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The Executive Summary

The midpoint method is second order and absolutely stable;

It is B-stable;

It preserves linear and quadratic conservation quantities;

It produces reliable error estimates;

Safe time-steps are calculated accurately, efficiently, and adaptively;

Existing backward Euler codes upgrade with one line of new code;

C, C++, Fortran, FreeFem, MATLAB, Octave, Python, R versions.
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Multiple Identities

Methods are for ODE’s, rules for numerical quadrature.

f(mid) 1
2 (f(left)+f(right))

explicit: explicit midpoint method Heun’s method or
Improved Euler method

implicit: implicit Runge-Kutta 2 or trapezoidal method
implicit midpoint method

From now on, “midpoint method” refers to implicit midpoint method.
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Two Ways to Look at It

The implicit midpoint method can be seen as:

yn+1 = yn + τnf (tn+1/2, yn+1/2)

or as Backward and Forward Euler steps of size τn
2 :

yn+1/2 = yn +
τn
2

f (tn+1/2, yn+1/2) (BE: Backward Euler)

yn+1 = yn+1/2 +
τn
2

f (tn+1/2, yn+1/2) (FE: Forward Euler)

The second step can be rewritten simply as:

yn+1 = 2yn+1/2 − yn (FE: Forward Euler)

so the implicit problem only needs to be solved once, in BE. 4 / 19



Cauchy’s One Leg θ method

The resulting method can be designated as (BEFE):

yn+1/2 = yn +
τn
2

f (tn+1/2, yn+1/2) (BE: Backward Euler)

yn+1 = 2yn+1/2 − yn (FE: Forward Euler)

and admits a generalization to Cauchy’s one-leg θ method:

yn+θn = yn + θn τn f (tn+θn , yn+θn)

yn+1 =
1

θn
yn+θn − (

1

θn
− 1)yn
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Stability

The θ-method for 1
2 ≤ θn ≤ 1, and the BEFE special case are

unconditionally stable, A-stable, and B-stable.

We say a method is B-stable if, for all u, v elements of a Banach or
Hilbert space, and ∀f () for which 〈f (u)− f (v), u − v〉 ≤ 0, we have
||yn+1 − zn+1|| ≤ ||yn − zn||, for any two sequences y and z of
approximations computed with the method, and any index n.

B-stability implies A-stability.
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Error Estimates for Adaptive Stepsize

For a smooth exact solution y(x), the local truncation error for BEFE is

Tn+1 ≡ y(tn+1)− yn+1 =
1

24
τ 3n y ′′′(tn + 1/2) +O(τ 5n )

For a given local error tolerance tol, propose the next time step as

τn+1 = κ τn(
tol

||Tn+1||
)

1
3

where the safety factor κ ≤ 1.
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How to go MAD: Midpoint Adaptive method:

t0, y0, tol, T , κ given.
t1, y1, τ0 from one step second-order method in convergence range
tnew = t1, τnew = τ0, n = 1
while tn ≤ T do

τn ← τnew ;
evaluate yn+1 with the midpoint rule;

evaluate T̂n+1;

τnew ← κ τn
∣∣tol/‖T̂n+1‖

∣∣ 13 ;

if ‖T̂n+1‖ ≤ tol then
tn+1 ← tn + τnew,
n← n + 1

end

end
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Test: Rigid Body Rotation

Conservation: H(t) = u2 + v2 + w2
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Test: Nonlinear Pendulum

Conservation: H(t) = mg
l (1− cos(u)) + 1

2mv2
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Test: Predator Prey

Conservation: H(t) = δu − γlog(u) + βv − αlog(v)
(not quadratic!)
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Implicit Solvers Must Handle Nonlinear Equations

Any implicit ODE method must reliably solve a sequence of systems of
nonlinear equations. Given the small stepsizes of a typical ODE method,
the previous ODE solution is often a good first approximation to the
solution at a new (but very close) time.

A simple method that usually works is to apply a fixed point iteration.

The developers of MINPACK provided the function hybrd() for solving
general systems of nonlinear equations, and versions of this code are
available in MATLAB, Python, and R under the name fsolve().
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Fixed Point Iteration

Ada Lovelace: “The calculation will eat its own tail.”

tm = t0 + 0 . 5 * dt
ym = y0 + 0 . 5 * dt * f ( t0 , y0 )

f o r j = 1 : i t m a x
ym = y0 + 0 . 5 * dt * f ( tm , ym)

end

t1 = t0 + dt
y1 = 2 * ym − y0
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Using fsolve()

If you’re close enough, you can’t miss!

th = to + 0 . 5 * dt ;
yh = yo + 0 . 5 * dt * ( f ( to , yo ) ) ’ ;
yh = f s o l v e ( @( yh ) r e s i d u a l ( f , to , yo , th , yh ) , yh ) ;

. . .
f u n c t i o n v a l u e = r e s i d u a l ( f , to , yo , th , yh )

v a l u e = yh − yo − ( th − to ) * ( f ( th , yh ) ) ’ ;
r e t u r n

end
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Codes available

Enter your ODE, and crank out the result!

Language fixed point fsolve adaptive
C midpoint fixed.c midpoint.c
C++ midpoint fixed.cpp midpoint.cpp
Fortran77 midpoint fixed.f midpoint.f
Fortran90 midpoint fixed.f90 midpoint.f90
FreeFem midpoint.edp
MATLAB midpoint fixed.m midpoint.m midpoint adaptive.m
Octave midpoint fixed.m midpoint.m midpoint adaptive.m
Python midpoint fixed.py midpoint.py midpoint adaptive.py
R midpoint fixed.R midpoint.R
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Professional Codes available

Or you may prefer your ODE to be handled by a professional!

Language library code
C Gnu Scientific Library gsl odeiv2 step rk2imp()
C++ Gnu Scientific Library gsl odeiv2 step rk2imp()
Julia ODE Midpoint
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Links

Links to source code in any language:

https://people.sc.fsu.edu/∼jburkardt/...
Language subdirectory Sample directory
C c src/ midpoint.html
C++ cpp src/ midpoint.html
Fortran77 f77 src/ midpoint.html
Fortran90 f src/ midpoint.html
FreeFem++ freefem src/ midpoint.html
MATLAB m src/ midpoint.html
Octave octave src/ midpoint.html
Python py src/ midpoint.html
R r src/ midpoint.html

For most languages, there are actually several implementations: fixed
point/fsolve/adaptive.
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The End

The midpoint method is powerful, accurate, and stable.

The method is A-stable, B-stable, linearly and nonlinearly stable.

It is a symplectic method for general Hamiltonian systems.

The correct estimator for local truncation error only involves the
differentiation defect, but not the interpolation defect.

Implementations are provided in a variety of computing languages.
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