

# The Halfway Way: A fresh look at the midpoint method

Catalin Trenchea, Wenlong Pei, John Burkardt ICAM Conference on Applied and Computational Mathematics Honoring Terry Herdman on his retirement 01-03 June 2022 Virginia Tech



# The Executive Summary



- The midpoint method is second order and absolutely stable;
- It is B-stable;
- It preserves linear and quadratic conservation quantities;
- It produces reliable error estimates;
- Safe time-steps are calculated accurately, efficiently, and adaptively;
- Existing backward Euler codes upgrade with one line of new code;
- C, C++, Fortran, FreeFem, MATLAB, Octave, Python, R versions.



# **Multiple Identities**



Methods are for ODE's, rules for numerical quadrature.

|           | f(mid)                    | $\frac{1}{2}(f(left)+f(right))$ |
|-----------|---------------------------|---------------------------------|
| explicit: | explicit midpoint method  | Heun's method or                |
|           |                           | Improved Euler method           |
| implicit: | implicit Runge-Kutta 2 or | trapezoidal method              |
|           | implicit midpoint method  |                                 |



From now on, "midpoint method" refers to implicit midpoint method.



The implicit midpoint method can be seen as:

$$y_{n+1} = y_n + \tau_n f(t_{n+1/2}, y_{n+1/2})$$

or as Backward and Forward Euler steps of size  $\frac{\tau_n}{2}$ :

$$y_{n+1/2} = y_n + \frac{\tau_n}{2} f(t_{n+1/2}, y_{n+1/2}) \quad (BE: Backward Euler)$$
$$y_{n+1} = y_{n+1/2} + \frac{\tau_n}{2} f(t_{n+1/2}, y_{n+1/2}) \quad (FE: Forward Euler)$$

The second step can be rewritten simply as:

$$y_{n+1} = 2y_{n+1/2} - y_n$$
 (FE: Forward Euler)

so the implicit problem only needs to be solved once, in BE.



# Cauchy's One Leg $\theta$ method



The resulting method can be designated as (BEFE):

$$y_{n+1/2} = y_n + \frac{\tau_n}{2} f(t_{n+1/2}, y_{n+1/2})$$
 (BE: Backward Euler)  
 $y_{n+1} = 2y_{n+1/2} - y_n$  (FE: Forward Euler)

and admits a generalization to Cauchy's one-leg  $\theta$  method:

$$y_{n+ heta_n} = y_n + heta_n \tau_n f(t_{n+ heta_n}, y_{n+ heta_n})$$
  
 $y_{n+1} = rac{1}{ heta_n} y_{n+ heta_n} - (rac{1}{ heta_n} - 1) y_n$ 





The  $\theta$ -method for  $\frac{1}{2} \le \theta_n \le 1$ , and the BEFE special case are unconditionally stable, A-stable, and B-stable.

We say a method is **B-stable** if, for all u, v elements of a Banach or Hilbert space, and  $\forall f()$  for which  $\langle f(u) - f(v), u - v \rangle \leq 0$ , we have  $||y_{n+1} - z_{n+1}|| \leq ||y_n - z_n||$ , for any two sequences y and z of approximations computed with the method, and any index n.

B-stability implies A-stability.



#### Error Estimates for Adaptive Stepsize



For a smooth exact solution y(x), the local truncation error for BEFE is

$$T_{n+1} \equiv y(t_{n+1}) - y_{n+1} = \frac{1}{24} \tau_n^3 y'''(t_n + 1/2) + \mathcal{O}(\tau_n^5)$$

For a given local error tolerance tol, propose the next time step as

$$\tau_{n+1} = \kappa \, \tau_n \big( \frac{\operatorname{tol}}{||T_{n+1}||} \big)^{\frac{1}{3}}$$

where the safety factor  $\kappa \leq 1$ .



# How to go MAD: Midpoint Adaptive method:

1125444466

 $t_0$ ,  $y_0$ , tol, T,  $\kappa$  given.  $t_1, y_1, \tau_0$  from one step second-order method in convergence range  $t^{\text{new}} = t_1, \ \tau^{\text{new}} = \tau_0, \ n = 1$ while  $t_n \leq T$  do  $\tau_n \leftarrow \tau^{\text{new}}$ ; evaluate  $y_{n+1}$  with the midpoint rule; evaluate  $\widehat{T}_{n+1}$ ;  $\tau^{\text{new}} \leftarrow \kappa \tau_n |\text{tol}/\|\widehat{T}_{n+1}\||^{\frac{1}{3}};$ if  $\|\widehat{T}_{n+1}\| \leq \text{tol then}$  $t_{n+1} \leftarrow t_n + \tau^{\text{new}},$  $n \leftarrow n+1$ end end



# Test: Rigid Body Rotation



Conservation:  $H(t) = u^2 + v^2 + w^2$ 







#### Test: Nonlinear Pendulum



Conservation:  $H(t) = \frac{mg}{l}(1 - \cos(u)) + \frac{1}{2}mv^2$ 







#### Test: Predator Prey



Conservation:  $H(t) = \delta u - \gamma \log(u) + \beta v - \alpha \log(v)$ (not quadratic!)





# Implicit Solvers Must Handle Nonlinear Equations



Any implicit ODE method must reliably solve a sequence of systems of nonlinear equations. Given the small stepsizes of a typical ODE method, the previous ODE solution is often a good first approximation to the solution at a new (but very close) time.

A simple method that usually works is to apply a fixed point iteration.

The developers of MINPACK provided the function hybrd() for solving general systems of nonlinear equations, and versions of this code are available in MATLAB, Python, and R under the name fsolve().



# **Fixed Point Iteration**



Ada Lovelace: "The calculation will eat its own tail."

$$t1 = t0 + dt$$
  
 $y1 = 2 * ym - y0$ 



# Using fsolve()



If you're close enough, you can't miss!



Enter your ODE, and crank out the result!

| Language  | fixed point        | fsolve       | adaptive             |
|-----------|--------------------|--------------|----------------------|
| С         | midpoint_fixed.c   | midpoint.c   |                      |
| C++       | midpoint_fixed.cpp | midpoint.cpp |                      |
| Fortran77 | midpoint_fixed.f   | midpoint.f   |                      |
| Fortran90 | midpoint_fixed.f90 | midpoint.f90 |                      |
| FreeFem   |                    | midpoint.edp |                      |
| MATLAB    | midpoint_fixed.m   | midpoint.m   | midpoint_adaptive.m  |
| Octave    | midpoint_fixed.m   | midpoint.m   | midpoint_adaptive.m  |
| Python    | midpoint_fixed.py  | midpoint.py  | midpoint_adaptive.py |
| R         | midpoint_fixed.R   | midpoint.R   |                      |

# Professional Codes available



Or you may prefer your ODE to be handled by a professional!

| Language | library                | code                     |
|----------|------------------------|--------------------------|
| С        | Gnu Scientific Library | gsl_odeiv2_step_rk2imp() |
| C++      | Gnu Scientific Library | gsl_odeiv2_step_rk2imp() |
| Julia    | ODE                    | Midpoint                 |





Catalin Trenchea, John Burkardt, Refactorization of the midpoint rule, Applied Mathematics Letters, Volume 107, September 2020,

Catalin Trenchea, John Burkardt, Refactorization of the midpoint rule, Technical Report TR-MATH 20-02, https://www.mathematics.pitt.edu/sites/default/files/midpoint3\_technicalreport.pdf,

John Burkardt, Wenlong Pei, Catalin Trenchea, A stress test for the midpoint time-stepping method, International Journal of Numerical Analysis and Modeling, Volume 19, Number 2-3, pages 299-314, 2022. 17 / 19





Links to source code in any language:

 $https://people.sc.fsu.edu/{\sim}jburkardt/...$ 

| Language  | subdirectory   | Sample directory |
|-----------|----------------|------------------|
| С         | c_src/         | midpoint.html    |
| C++       | cpp_src/       | midpoint.html    |
| Fortran77 | f77_src/       | midpoint.html    |
| Fortran90 | f_src/         | midpoint.html    |
| FreeFem++ | freefem_src/   | midpoint.html    |
| MATLAB    | m_src/         | midpoint.html    |
| Octave    | $octave\_src/$ | midpoint.html    |
| Python    | py_src/        | midpoint.html    |
| R         | r_src/         | midpoint.html    |

For most languages, there are actually several implementations: fixed point/fsolve/adaptive.



# The End



- The midpoint method is powerful, accurate, and stable.
- The method is A-stable, B-stable, linearly and nonlinearly stable.
- It is a symplectic method for general Hamiltonian systems.
- The correct estimator for local truncation error only involves the differentiation defect, but not the interpolation defect.
- Implementations are provided in a variety of computing languages.

