

John Burkardt
Information Technology Department

Virginia Tech
..........

FDI Summer Track V:
Using Virginia Tech High Performance Computing

http://people.sc.fsu.edu/∼jburkardt/presentations/...
mpi 2009 vt.pdf

26-28 May 2009

1 / 67

MPI Distributed Memory Programming

Introduction

The HELLO Program

Running HELLO in Batch

The PRIME SUM Program

The Logic of the HEAT Program

Implementing the HEAT Program

The HEAT Program

How Messages Are Sent and Received

Conclusion

2 / 67

Introduction: Weather Computation for 1917

3 / 67

Introduction: The Dream of Weather Forecasting

In 1917, Richardson’s first efforts to compute a weather prediction
were simplistic and mysteriously inaccurate.

But he believed that with better algorithms and more data, it
would be possible to predict the weather reliably.

Over time, he was proved right, and the prediction of weather
became one of the classic computational problems.

Soon there was so much data that making a prediction 24 hours in
advance could take...24 hours of computer time.

Weather events like Hurricane Wilma in 2005 ($30 billion in
damage) meant accurate weather prediction was
worth paying for.

4 / 67

Introduction: Weather Computation for 2008

5 / 67

Introduction: Communication Getting Cheaper

While computer processor clockspeeds hit an upper limit,
Inter-computer communication has gotten faster and cheaper.

It seemed possible to imagine that an “orchestra” of low-cost
machines could work together and outperform supercomputers, in
speed and cost.

If this was true, then the quest for speed would simply require
connecting more machines.

But where was the conductor?

6 / 67

Introduction: The Birth of Clusters

7 / 67

Introduction: MPI Manages Cluster Computations

MPI (the Message Passing Interface) manages a parallel
computation on a distributed memory system.

MPI needs you to write and compile a “suitable” program.

MPI initializes the computation by copying your program to many
processors, giving each a unique ID, and starting them up.

Each copy needs to be smart enough to use its ID to determine
what part of the task it will work on.

MPI enables any copy of the program to exchange data with any
other copy, using ID numbers for addresses.

At the end, MPI shuts down all the programs, and collects the
output into one file.

This basic procedure is the key to MPI.

8 / 67

Introduction: The Programmer’s Task

The MPI programmer must distribute the data among the
processors, and move some intermediate results from one processor
to another, as needed.

The MPI programmer must manage:

more computational power (more MegaFLOPS! That’s
good!)

more memory (more MegaWords! That’s good!)

more communication (This is bad!)

Each communication can cost as much time as 500 computations!

9 / 67

MPI Distributed Memory Programming

Introduction

The HELLO Program

Running HELLO in Batch

The PRIME SUM Program

The Logic of the HEAT Program

Implementing the HEAT Program

The HEAT Program

How Messages Are Sent and Received

Conclusion

10 / 67

HELLO

Every programming language introduces itself with a ”Hello,
world!” program that gives you some idea of how complicated life
is going to be!

This simple program is a chance to get a feeling for the things that
you will see over and over again in that programming language.

It seems that even just to say ”Hello” can be pretty complicated!

11 / 67

HELLO: F90 Code

program main

use mpi
integer id, ierr, p

call MPI_Init (ierr)
call MPI_Comm_rank (MPI_COMM_WORLD, id, ierr)
call MPI_Comm_size (MPI_COMM_WORLD, p, ierr)

write (*, *) ’ Hello world, from process ’, id

call MPI_Finalize (ierr)

stop
end

12 / 67

HELLO: MPI Init & MPI Finalize

ierr = MPI Init (&argc, &argv)
subroutine MPI Init (ierr)

argc, the program argument counter;

argv, the program argument list

ierr = MPI Finalize ()
subroutine MPI Finalize (ierr)

must be the last MPI routine called.

13 / 67

HELLO: MPI Comm Rank & MPI Comm Size

ierr = MPI Comm Rank (communicator, &id)
subroutine MPI Comm Rank (communicator, id, ierr)

communicator, set this to MPI COMM WORLD;

id, returns the MPI ID of this process.

ierr = MPI Comm Size (communicator, &p)
subroutine MPI Comm Size (communicator, p, ierr)

communicator, set this to MPI COMM WORLD;

p, returns the number of processors available.

14 / 67

HELLO: C Code

include <stdlib.h>
include <stdio.h>
include "mpi.h"
{

int id;
int ierr;
int p;

ierr = MPI_Init (&argc, &argv);
ierr = MPI_Comm_size (MPI_COMM_WORLD, &p);
ierr = MPI_Comm_rank (MPI_COMM_WORLD, &id);
printf (" Process %d says ’Hello, world!’\n", id);
ierr = MPI_Finalize ();
return 0;

}
15 / 67

HELLO: Creating an Executable Program

The program must be compiled and loaded into an executable
program.

This is usually done on a special compile node of the cluster, which
is available for just this kind of interactive use.

mpicc hello.c
mpiCC hello.C or mpiCC hello.cc
mpif77 hello.f
mpif90 hello.f90

The commands mpicc, mpiCC, mpif77 and mpif90 are
customized calls to the compiler which add information about MPI
include files and libraries.

16 / 67

Batch jobs

The compile command creates an executable program called
a.out. It’s probably best to rename it using the mv command:

mv a.out hello

Once you have created the executable program on the cluster, you
are almost ready to go!

On some computer systems, it is possible at this point to run your
MPI program interactively, just by typing its name and some
information about how many processes you want to use.

Most systems, including Virginia Tech’s System X, require i that
your job be put into a queue along with all the jobs requested by
other users, so the jobs can be run in an orderly fashion.

This is called the batch or queueing system.

17 / 67

MPI Distributed Memory Programming

Introduction

The HELLO Program

Running HELLO in Batch

The PRIME SUM Program

The Logic of the HEAT Program

Implementing the HEAT Program

The HEAT Program

How Messages Are Sent and Received

Conclusion

18 / 67

Batch jobs: The Job Script File

To run the executable program hello on the cluster, you write a
job script, which might be called hello.sh,

The job script file describes the account information, time limits,
the number of processors you want, input files, and the program to
be run.

The job script file can look pretty confusing, but the good news is
that there are only a few important lines!

19 / 67

Batch jobs: Example Job Script File

#!/bin/bash
#PBS -lwalltime=00:00:30
#PBS -lnodes=2:ppn=2
#PBS -W group_list=tcf_user
#PBS -q production_q
#PBS -A hpcb0001

NUM_NODES=‘/bin/cat $PBS_NODEFILE | /usr/bin/wc -l \
| /usr/bin/sed "s/ //g"‘

cd $PBS_O_WORKDIR
export PATH=/nfs/software/bin:$PATH

jmdrun -np $NUM_NODES -hostfile $PBS_NODEFILE \
./hello

exit; 20 / 67

Batch jobs: Important items in job script file

In this job script, the important items are:

walltime lists your job time limit in seconds

nodes=2:ppn=2 asks for 2 nodes, and 2 processors per
node. Increase the number of nodes for more total processors.

hpcb0001 is the account under which you are running.

./hello runs the program; the queueing system saves the
output for you

./hello &> hello output.txt runs your program and saves
the output to the file hello output.txt.

21 / 67

Batch jobs: Submit the job script

To run your job, you use the qsub command to send your job
script file:

You submit the job, perhaps like this:

qsub hello.sh

The queueing system responds with a short message:

111484.queue.tcf-int.vt.edu

The important information is your job’s ID 111484.

22 / 67

Batch jobs: Wait for the script to run

Your job probably won’t execute immediately. To check on the
status of ALL the jobs for everyone, type

showq

Since the showq command lists each job by number and
username, you can check for just your job number:

showq | grep 111484

or only jobs associated with your username (for this class, our
usernames are hpc01, hpc02 and so on:

showq | grep hpc16

23 / 67

Batch jobs: Output files

When your job is done, the queueing system gives you two files:

an output file, such as hello.o111484

an error file, such as hello.e111484

If your program failed unexpectedly, the error file contains
messages explaining the sudden death of your program.

Otherwise, the interesting information is in the output file, which
contains all the data which would have appeared on the screen if
you’d run the program interactively.

Of course, if your program also writes data files, these simply
appear in your home directory when the program is completed.

24 / 67

Batch jobs: Examining the output

Our program output is in hello.o111484, or, we we might have
redirected the output to hello output.txt.

To see the output, type either:

more hello.o111484
more hello_output.txt

MPI output from different processes may be “shuffled”:

Process 3 says ‘Hello, world!’
Process 1 says ‘Hello, world!’
Process 0 says ‘Hello, world!’
Process 2 says ‘Hello, world!’

25 / 67

MPI Distributed Memory Programming

Introduction

The HELLO Program

Running HELLO in Batch

The PRIME SUM Program

The Logic of the HEAT Program

Implementing the HEAT Program

The HEAT Program

How Messages Are Sent and Received

Conclusion

26 / 67

PRIME SUM

Our Hello World program was easy and we really did run four
copies of the program. But we didn’t do any communication!

It’s time to do a computation in which the individual programs
must cooperate and communicate.

Let’s add up the prime numbers from 2 to N.

Each P process chooses a subrange to add up, then sends the total
to process 0.

27 / 67

PRIME SUM: Initialization

include <stdio.h>
include <stdlib.h>
include "mpi.h"

int main (int argc, char *argv[])
{

int i, id, j, master = 0, n = 1000, n_hi, n_lo;
int p, prime, total, total_local;
MPI_Status status;
double wtime;

MPI_Init (&argc, &argv);
MPI_Comm_size (MPI_COMM_WORLD, &p);
MPI_Comm_rank (MPI_COMM_WORLD, &id);

28 / 67

PRIME SUM: Computation

n_lo = ((p - id) * 1 + (id) * n) / p + 1;
n_hi = ((p - id - 1) * 1 + (id + 1) * n) / p;

wtime = MPI_Wtime ();
total_local = 0.0;
for (i = n_lo; i <= n_hi; i++) {
prime = 1;
for (j = 2; j < i; j++) {

if (i % j == 0) {
prime = 0;
break; } }

if (prime == 1)
total_local = total_local + i;

}
wtime = MPI_Wtime () - wtime;

29 / 67

PRIME SUM: Communication

if (id != master) {
MPI_Send (&total_local, 1, MPI_INT, master, 1,

MPI_COMM_WORLD); }
else {
total = total_local;
for (i = 1; i < p; i++) {

MPI_Recv (&total_local, 1, MPI_INT, MPI_ANY_SOURCE,
1, MPI_COMM_WORLD, &status);

total = total + total_local; } }
if (id == master) printf (" Total is %d\n", total);
MPI_Finalize ();
return 0;

}

30 / 67

PRIME SUM: Output

n825(0): PRIME_SUM - Master process:
n825(0): Add up the prime numbers from 2 to 1000.
n825(0): Compiled on Apr 21 2008 at 14:44:07.
n825(0):
n825(0): The number of processes available is 4.
n825(0):
n825(0): P0 [2, 250] Total = 5830 Time = 0.000137
n826(2): P2 [501, 750] Total = 23147 Time = 0.000507
n826(2): P3 [751, 1000] Total = 31444 Time = 0.000708
n825(0): P1 [251, 500] Total = 15706 Time = 0.000367
n825(0):
n825(0): The total sum is 76127

All nodes terminated successfully.

31 / 67

PRIME SUM: MPI Send

ierr = MPI Send (data, count, type, to, tag, communicator)
subroutine MPI Send (data, count, type, to, tag, communicator,
ierr)

data, the address of the data;

count, the number of data items;

type, the data type (MPI INT, MPI FLOAT...);

to, the processor ID to which data is sent;

tag, a message identifier (”0”, ”1”, ”1492” etc);

communicator, set this to MPI COMM WORLD;

32 / 67

PRIME SUM: MPI Recv

ierr = MPI Recv (data, count, type, from, tag, communicator,
status)
subroutine MPI Recv (data, count, type, from, tag,
communicator, status, ierr)

data, the address of the data;

count, number of data items;

type, the data type (must match what is sent);

from, the processor ID from which data is received (must
match the sender, or if don’t care, MPI ANY SOURCE;

tag, the message identifier (must match what is sent, or, if
don’t care, MPI ANY TAG);

communicator, (must match what is sent);

status, (auxilliary diagnostic information).

33 / 67

PRIME SUM: Reduction Operations

Having all the processors compute partial results, which then have
to be collected together is another example of a reduction
operation.

Just as with OpenMP, MPI recognizes this common operation, and
has a special function call which can replace all the sending and
receiving code we just saw.

34 / 67

PRIME SUM: Communication (Revised)

MPI_Reduce (&total_local, &total, 1, MPI_INT, MPI_SUM,
master, MPI_COMM_WORLD);

if (id == master) printf (" Total is %d\n", total);
MPI_Finalize ();
return 0;

35 / 67

PRIME SUM: MPI REDUCE

ierr = MPI Reduce (local data, reduced value, count, type,
operation, to, communicator)
subroutine MPI Reduce (local data, reduced value, count, type,
operation, to, communicator, ierr)

local data, the address of the local data;

reduced value, the address of the variable to hold the result;

count, number of data items;

type, the data type;

operation, the reduction operation MPI SUM,
MPI PROD, MPI MAX...;

to, the processor ID which collects the local data into the
reduced data;

communicator;

36 / 67

MPI Distributed Memory Programming

Introduction

The HELLO Program

Running HELLO in Batch

The PRIME SUM Program

The Logic of the HEAT Program

Implementing the HEAT Program

The HEAT Program

How Messages Are Sent and Received

Conclusion

37 / 67

Program Logic

In the beginning, we can think about writing a distributed memory
program without worrying about the details of arrays and function
calls.

We will look at the logic involved in planning a computer
algorithm, assuming that multiple processors will be available, and
that parts of the problem data and solution will be local to a
particular processor.

The problem we wish to solve is the equation for the changes over
time in temperature along a long wire,

38 / 67

Program Logic: Continuous Heat Equation

Determine the values of H(x , t) over a range t0 <= t <= t1 and
space x0 <= x <= x1,

We are given:

the temperature at the starting time, H(∗, t0),

the temperatures at the ends of the wire, H(x1, ∗) and
H(x2, ∗),

a heat source function f (x , t)

and a partial differential equation

∂H

∂t
− k

∂2H

∂x2
= f (x , t)

39 / 67

Program Logic: Discrete Heat Equation

The partial differential equation for the function H(x , t)

∂H

∂t
− k

∂2H

∂x2
= f (x , t)

becomes a discrete equation for the table of values H(i , j)
evaluated at the mesh nodes (x(i), t(j)):

H(i , j + 1)− H(i , j)

dt
−k

H(i − 1, j)− 2H(i , j) + H(i + 1, j)

dx2
= f (i , j)

40 / 67

Program Logic: Step Ahead in Time

A solution procedure simply fills in the missing entries of the array
H. We start out knowing all the values along the ”bottom” (initial
time), and the ”left” and ”right” (the ends of the wire).

The discrete equation can be used to fill in all the missing data.

For instance, knowing H(11,0), H(12,0) and H(13,0), we can ”fill
in” the value of H(12,1).

H(12,1)
^
|||
|||

H(11,0)-----H(12,0)-----H(13,0)

41 / 67

Program Logic: Distribution and Communication?

If we know all the values in one row of the H table, the discrete
equation can be used to determine all the values in the next row –
except for the first and last entries.

But the first and last values are available as boundary conditions.

Therefore, we can fill in the entire table, one row at a time.

The question to keep in mind is:

Will we be able to rearrange this solution procedure so that it
works under MPI, and uses limited communication?

42 / 67

Program Logic: Proposed Layout

43 / 67

Program Logic: How Will Time Stepping Work?

This computation could be done by three processors, which we can
call red, green and blue, or perhaps “0”, “1”, and “2”.

Instead of one complete H array of length N (21 for our picture),
each process will have a partial array, called h, of length n (7 for
our picture).

Each array h will also have entries 0 and n+1, for the left and right
immediate neighboring values.

If the two extra values are kept up to date, each process can
update all the local values.

Once local values are updated, each process must communicate
with its neighbors.

44 / 67

Program Logic: Distributed Memory

H has 21 elements; each process is responsible for 7 of them,
Each process copies entry 0 from the left and 8 from the right.

<-----------------THE H ARRAY----------------------->
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0 1 2 3 4 5 6 7 8 <-- Red’s h array
| |
0 1 2 3 4 5 6 7 8 <-- Green’s h array

| |
Blue’s h array --> 0 1 2 3 4 5 6 7 8

The information in H has been distributed.

45 / 67

Program Logic: Imagine You are One Of the Processors

Can we formulate this calculation for the ID-th process out of a
total of P processes?

Process ID needs to know if it is the very first or last process,
because then it actually has a boundary condition on one side
instead of a neighbor.

Process ID must know the value of N, divide that by P, and work
out how many values it is responsible for.

Process ID must initialize the h array.

It must update entries h(1) through h(n).

It must send h(1) left, h(n) right, and get updated values of h(0)
and h(n+1).

46 / 67

MPI Distributed Memory Programming

Introduction

The HELLO Program

Running HELLO in Batch

The PRIME SUM Program

The Logic of the HEAT Program

Implementing the HEAT Program

The HEAT Program

How Messages Are Sent and Received

Conclusion

47 / 67

Implementation: The Basic Calls

include <stdlib.h>
include <stdio.h>
include "mpi.h"

int main (int argc, char *argv[])
{

MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &id);
MPI_Comm_size (MPI_COMM_WORLD, &p);

Here’s where the computational stuff will be

MPI_Finalize ();
return 0;

}

48 / 67

Implementation: The Time Loop

On each time step, a process must do the following:

Exchange data with neighbors to update the ”ends” of h (that is
h[0] and h[n+1]);

Compute hnew, the temperature at the next time, for the
”middle” positions of h, 1 through n.

Replace the middle values in h by the new values from hnew.

49 / 67

Implementation: Exchanging data

The exchange of h values requires that:

processes 1 through P-1 send h[1] “to the left”.

processes 0 through P-2 receive these values as h[n+1]

processes 0 through P-2 send h[n] “to the right”

processes 1 through P-1 receive these values as h[0].

Boundary conditions allow process 0 to sets its [h0] and process
P-1 to set its h[n+1].

50 / 67

Implementation: Exchanging data

Each exchange requires an MPI Send and a matching MPI Recv:

if (0 < id)
MPI_Send (id-1:h[n+1] <=== id: h[1])

if (id < p-1)
MPI_Recv (id: h[n+1] <=== id+1:h[1])

if (id < p-1)
MPI_Send (id: h[n] ===> id+1:h[0])

if (0 < id)
MPI_Recv (id-1:h[n] ===> id: h[0])

51 / 67

Implementation: The Time Step

Once the communication has been done, (and the first and last
process have used their boundary condition information), each
process has up-to-date information in h with which to compute the
”middle” values of hnew, the temperature at the next time.

So this part of the computation looks like any ordinary sequential
code.

Once hnew is computed, we overwrite h and we are ready for the
next time step.

52 / 67

Implementation: The Time Step

for (i = 1; i <= n; i++)
hnew[i] = h[i] + dt * (
+ k * (h[i-1] - 2 * h[i] + h[i+1]) /dx/dx
+ f (x[i], t));

* Replace old H by new. *\

for (i = 1; i <= n; i++) h[i] = hnew[i]

53 / 67

MPI Distributed Memory Programming

Introduction

The HELLO Program

Running HELLO in Batch

The PRIME SUM Program

The Logic of the HEAT Program

Implementing the HEAT Program

The HEAT Program

How Messages Are Sent and Received

Conclusion

54 / 67

The HEAT Program: MPI Basics

inc l u d e <s t d l i b . h>
inc l u d e <s t d i o . h>
inc l u d e <math . h>
inc l u d e ”mpi . h”

i n t main (i n t argc , char ∗a rgv [])
{

i n t id , p ;
double wtime ;

MP I I n i t (&argc , &argv) ;
MPI Comm rank (MPI COMM WORLD, &i d) ;
MPI Comm size (MPI COMM WORLD, &p) ;

update (id , p) ;

MP I F i n a l i z e () ;

r e t u r n 0 ;
}

55 / 67

The HEAT Program: Initialization

/∗ Set the X c o o r d i n a t e s o f the N nodes . ∗/

x = (double ∗) ma l l o c ((n + 2) ∗ s i z e o f (double)) ;

f o r (i = 0 ; i <= n + 1 ; i++)
{

x [i] = ((double) (i d ∗ n + i − 1) ∗ x max
+ (double) (p ∗ n − i d ∗ n − i) ∗ x min)
/ (double) (p ∗ n − 1) ;

}
/∗ Set the v a l u e s o f H at the i n i t i a l t ime . ∗/

t ime = t ime min ;
h = (double ∗) ma l l o c ((n + 2) ∗ s i z e o f (double)) ;
h new = (double ∗) ma l l o c ((n + 2) ∗ s i z e o f (double)) ;
h [0] = 0 . 0 ;
f o r (i = 1 ; i <= n ; i++)
{

h [i] = i n i t i a l c o n d i t i o n (x [i] , t ime) ;
}
h [n+1] = 0 . 0 ;

t im e d e l t a = (time max − t ime min) / (double) (j max − j m i n) ;
x d e l t a = (x max − x min) / (double) (p ∗ n − 1) ;

56 / 67

The HEAT Program: Data Exchange

f o r (j = 1 ; j <= j max ; j++) {
t ime new = j ∗ t im e d e l t a ;

/∗ Send H[1] to ID−1. ∗/

i f (0 < i d) {
tag = 1 ;
MPI Send (&h [1] , 1 , MPI DOUBLE , id−1, tag , MPI COMM WORLD) ;

}
/∗ Rece i v e H[N+1] from ID+1. ∗/

i f (i d < p−1) {
tag = 1 ;
MPI Recv (&h [n+1] , 1 , MPI DOUBLE , i d +1, tag , MPI COMM WORLD, &s t a t u s) ;

}
/∗ Send H[N] to ID+1. ∗/

i f (i d < p−1) {
tag = 2 ;
MPI Send (&h [n] , 1 , MPI DOUBLE , i d +1, tag , MPI COMM WORLD) ;

}
/∗ Rece i v e H[0] from ID−1. ∗/

i f (0 < i d) {
tag = 2 ;
MPI Recv (&h [0] , 1 , MPI DOUBLE , id−1, tag , MPI COMM WORLD, &s t a t u s) ;

}

57 / 67

The HEAT Program: Update

/∗ Update the t empe ra tu r e based on the f o u r p o i n t s t e n c i l . ∗/

f o r (i = 1 ; i <= n ; i++)
{

h new [i] = h [i]
+ (t im e d e l t a ∗ k / x d e l t a / x d e l t a) ∗ (h [i−1] − 2 .0 ∗ h [i] + h [i +1])
+ t im e d e l t a ∗ r h s (x [i] , t ime) ;
}

/∗ Co r r e c t s e t t i n g s o f f i r s t H i n f i r s t i n t e r v a l , l a s t H i n l a s t i n t e r v a l . ∗/

i f (0 == i d) h new [1] = bounda r y c ond i t i o n (x [1] , t ime new) ;

i f (i d == p − 1) h new [n] = bounda r y c ond i t i o n (x [n] , t ime new) ;

/∗ Update t ime and tempe ra tu r e . ∗/

t ime = time new ;

f o r (i = 1 ; i <= n ; i++) h [i] = h new [i] ;

/∗ End o f t ime loop . ∗/
}

58 / 67

The HEAT Program: Utility Functions

double bounda r y c ond i t i o n (double x , double t ime)

/∗ BOUNDARY CONDITION r e t u r n s H(0 ,T) or H(1 ,T) , any t ime . ∗/
{

i f (x < 0 .5)
{

r e t u r n (100 .0 + 10 .0 ∗ s i n (t ime)) ;
}
e l s e
{

r e t u r n (75 .0) ;
}

}
double i n i t i a l c o n d i t i o n (double x , double t ime)

/∗ INITIAL CONDITION r e t u r n s H(X,T) f o r i n i t i a l t ime . ∗/
{

r e t u r n 9 5 . 0 ;
}
double r h s (double x , double t ime)

/∗ RHS r e t u r n s r i g h t hand s i d e f u n c t i o n f (x , t) . ∗/
{

r e t u r n 0 . 0 ;
}

59 / 67

Distributed Memory Programming With MPI

Introduction

The HELLO Program

The PRIME SUM Program

The Logic of the HEAT Program

Implementing the HEAT Program

The HEAT Program

How Messages Are Sent and Received

Conclusion

60 / 67

How Messages Are Sent and Received

The main feature of MPI is the use of messages to send data
between processors.

There is a family of routines for sending messages, but the simplest
is the pair MPI Send and MPI Recv.

Two processors must be in a common ”communicator group” in
order to communicate. This is simply a way for the user to organize
processors into sub-groups. All processors can communicate in the
shared group known as MP COMM WORLD.

In order for data to be transferred by a message, there must be a
sending program that wants to send the data, and a receiving
program that expects to receive it.

61 / 67

How Messages Are Sent and Received

The sender calls MPI Send, specifying the data, an identifier for
the message, and the name of the communicator group.

On executing the call to MPI Send, the sending program pauses,
the message is transferred to a buffer on the receiving computer
system and the MPI system there prepares to deliver it to the
receiving program.

The receiving program must be expecting to receive a message,
that is, it must execute a call to MPI Recv and be waiting for a
response. The message it receives must correspond in size,
arithmetic precision, message identifier, and communicator group.

Once the message is received, the receiving process proceeds.

The sending process gets a response that the message was
received, and it can proceed as well.

62 / 67

How Messages Are Sent and Received

If an error occurs during the message transfer, both the sender and
receiver return a nonzero flag value, either as the function value (in
C and C++) or in the final ierr argument in the FORTRAN
version of the MPI routines.

When the receiving program finishes the call to MPI Recv, the
extra parameter status includes information about the message
transfer.

The status variable is not usually of interest with simple
Send/Recv pairs, but for other kinds of message transfers, it can
contain important information

63 / 67

How Messages Are Sent and Received

MPI_Send (data, count, type, to, tag, comm)
| | | |

MPI_Recv (data, count, type, from, tag, comm, status)

The MPI SEND and MPI RECV must match:

1 count, the number of data items, must match;

2 type, the type of the data, must match;

3 from, must be the process id of the sender, or the receiver
may specify MPI ANY SOURCE.

4 tag, a user-chosen ID for the message, must match,
or the receiver may specify MPI ANY TAG.

5 comm, the name of the communicator, must match
(for us, always MPI COMM WORLD

64 / 67

How Messages Are Sent and Received

By the way, if the MPI RECV allows a “wildcard” source by
specifying MPI ANY SOURCE or a wildcard tab by specifying
MPI ANY TAG, then the actual value of the tag or source is
included in the status variable, and can be retrieved there.

source = status(MPI_SOURCE) FORTRAN
tag = status(MPI_TAG)

source = status.(MPI_SOURCE); C
tag = status.MPI_TAG);

source = status.Get_source (); C++
tag = status.Get_tag ();

65 / 67

MPI Distributed Memory Programming

Introduction

The HELLO Program

Running HELLO in Batch

The PRIME SUM Program

The Logic of the HEAT Program

Implementing the HEAT Program

The HEAT Program

How Messages Are Sent and Received

Conclusion

66 / 67

Conclusion

One of MPI’s strongest features is that it is well suited to modern
clusters of 100 or 1,000 processors.

In most cases, an MPI implementation of an algorithm is quite
different from the serial implementation.

In MPI, communication is explicit, and you have to take care of it.
This means you have more control; you also have new kinds of
errors and inefficiencies to watch out for.

MPI can be difficult to use when you want tasks of different kinds
to be going on.

MPI and OpenMP can be used together; for instance,
on a cluster of multicore servers.

67 / 67

