# This is a Fine Mesh You've Gotten Me Into! 

John Burkardt

16 November 2021, 11am, 427 Thackeray, Undergraduate Math Seminar, Jeff Wheeler, moderator.

University of Pittsburgh Mathematics Department
https://people.sc.fsu.edu/~jburkardt/presentations/...
. . . mesh_2021_pitt.pdf

## 2: A Profile (Not Mine!)



## 3: A Profile Rotated



## 4: A Profile Rotated and Outlined



## 5: A Profile Rotated and Outlined and Extracted

## 6: A Flower Grown In a Computer?


https://people.sc.fsu.edu/~jburkardt/m_src/cvt_corn/step30.png

## 7: Meshes Started with Taxation



## 8: A Mesh Organizes and Simplifies a Complicated View


https://www.metmuseum.org/art/collection/search/366555

## 9: A Mesh Can Organize and Measure Curved Surfaces


https://www.simonandschuster.com/books/The-Measure-of-All-Things/Ken-
Alder/9780743216760

## 10: Computers Model Reality with Meshes


https://www.caee.utexas.edu/prof/maidment/gishyd97/gms/gms.htm

11: Computers Approximate Shapes with Polygons


## 12: Arithmetic is Easy, Geometry is Hard!



## 13: We Can Automate the Measurements

\% Get the screensize.
\%

$$
\text { screen }=\text { get ( } 0, \text { 'ScreenSize' }) ;
$$

\%
\% Use the whole screen as a figure.
\%
figure ( 'Position', screen );
\%
\%
\%
Create a graphical coordinate system on the figure.
axes ( 'Position', [ $0,0,1,1]$ );
\%
\%
The user clicks sample points on the boundary, terming

$$
[x, y]=\text { ginput }(\quad) \text {; }
$$

https://people.sc.fsu.edu/~jburkardt/m_src/hand_data/hand_acquire.m

## 14: From Points We Have an outline


https://people.sc.fsu.edu/~jburkardt/m_src/hand_data/hand_data.png

## 15: Polygons Are a Little Messy



https://people.sc.fsu.edu/~jburkardt/m_src/polygon_triangulate_test/comb.png https://people.sc.fsu.edu/~jburkardt/m_src/polygon_triangulate_test/i18.png

## 16: But Polygons Can Be Triangulated


https://people.sc.fsu.edu/~jburkardt/m_src/polygon_triangulate_test/comb_triangulation.png https://people.sc.fsu.edu/~jburkardt/m_src/polygon_triangulate_test/i18_triangulation.png

## 17: The Area of a Triangle



$$
\begin{aligned}
\operatorname{area}(A, B, C) & =1 / 2\left|\begin{array}{ll}
B_{x}-A_{x} & B_{y}-A_{y} \\
C_{x}-A_{x} & C_{y}-A_{y}
\end{array}\right| \\
& =1 / 2\left(\left(B_{x}-A_{x}\right)\left(C_{y}-A_{y}\right)-\left(B_{y}-A_{y}\right)\left(C_{x}-A_{x}\right)\right) \\
& =1 / 2((8-4)(9-1)-(3-1)(0-4)) \\
& =20
\end{aligned}
$$

## 18: Code for Triangle Area

function area $=$ triangle_area $(a x, a y, b x, b y, c x, c y)$

$$
\begin{aligned}
& \text { area }=0.5 * \ldots \\
& \quad((b x-a x) *(\text { cy }-a y) \ldots
\end{aligned}
$$

## return

end
https://people.sc.fsu.edu/~jburkardt/m_src/triangle_properties/triangle_area.m

## 19: I Can Compute The Area of My (Flat) Hand


https://people.sc.fsu.edu/~jburkardt/m_src/polygon_triangulate_test/hand_triangulation.png

## 20: Does a Triangle Contain a Point?



P is inside T if all three areas are positive:

- Area(P,B,C)
- Area(A,P,C)
- Area(A,B,P)


## 21: Can We Integrate Over a Triangle?

$$
\int_{T} f(x, y) d x d y \approx \sum_{i=1}^{n} w_{k} f\left(x_{i}, y_{i}\right)
$$


(a) Linear

$$
a=\left(\frac{1}{3}, \frac{1}{3}\right), w=1
$$


(b) Quadratic
$a=\left(\frac{1}{6}, \frac{1}{6}\right), w=\frac{1}{3}$
$b=\left(\frac{2}{3}, \frac{1}{6}\right), w=\frac{1}{3}$
$c=\left(\frac{1}{6}, \frac{2}{3}\right), w=\frac{1}{3}$

(c) Cubic $a=\left(\frac{1}{3}, \frac{1}{3}\right), w=-\frac{27}{48}$
$b=\left(\frac{1}{5}, \frac{3}{5}\right), w=\frac{25}{48}$
$c=\left(\frac{1}{5}, \frac{1}{5}\right), w=\frac{25}{48}$
$d=\left(\frac{3}{2}, \frac{1}{2}\right), w=\frac{25}{15}$
https://people.sc.fsu.edu/~jburkardt/datasets/quadrature_rules_tri/quadrature_rules_tri.html

## 22: Computer Data Only Computed at a Few Points



## 23: Area-Averaging Vertex Values



## 24: We Know the Values at Triangle Vertices



## 25: Fill Some Points in the Triangle



## 26: Fill All Points in a Triangle



## 26.5: Physics is about the bends!

$$
\begin{aligned}
& \text { ( } \\
& \frac{\partial T}{\partial t}=\nabla^{2} T \\
& \nabla T=\frac{\partial T}{\partial x} \approx \frac{T(x+d x)-T(x)}{d x} \\
& \nabla^{2} T=\frac{\partial^{2} T}{\partial x^{2}} \approx \frac{T(x+d x)-2 T(x)+T(x-d x)}{d x^{2}}
\end{aligned}
$$

## 27: MESH2D Can Create Internal Nodes

$$
[\mathrm{p}, \mathrm{t}]=\operatorname{mesh} 2 \mathrm{~d}(\mathrm{v}) ;
$$

- $v$, a list of boundary ( $\mathrm{x}, \mathrm{y}$ ) coordinates;
- $p$, the coordinates of nodes;
- $t$, triples of nodes forming triangles.
https://www.mathworks.com/matlabcentral/fileexchange/25555-mesh2d-automatic-meshgeneration


## 28: MESH2D: Simple ELL Mesh

$$
\begin{gathered}
\mathrm{v}=\left[\begin{array}{ll}
0.0, & 0.0 ; \ldots \\
2.0, & 0.0 ; \ldots \\
2.0,1.0 ; \ldots \\
1.0, & 1.0 ; \ldots \\
1.0,2.0 ; \ldots \\
0.0,2.0] ;
\end{array}\right. \\
{[\mathrm{p}, \mathrm{t}]=\operatorname{mesh} 2 \mathrm{~d}(\mathrm{v}) ;}
\end{gathered}
$$

https://people.sc.fsu.edu/~jburkardt/m_src/mesh2d_test/ell_test.m

## 29: MESH2D: Simple ELL Mesh



## 30: MESH2D: Add Two Short Boundary Segments

$$
\begin{gathered}
\mathrm{v}=\left[\begin{array}{l}
0.0,0.0 ; \ldots \\
2.0,0.0 ; \ldots \\
2.0,0.25 ; \\
2.0,0.5 ; \ldots \\
2.0,1.0 ; \ldots \\
1.0,1.0 ; \ldots \\
1.0,2.0 ; \ldots \\
0.0,2.0] ; \\
{[p, t]=m e s h 2 d(\mathrm{v})}
\end{array}\right.
\end{gathered}
$$

## 31: MESH2D: Two Short Boundary Segments



## 32: MESH2D: Set Maximum Element Size

$$
\left.\begin{array}{rl}
\mathrm{v}=\left[\begin{array}{ll}
0.0, & 0.0 ;
\end{array}\right. & \ldots \\
2.0, & 0.0 ; \\
2.0, & 1.0 ;
\end{array}\right]
$$

```
hdata = [];
hdata.hmax = 0.1;
```

$[\mathrm{p}, \mathrm{t}]=\operatorname{mesh} 2 \mathrm{~d}(\mathrm{v},[]$, hdata $)$;

33: MESH2D: Set Maximum Element Size


## 34: MESH2D: Use a Density Function

$$
\begin{aligned}
\mathrm{v}=\left[\begin{array}{lll}
0.0, & 0.0 ; & \ldots \\
2.0, & 0.0 ; & \ldots \\
2.0, & 1.0 ; & \ldots \\
1.0, & 1.0 ; & \ldots \\
1.0, & 2.0 ; & \ldots \\
& 0.0, & 2.0]
\end{array}\right.
\end{aligned}
$$

```
hdata = [];
hdata.fun = @hfun;
```

$[\mathrm{p}, \mathrm{t}]=\operatorname{mesh} 2 \mathrm{~d}(\mathrm{v},[]$, hdata $)$;

## 35: MESH2D: A Density Function Controls Mesh Size H

```
function h = hfun ( x, y )
%
% Minimum size is 0.01, increasing as we move away
% from ( 1.0, 1.0 ).
%
        h = 0.01 + 0.1 * sqrt ( ( x-1.0 ). ^2 + ( y-1.0 ). ^2 );
        return
end
```


## 36: MESH2D: Ask for a Small Mesh Near the Indentation



## 37: Apply MESH2D to the Hand Data


https://people.sc.fsu.edu/ ~jburkardt/m_src/hand_mesh2d_test/hand_mesh2d_mesh.png

## 38: Apply MESH2D to the Hand Data


https://people.sc.fsu.edu/~jburkardt/m_src/hand_mesh2d_test/hand_mesh2d_mesh.png

## 39: A Mesh That's Finest Near the Edge


https://people.sc.fsu.edu/~jburkardt/m_src/distmesh_test/p24_mesh.png

## 40: A Mesh from Nature


https://en.wikipedia.org/wiki/Centroidal_Voronoi_tessellation

## 41: CVT: Centroidal Voronoi Tessellation

Voronoi diagram, step 65 Delaunay triangulation, step 65

https://people.sc.fsu.edu/~jburkardt/m_src/cvt_square_uniform_test/cvt_square_uniform.png

## 42: A CVT Mesh for the Holey Pie



## 43: A Mesh for the Holey Pie

## Is there time for a quick movie?

https://people.sc.fsu.edu/~jburkardt/presentations/cvt_movie_p08_cramped.mp4 xdg-open cvt_movie_p08_cramped.mp4

## 44: Meshes that Adapt to Flat or Curved Surfaces


https://people.sc.fsu.edu/~mgunzburger/

## 45: 2D: A Moving Mesh for Fluid Flow


https://people.sc.fsu.edu/~lb13f/

## 47: $2 \frac{1}{2} \mathrm{D}$ : Accurate Mesh of Coastline Interfaces


https://www.linkedin.com/in/geoff-womeldorff-030112153/

## 48: $2 \frac{1}{2} \mathrm{D}$ : Scan, Mesh and Classify Bones for Age-At-Death


https://www.linkedin.com/in/detelina-stoyanova-05912876/

## 49.5: When Will a Blood Vessel Burst?





## 49.6: Computer Games Use Meshes



An example mesh editor for the Unity game engine.

## 49.7: Google MediaPipe

## 101 MediaPipe

https://google.github.io/mediapipe

## 49.8: Meshing Programs



Gmsh

distmesh, freefem ++ , gmsh, matlab, mediapipe, mesh2d, meshlab, pymesh, triangle

## 50: A Flatbed Scanner Makes a Surface Mesh


https://www.library.pitt.edu/3d-scanning-printing

## 51: A Wrap-Around Scanner for Head-Protection Studies


https://morphlab.sc.fsu.edu/people/lab_members.html

## 52: SCANNERS: THE MOVIE

## Is there time for a another movie?

https://people.sc.fsu.edu/~jburkardt/presentations/head_scan_movie.mp4 xdg-open head_scan_movie.mp4

## 53: Results of a Wrap-Around Scan


https://people.sc.fsu.edu/~jburkardt/presentations/my_head.ply

## 54: Careers for Applied Mathematics Majors


in applied mathematics
OPTIONS FOR STEM MAJORS

SiamL. soorety foo noustrata neo aplueo nathenarices

## KAITLYN BRADY / DATA SCIENTIST

 It her mospons hility to oxtart and communicate actiona ble hisighs trom data
 ther axperence and in turn incteasse companyy pertromance Rocantly sho wortied on buibing a personalized productrecommendation eroine from des in to oscution induding scoping the problem buldmy the alyorithms and writing the
necessary job skills // To be a data scientist you must be wel tounded Wht statsticar programmeng and commurication skilk in adotion to subbect
 and wont it a textioo k mold. Adata scientst must idenity and sometimes
nrowale splutions that aremt. alka,s covious. nrowne. salutions that areent akoas obvious.

Masheratios is importarc in alowing kailyn to provide concrie data supported evderce for the recommendations and arswers shr provichs to bus ress. hather than makng a sub bective



PRos AND CONS of HER $30 B / / /$ One of the man rewarding Xpocts of Kaitlynts job iswhen she


CAREER PATH // Kaitin found har fra. full-ime job as a dala solutions craineer trowh her
 she wented to do more sanostical-based work. Thers when she moned to Stapes $x \infty$ a statt

 scence team where the wark is more research orlented with longer tem projects katy ins careet path contimues to mode as shelears more stout hersail ewery daj.


affiliation
Saples: Inc.
Location
Anmingtam MA staples Digtal Sdutions
title Dan scientist EDUCATYON B. .5. Mathematics and Waccester 5 tatio
Uniwisty
Ms Applicod Stristics
Ms Applod Staritics
2012 Worteiter
Paytochnic instituts
CAqEER STACE CABEER STAEE
Eaty-6 yous
post Bochelers.

SALARY /1 Anspptrimute sa aly range i $\$ 90,000$ to $\$ 200.000+$ ceperdangon doduction.
expenerce and locatoon
 experierse that wiil texh chon new skills hoip them wasm what hhey do and do not like and to put on trair resume. For

https://www.siam.org

## 55: BIG: Business, Industry, Government



Business, Industry, and Covernment Careers for Mathematical Scientists, Statisticians, and Operations Researchers


## SLIDE 1/2

My talk today involves a subject that spreads across several fields of study. Although I enjoy the mathematics that is involved, what I am doing is probably most comfortable as an example of scientific computing. Scientific computing, or computational science, has only recently been recognized as its own area, and now degree programs and separate departments are appearing in colleges across the country.

I'd like to say that if you enjoy mathematics, or computer science or any science, but especially enjoy doing these things when there is a computer involved, and an interesting real life problem to solve, then a program in computational science might be worth considering.

Although my first career choice (age 6) was "farmer", my first sensible choice was "something about mathematics", because I loved reading the Mathematical Games articles by Martin Gardner.

Starting in mathematics, my interest in writing, education, programming and research has led me to Scientific Computing, and it's probably too late now to make any more big changes.

## SLIDES 3 / 4 / 5 / 6

Mathematics intrigued me because it showed that simple things like numbers and shapes could actually have mysterious properties.

In high school, I read a math book that described a proof that it was possible to cut a ball up into a few pieces that could be reassembled to make two balls of the same volume as the original one. (This is the Banach-Tarski paradox.)

And I read that equations like $y=f(x)$ could not only describe lines and parabolas and cubics - there was also a formula $y=f(x)$ that corresponded exactly to the profile of my own face.

I decided this was too nonsensical to believe, but I really wanted to hang out with people who thought things up like this!
https://www.quantamagazine.org/how-a-mathematical-paradox-allows-infinite-cloning-20210826/

## SLIDE 7

After getting a mathematics degree, I was working at lowa State University (half time research, half time running the computer lab) when I walked into a graduate student's office and saw a plot on his computer screen that just didn't make sense to me.

It was beautiful and it was mathematical. That doesn't happen often!
My friend, Lili Ju, now a professor at the University of South Carolina, explained to me that this was actually an example of a kind of mesh that organized itself, almost the way it would happen in nature.

I've got to know more about this! I told him, and I spent some time learning what he had done and how it could be used.

And I think that leads me into my story...

## SLIDE 8 / 9 / 10 / 11

The Egyptians used 3-4-5 triangles of rope to resurvey the Nile banks after floods.

The Greeks named geo-metry and trigono-metry, and Eratostenes used this to measure the size of the Earth, the tilt of the Earth's axis, the distance to the sun.

Artists discovered that a complex object could be copied by viewing it through a wire mesh, and then filling in the boxes.

The French revolution invented the meter, and then had to measure a section of longitude in order to figure out what the meter was. ("The Measure of the Earth" by Larrie Ferreiro.)

Mathematicians didn't see any reason to divide smooth space up into triangles, (until much much later), but engineers and computational scientists realized the same lesson that artists had discovered: a complex shape may be easier to work with if a regular mesh is used to break it into many similar pieces.
https://www.amazon.com/Measure-Earth-Enlightenment-ExpeditionReshaped/dp/0465063810

## SLIDE 11

It's pretty easy to see how computers can be taught to count, by turning decimal numbers into binary numbers, binary numbers into strings of 0 's and 1 's, and 0 's and 1 's into electronic switches.

But how do I explain the shape of Mickey Mouse's head? The area of lake Erie? The branching pattern of a human lung?

Let's take a shape that's not too simple, but not so complex, and "teach" the computer to see it.

Let's lower our expectations, and assume that the shapes we describe will be drawn using a sequence of straight lines. This means we're working with poly-gons (Greek for "many sides").

## SLIDE 12

Using a polygon, we can still ask many interesting geometric questions, including

- perimeters,
- areas,
- centers of mass,
- whether a point is inside or outside a shape,
- the integral of some function over the triangle $\int_{T} f(x, y) d x d y$;
- the distance between a point and a shape
- can I get through a maze?
- how many objects can fit inside this shape?
- do these two shapes fit together?

Answering these questions is sometimes easy for us - but how do we teach the computer to do this?

## SLIDE 13 / 14 / 15 / 16

If we have a shape outlined by straight lines, it is always possible to regard it as a collection of triangles.

My hand is an interesting shape (at least to me). Using a program like MATLAB, we can record points on my hand's outline so the computer can "see" what I see.

My hand is represented by a polygon. I don't know a lot about polygons, but I do know a lot about triangles. As it turns out, any polygon can be dissected into triangles, by "slicing off one ear at a time." And you can teach the computer to do this.

## SLIDE 17 / 18 / 19

Thanks to the Greeks, we know lots of things about triangles, such as the area. There's a formula for the area of any triangle with vertices $A, B, C$. Using this, I can get the area of (the polygon representing) my hand.

It is possible to get a negative area. Indeed, if $A=(0,0), B=(1,4), C$ $=(3,2)$, we get area $(A, B, C)=-5$. Interestingly enough, area $(A, C, B)=$ +5 .

The minus sign is telling us something very useful: the triangle ( $A, B, C$ ) has its vertices listed in clockwise order, but ( $A, C, B$ ) lists them in counterclockwise order, The sign of the area is a warning about the orientation of the triangle.

As long as we promise to list triangle vertices in counterclockwise order, we will have no problems with the area formula. But it turns out that this bit of knowledge can be used to determine other information.

## SLIDE 20

Suppose I have a shape that I have turned into a polygonal outline, and then into a collection of triangles.

And now suppose $I$ ask whether the point $P$ is inside the shape? $P$ is inside the shape (or at least the polygon) if it is inside a triangle. And it is inside triangle $A B C$ exactly if all three subtriangles formed by P have positive area.

So that means we can solve the "point inside shape" geometry problem.

## SLIDE 21

Many physical laws can be expressed in terms of integrals. Problems in heat conduction, fluid flow, elasticity, can be written this way. They can be solved if we can estimate integrals over the triangles of a mesh.

The finite element method rewrites a physical law in integral form, redraws the physical region as a mesh of triangles, estimates integrals over the triangles, and produces an approximate solution for the problem.

To approximate an integral over a triangle, there is an extensive family of quadrature rules that explain how to sample the function and weight the results.
https://people.sc.fsu.edu/~jburkardt/datasets/quadrature_rules_tri/quadrature_rules_tr

## SLIDE 22/ 23 / $24 / 25$ / 26

We measure temperature at a few places, but ask for its value anywhere.

To make a good estimate, we need to take the nearest data and somehow spread it to the query point.

If our data is on the vertices of triangles, then for any point $P$, we can find the triangle containing $P$, and use the triangle average of the vertex data. That is, the value at $P$ is constructed by using the values at $A, B$, and $C$ in the proportions of the triangles PBC, APC, and ABP.

Our estimates are most accurate if the triangles are regular shaped and relatively small.

## SLIDE 27

Triangulating the hand completely covers the internal area, but it does so with triangles of many different sizes and shapes.

There might be reasons that we want a pattern of triangles that covers the region more evenly in shape and size.
mesh2d is a computer program for which the user only has to describe an outline of the region of interest, that is, a counterclockwise list of points.

We will start by asking for a simple mesh of a simple region, and then push the code little by little to harder tasks.

## SLIDES 28 / 29 / $30 / 31 / 32 / 33 / 34 / 35$ / 36

Describing the boundary of our region is easy.
mesh2d creates a simple triangular mesh.
If we add two points to the boundary, mesh2d takes the hint and includes more triangles in that area.

We can even specify a maximum triangle size so that mesh2d will fill up the region as we wish.

We can even specify that the triangle size changes in a way that suits us. Here, a related program called distmesh makes sure we have very small triangles near the inner corner of the region.

## SLIDES 37 / 38 / 39

We can do similar operations on the hand data.
mesh2d creates a simple triangular mesh, with many internal vertices.
We can specify a maximum triangle size of 0.025 inches.
We can specify that triangles should be small near the edges, using a feature that mesh2d provides.

## SLIDES 40 / 41 / 42 / 43

The "computer flower" I saw on Lili Ju's computer screen is an example of a special mesh called a Centroidal Voronoi Tessellation (CVT), a favorite research topic of FSU professor Max Gunzburger.

In nature, for example, the tilapia form nests on a sandy river bottom, and somehow manage to make a mesh there.

To come up with a corresponding computer algorithm, you can imagine letting loose a swarm of bees into a small room, and assume every bee wants to avoid the other bees, and the walls, as much as possible. The resulting pattern is a CVT.

We often want meshes that are fine in some areas and coarse in others. That feature can be included in the CVT.

CVT's are computed using iteration; that is, we make an initial guess for the mesh, and then repeatedly improve it. Here's a short movie that suggests how this works.

## SLIDES 44 / 45 / 46

Professor Max Gunzburger investigated the creation and use of these special meshes for regions, surfaces, and volumes.

FSU graduate student Lukas Bystricky studied the flow of fluids past obstacles. Behind the obstacle, the fluid whips up and down, and Lukas makes a mesh that follows the fluid action.

FSU postdoc Mauro Perego (now at Sandia lab) studied the slow flow of the gigantic ice sheet over Greenland. In order to get good results, he had to use detailed information about the coastline, about the height of the land surface below the ice, and about the average ice sheet velocity at each point.

## SLIDES 47 / 48 / 49

FSU graduate student Geoff Womeldorff (now at Los Alamos lab) created meshes on the land and ocean, with very small elements where land and ocean overlap, in order to do climate studies.

Using this idea, FSU graduate student Detelina Stoyanova estimated the age of skeletons by scanning a particular bone, creating a mesh of triangles, which could then be compared against an online collection of such scans.

Undergraduates Marcelina Nagales and Alexa Pennavaria used the scanner to start a scientific scheme for classifying early North American arrowheads by style, region, and age.

## Slides 49.5

Pitt Professor Catalin Trenchea is working on a project which is trying to give some mathematical insight into a deadly medical problem known as an aneurysm. When a blood vessel wall develops a weak spot, the high interior pressure can gradually push out a balloon-shaped distortion. At some point the stretched surface can break suddenly, releasing an uncontrolled flow of blood into the body or the brain.

This study is looking for ways of understanding the stresses on the surface wall, the different kinds of shapes that can develop, and the signs that might tell whether an aneurysm is simply a mild distortion, or a serious danger that may break soon.

As part of the study, sample diagrams of aneurysms must be outlined, and meshed, allowing a model of the internal blood flow and pressure to be developed.

## Slides 50 / $51 / 52$ / 53

FSU Professor Dennis Slice ran a geometric morphology lab. He has always had a 2D scanner, but now he has a 3D head scanner, for research on helmet design. FSU graduate student Alex Townsend sat me down in the barber's chair and promised me it wouldn't hurt.

A laser measures hundreds of thousands of points on the head.
A computer program can then organize these points into a triangular mesh representing the shape of the head.

You may remember that I mentioned at the beginning that mathematics promised me that an equation for the profile of my face "existed", although it offered no way of discovering it. Computational Science has produced a very reasonable result.

It's may be just an approximation, but now I can bet my head on it!

## Slides 54 / 55

One place to get a realistic view of job opportunities for an applied mathematics major is the web site for SIAM (the Society for Industrial and Applied Mathematics). Their brocure on "Careers in Applied Mathematics" includes profiles of people in many careers, how they got there, what they do, and what they are earning. You need to start thinking about life after school, and this brochure is one way to get some ideas of the choices available to you.

Most job opportunities for mathematics majors are NOT in the university, but rather in business, industry, and government. These fields can be unfamiliar to anyone who has spent their life in school. SIAM publishes a friendly, information book, "The BIG Job Guide", which goes over the kind of jobs available, how to apply for them, what to expect if you get called in for an interview, what your working days will be like if you get hired, and the chances for promotion, salary, travel, and further training.

