
Parallel MATLAB:
Parallel For Loops

John Burkardt (FSU) & Gene Cliff (AOE/ICAM)
2pm - 4pm, Tuesday, 31 May 2011

Mathematics Commons Room
..........

vt 2011 parfor.pdf
..........

FSU: Florida State University
AOE: Department of Aerospace and Ocean Engineering
ICAM: Interdisciplinary Center for Applied Mathematics

1 / 68

MATLAB Parallel Computing

Introduction

QUAD Example

Executing a PARFOR Program

Classification of variables

MD Example

PRIME Example

ODE SWEEP Example

FMINCON Example

Conclusion

2 / 68

INTRO: Parallel MATLAB

Parallel MATLAB is an extension of MATLAB that takes
advantage of multicore desktop machines and clusters.

The Parallel Computing Toolbox or PCT runs on a desktop, and
can take advantage of up to 8 cores there. Parallel programs can
be run interactively or in batch.

The Matlab Distributed Computing Server (MDCS) controls
parallel execution of MATLAB on a cluster with tens or hundreds
of cores.

Virginia Tech’s Ithaca cluster allows parallel MATLAB to run on
up to 96 cores. The Mathematics Department has an MDCS with
eight licenses (cluster.math.vt.edu).

3 / 68

INTRO: Local and Remote MATLAB Workers

4 / 68

INTRO: User Programming

Three ways to write a parallel MATLAB program:

suitable for loops can be made into parfor loops;

the spmd statement can define cooperating synchronized
processing;

the task feature creates multiple independent programs.

The parfor approach is a limited but simple way to get started.
spmd is powerful, but requires rethinking the program and data.
The task approach is simple, but suitable only for computations
that need almost no communication.

5 / 68

INTRO: Execution

There are several ways to execute a parallel MATLAB program:

interactive local (matlabpool), suitable for the desktop;

indirect local, (batch or createJob/createTask);

indirect remote, (batch or createJob/createTask), requires
setup.

The Virginia Tech cluster Ithaca will accept parallel MATLAB
jobs submitted from a user’s desktop, and will return the results
when the job is completed.

Making this possible requires an Ithaca account and a one-time
setup of the user’s machine (simplified since R2010b).

6 / 68

INTRO: PARFOR: Parallel FOR Loops

Today’s Lecture: PARFOR

The simplest path to parallelism is the parfor statement, which
indicates that a given for loop can be executed in parallel.

When the “client” MATLAB reaches such a loop, the iterations of
the loop are automatically divided up among the workers, and the
results gathered back onto the client.

Using parfor requires that the iterations are completely
independent; there are also some restrictions on data access.

Using parfor is similar to OpenMP.

7 / 68

INTRO: ”SPMD” Single Program Multiple Data

Lecture #2: SPMD

MATLAB can also work in a simplified kind of MPI model.

There is always a special “client” process.

Each worker process has its own memory and separate ID.

There is a single program, but it is divided into client and worker
sections by special spmd statements.

Workers can “see” the client’s data; the client can access and
change worker data.

The workers can also send messages to other workers.

8 / 68

INTRO: ”SPMD” Distributed Arrays

SPMD programming includes distributed arrays.

A distributed array is logically one array, and a large set of
MATLAB commands can treat it that way.

However, portions of the array are scattered across multiple
processors. This means such an array can be really large.

The local part of a distributed array can be operated on by that
processor very quickly.

A distributed array can be operated on by explicit commands to
the SPMD workers that “own” pieces of the array, or implicitly by
commands at the global or client level.

9 / 68

INTRO: Direct Execution for PARFOR

Parallel MATLAB jobs can be run directly, that is, interactively.

The matlabpool command is used to reserve a given number of
workers on the local (or perhaps remote) machine.

Once these workers are available, the user can type commands, run
scripts, or evaluate functions, which contain parfor statements.
The workers will cooperate in producing results.

Interactive parallel execution is great for desktop debugging of
short jobs.

It’s an inefficient way to work on a cluster, though, because no one
else can use the workers until you release them!

So...don’t use the Matlab queue on Ithaca, from your desktop
machine or from an interactive session on an Ithaca login node!
It may be appropriate to do so on cluster.math.vt.edu. In our
examples, we will indeed use Ithaca, but always through the
indirect batch system. 10 / 68

INTRO: Indirect Execution for PARFOR

Parallel PARFOR MATLAB jobs can be run indirectly.

The batch command is used to specify a MATLAB code to be
executed, to indicate any files that will be needed, and how many
workers are requested.

The batch command starts the computation in the background.
The user can work on other things, and collect the results when
the job is completed.

The batch command works on the desktop, and can be set up to
access the Ithaca or math cluster.

11 / 68

INTRO: ITHACA

Virginia Tech has installed the Ithaca cluster of 84 nodes. Each
node has 2 quadcore processors and (at least) 24 GB of memory.

This means each node can run 8 MATLAB processes.

12 nodes with 8 cores are dedicated to the parallel MATLAB
cluster, so theoretically you can run a job with 96 workers.

You should not routinely ask for all 96 workers. If one job ties up
all the workers, no one else can run. So we encourage the use of
(no more than) 24 or 32 workers at a time instead.

12 / 68

MATLAB Parallel Computing

Introduction

QUAD Example

Executing a PARFOR Program

Classification of variables

MD Example

PRIME Example

ODE SWEEP Example

FMINCON Example

Conclusion

13 / 68

QUAD: Estimating an Integral

14 / 68

QUAD: The QUAD FUN Function

f u n c t i o n q = quad fun (n , a , b)

q=0.0 ;
w=(b−a)/n ;
f o r i =1:n

x=((n−i)∗a+(i−1)∗b)/ (n−1);
f x=b e s s e l y (4 . 5 , x) ;
q=q+w∗ f x ;

end

r e t u r n
end

15 / 68

QUAD: Comments

The function quad fun estimates the integral of a particular
function over the interval [a, b].

It does this by evaluating the function at n evenly spaced points,
multiplying each value by the weight (b − a)/n.

These quantities can be regarded as the areas of little rectangles
that lie under the curve, and their sum is an estimate for the total
area under the curve from a to b.

We could compute these subareas in any order we want.

We could even compute the subareas at the same time, assuming
there is some method to save the partial results and add them
together in an organized way.

16 / 68

QUAD: The Parallel QUAD FUN Function

f u n c t i o n q = quad fun (n , a , b)

q=0.0 ;
w=(b−a)/n ;
p a r f o r i =1:n

x=((n−i)∗a+(i−1)∗b)/ (n−1);
f x=b e s s e l y (4 . 5 , x) ;
q=q+w∗ f x ;

end

r e t u r n
end

17 / 68

QUAD: Comments

The parallel version of quad fun does the same calculations.

The parfor statement changes how this program does the
calculations. It asserts that all the iterations of the loop are
independent, and can be done in any order, or in parallel.

Execution begins with a single processor, the client. When a parfor
loop is encountered, the client is helped by a “pool” of workers.

Each worker is assigned some iterations of the loop. Once the loop
is completed, the client resumes control of the execution.

MATLAB ensures that the results are the same whether the
program is executed sequentially, or with the help of workers.

The user can wait until execution time to specify how many
workers are actually available.

18 / 68

MATLAB Parallel Computing

Introduction

QUAD Example

Executing a PARFOR Program

Classification of variables

MD Example

PRIME Example

ODE SWEEP Example

FMINCON Example

Conclusion

19 / 68

EXECUTION: What Do You Need?

1 Your machine should have multiple processors or cores:

On a PC: Start :: Settings :: Control Panel :: System
On a Mac: Apple Menu :: About this Mac :: More Info...

2 Your MATLAB must be version 2009a or later:

Go to the HELP menu, and choose About Matlab.

3 You must have the Parallel Computing Toolbox:

At VT, the concurrent license MATLAB includes the PCT;
To list all your toolboxes, type the MATLAB command ver.
When using an MDCS (server) be sure to use the same
version of Matlab on your client machine.
Ithaca’s MDCS supports R2009a, R2009b, R2010a, R2010b,
and R2011a.

20 / 68

EXECUTION: Ways to Run

Workers are gathered using the matlabpool command.

Interactively, we call matlabpool and then our function:

matlabpool open local 4
(or)
matlabpool (’open’, ’local’, 4)
q = quad_fun (n, a, b);

The batch command runs a script, with a matlabpool argument:

job = batch (’quad_script’, ’matlabpool’, 4)
(or)
job = batch (’quad_script’, ’matlabpool’, 4,
’configuration’, ’local’)

21 / 68

EXECUTION: Interactive MATLABPOOL

To run quad fun.m in parallel on your desktop, type:

n = 10000; a = 0.5; b = 1;
matlabpool open local 4
q = quad_fun (n, a, b);
matlabpool close

The word local is choosing the local configuration, that is, the
cores assigned to be workers will be on the local machine.

The value ”4” is the number of workers you are asking for. It can
be up to 8 on a local machine. It does not have to match the
number of cores you have.

22 / 68

EXECUTION: Indirect Local BATCH

The batch command, for indirect execution, accepts scripts (and
since R2010b functions). We can make a suitable script called
quad script.m:

n = 10000; a = 0.5; b = 1;
q = quad_fun (n, a, b)

Now we assemble the job information needed to run the script and
submit the job:

job = batch (’quad_script’, ’matlabpool’, 4, ...
’Configuration’, ’local’, ...
’FileDependencies’, { ’quad_fun’ })

The following commands wait for the job to finish, gather the
results, and clear out the job information:

wait (job); % no prompt until the job is finished
load (job); % load data from the job’s Workspace
destroy (job); % clean up

23 / 68

EXECUTION: Indirect Remote BATCH

The batch command can send your job anywhere, and get the
results back, as long as you have set up an account on the remote
machine, and you have defined a configuration on your desktop
that tells it how to access the remote machine.

At Virginia Tech, if your Ithaca account has been set up properly,
your desktop can send a batch job there as easily as running locally:

job = batch (’quad_script’, ’matlabpool’, 4, ...
’Configuration’, ’ithaca_2009b’, ...
’FileDependencies’, { ’quad_fun’ })

The job is submitted. You may wait for it, load it and destroy it,
all in the same way as for a local batch job.

24 / 68

MATLAB Parallel Computing

Introduction

QUAD Example

Executing a PARFOR Program

Classification of variables

MD Example

PRIME Example

ODE SWEEP Example

FMINCON Example

Conclusion

25 / 68

CLASSIFICATION: variable types in PARFOR loops
Advanced Topics

error if it contains any variables that cannot be uniquely categorized or if any
variables violate their category restrictions.

Classification Description

Loop Serves as a loop index for arrays

Sliced An array whose segments are operated on by different
iterations of the loop

Broadcast A variable defined before the loop whose value is used
inside the loop, but never assigned inside the loop

Reduction Accumulates a value across iterations of the loop,
regardless of iteration order

Temporary Variable created inside the loop, but unlike sliced or
reduction variables, not available outside the loop

Each of these variable classifications appears in this code fragment:

��������	�
��

��	�������������	�
��
�����������	�
��

�������������	�
��

�����	������	�
�� ��	���	��������	�
��

Loop Variable
The following restriction is required, because changing i in the parfor body
invalidates the assumptions MATLAB makes about communication between
the client and workers.

2-15

26 / 68

CLASSIFICATION: an example

Advanced Topics

error if it contains any variables that cannot be uniquely categorized or if any
variables violate their category restrictions.

Classification Description

Loop Serves as a loop index for arrays

Sliced An array whose segments are operated on by different
iterations of the loop

Broadcast A variable defined before the loop whose value is used
inside the loop, but never assigned inside the loop

Reduction Accumulates a value across iterations of the loop,
regardless of iteration order

Temporary Variable created inside the loop, but unlike sliced or
reduction variables, not available outside the loop

Each of these variable classifications appears in this code fragment:

��������	�
��

��	�������������	�
��
�����������	�
��

�������������	�
��

�����	������	�
�� ��	���	��������	�
��

Loop Variable
The following restriction is required, because changing i in the parfor body
invalidates the assumptions MATLAB makes about communication between
the client and workers.

2-15

Trick Ques.: What values to a and d have after exiting the loop ?

27 / 68

MATLAB Parallel Computing

Introduction

QUAD Example

Executing a PARFOR Program

Classification of variables

MD Example

PRIME Example

ODE SWEEP Example

FMINCON Example

Conclusion

28 / 68

MD: A Molecular Dynamics Simulation

Compute the positions and velocities of N particles at a sequence
of times. The particles exert a weak attractive force on each other.

29 / 68

MD: The Molecular Dynamics Example

The MD program runs a simple molecular dynamics simulation.

There are N molecules being simulated.

The program runs a long time; a parallel version would run faster.

There are many for loops in the program that we might replace by
parfor, but it is a mistake to try to parallelize everything!

MATLAB has a profile command that can report where the CPU
time was spent - which is where we should try to parallelize.

30 / 68

MD: Profile the Sequential Code

>> profile on
>> md
>> profile viewer

Step Potential Kinetic (P+K-E0)/E0
Energy Energy Energy Error

1 498108.113974 0.000000 0.000000e+00
2 498108.113974 0.000009 1.794265e-11

...
9 498108.111972 0.002011 1.794078e-11
10 498108.111400 0.002583 1.793996e-11

CPU time = 415.740000 seconds.
Wall time = 378.828021 seconds.

31 / 68

MD: Where is Execution Time Spent?
This is a static copy of a profile report

Home

Profile Summary
Generated 27-Apr-2009 15:37:30 using cpu time.

Function Name Calls Total Time Self Time* Total Time Plot

(dark band = self time)

md 1 415.847 s 0.096 s

compute 11 415.459 s 410.703 s

repmat 11000 4.755 s 4.755 s

timestamp 2 0.267 s 0.108 s

datestr 2 0.130 s 0.040 s

timefun/private/formatdate 2 0.084 s 0.084 s

update 10 0.019 s 0.019 s

datevec 2 0.017 s 0.017 s

now 2 0.013 s 0.001 s

datenum 4 0.012 s 0.012 s

datestr>getdateform 2 0.005 s 0.005 s

initialize 1 0.005 s 0.005 s

etime 2 0.002 s 0.002 s

Self time is the time spent in a function excluding the time spent in its child functions. Self time also includes overhead resulting from

the process of profiling.

Profile Summary file://localhost/Users/burkardt/public_html/m_src/md/md_profile.txt/file0.html

1 of 1 4/27/09 3:39 PM

32 / 68

MD: The COMPUTE Function

f u n c t i o n [f , pot , k i n] = compute (np , nd , pos , v e l , mass)

f = z e r o s (nd , np) ;
pot = 0 . 0 ;

f o r i = 1 : np
f o r j = 1 : np

i f (i ˜= j)
r i j (1 : nd) = pos (1 : d , i) − pos (1 : nd , j) ;
d = s q r t (sum (r i j (1 : nd) . ˆ 2)) ;
d2 = min (d , p i / 2 .0) ;
pot = pot + 0 .5 ∗ s i n (d2) ∗ s i n (d2) ;
f (1 : nd , i) = f (1 : nd , i) − r i j (1 : nd) ∗ s i n (2 . 0 ∗ d2) / d ;

end
end

end

k i n = 0 .5 ∗ mass ∗ sum (v e l (1 : nd , 1 : np) . ˆ 2) ;

r e t u r n
end

33 / 68

MD: Can We Use PARFOR?

The compute function fills the force vector f(i) using a for loop.

Iteration i computes the force on particle i, determining the
distance to each particle j, squaring, truncating, taking the sine.

The computation for each particle is “independent”; nothing
computed in one iteration is needed by, nor affects, the
computation in another iteration. We could compute each value on
a separate worker, at the same time.

The MATLAB command parfor will distribute the iterations of this
loop across the available workers.

Tricky question: Could we parallelize the j loop instead?

Tricky question: Could we parallelize both loops?

34 / 68

MD: Speedup

Replacing “for i” by “parfor i”, here is our speedup:

35 / 68

MD: Speedup

Parallel execution gives a huge improvement in this example.

There is some overhead in starting up the parallel process, and in
transferring data to and from the workers each time a parfor loop
is encountered. So we should not simply try to replace every for
loop with parfor.

That’s why we first searched for the function that was using most
of the execution time.

The parfor command is the simplest way to make a parallel
program, but in other lectures we will see some alternatives.

36 / 68

MD: PARFOR is Particular

We were only able to parallelize the loop because the iterations
were independent, that is, the results did not depend on the order
in which the iterations were carried out.

In fact, to use MATLAB’s parfor in this case requires some extra
conditions, which are discussed in the PCT User’s Guide. Briefly,
parfor is usable when vectors and arrays that are modified in the
calculation can be divided up into distinct slices, so that each slice
is only needed for one iteration.

This is a stronger requirement than independence of order!

Trick question: Why was the scalar value POT acceptable?

37 / 68

MATLAB Parallel Computing

Introduction

QUAD Example

Executing a PARFOR Program

Classification of variables

MD Example

PRIME Example

ODE SWEEP Example

FMINCON Example

Conclusion

38 / 68

PRIME: The Prime Number Example

For our next example, we want a simple computation involving a
loop which we can set up to run for a long time.

We’ll choose a program that determines how many prime numbers
there are between 1 and N.

If we want the program to run longer, we increase the variable N.
Doubling N multiplies the run time roughly by 4.

39 / 68

PRIME: The Sieve of Erastosthenes

40 / 68

PRIME: Program Text

f u n c t i o n t o t a l = pr ime (n)

%% PRIME r e t u r n s the number o f p r imes between 1 and N.

t o t a l = 0 ;

f o r i = 2 : n

pr ime = 1 ;

f o r j = 2 : i − 1
i f (mod (i , j) == 0)

pr ime = 0 ;
end

end

t o t a l = t o t a l + pr ime ;

end

r e t u r n
end

41 / 68

PRIME: We can run this in parallel

We can parallelize the loop whose index is i, replacing for by
parfor. The computations for different values of i are independent.

There is one variable that is not independent of the loops, namely
total. This is simply computing a running sum (a reduction
variable), and we only care about the final result. MATLAB is
smart enough to be able to handle this summation in parallel.

To make the program parallel, we replace for by parfor. That’s all!

42 / 68

PRIME: Local Execution With MATLABPOOL

m a t l a b p o o l (’ open ’ , ’ l o c a l ’ , 4) % f u n c t i o n form

n=50;

whi le (n <= 500000)
p r i m e s = p r i m e n u m b e r p a r f o r (n) ;
f p r i n t f (1 , ’ %8d %8d\n ’ , n , p r i m e s) ;
n = n ∗ 1 0 ;

end

m a t l a b p o o l (’ c l o s e ’)

43 / 68

PRIME: Timing

PRIME_PARFOR_RUN
Run PRIME_PARFOR with 0, 1, 2, and 4 labs.

N 1+0 1+1 1+2 1+4

50 0.067 0.179 0.176 0.278
500 0.008 0.023 0.027 0.032
5000 0.100 0.142 0.097 0.061
50000 7.694 9.811 5.351 2.719

500000 609.764 826.534 432.233 222.284

44 / 68

PRIME: Timing Comments

There are many thoughts that come to mind from these results!

Why does 500 take less time than 50? (It doesn’t, really).

How can ”1+1” take longer than ”1+0”?
(It does, but it’s probably not as bad as it looks!)

This data suggests two conclusions:

Parallelism doesn’t pay until your problem is big enough;

AND

Parallelism doesn’t pay until you have a decent number of workers.

45 / 68

MATLAB Parallel Computing

Introduction

QUAD Example

Executing a PARFOR Program

Classification of variables

MD Example

PRIME Example

ODE SWEEP Example

FMINCON Example

Classification of variables

Conclusion

46 / 68

ODE: A Parameterized Problem

Consider a favorite ordinary differential equation, which describes
the motion of a spring-mass system:

m
d2x

dt2
+ b

dx

dt
+ k x = f (t)

47 / 68

ODE: A Parameterized Problem

Solutions of this equation describe oscillatory behavior; x(t) swings
back and forth, in a pattern determined by the parameters m, b, k ,
f and the initial conditions.

Each choice of parameters defines a solution, and let us suppose
that the quantity of interest is the maximum deflection xmax that
occurs for each solution.

We may wish to investigate the influence of b and k on this
quantity, leaving m fixed and f zero.

So our computation might involve creating a plot of xmax(b, k).

48 / 68

ODE: Each Solution has a Maximum Value

49 / 68

ODE: A Parameterized Problem

Evaluating the implicit function xmax(b, k) requires selecting a
pair of values for the parameters b and k , solving the ODE over a
fixed time range, and determining the maximum value of x that is
observed. Each point in our graph will cost us a significant amount
of work.

On the other hand, it is clear that each evaluation is completely
independent, and can be carried out in parallel. Moreover, if we
use a few shortcuts in MATLAB, the whole operation becomes
quite straightforward!

50 / 68

ODE: The Parallel Code

m = 5 . 0 ;
bVa l s = 0 .1 : 0 .05 : 5 ;
kVa l s = 1 .5 : 0 .05 : 5 ;

[kGr id , bGr id] = meshgr id (bVals , kVa l s) ;

peakVa l s = nan (s i z e (kGr id)) ;

t i c ;

p a r f o r i j = 1 : numel (kGr id)

[T, Y] = ode45 (@(t , y) ode sys tem (t , y , m, bGr id (i j) , kGr id (i j)) , . . .
[0 , 2 5] , [0 , 1]) ;

peakVa l s (i j) = max (Y(: , 1)) ;

end

toc ;

51 / 68

ODE: MATLABPOOL or BATCH Execution

matlabpool open local 4
ode_sweep_parfor
matlabpool close
ode_sweep_display

- - - - - - - - - - - - - - - - - - - -

job = batch (...
’ode_sweep_script’, ...
’Configuration’, ’local’, ...
’FileDependencies’, {’ode_system.m’}, ...
’matlabpool’, 4);

wait (job);
load (job);
ode_sweep_display
destroy (job)

52 / 68

ODE: Display the Results

%
% Di s p l a y the r e s u l t s .
%

f i g u r e ;

s u r f (bVals , kVals , peakVals , ’ EdgeColor ’ , ’ I n t e r p ’ , ’ FaceCo lo r ’ , ’ I n t e r p ’) ;

t i t l e (’ R e s u l t s o f ODE Parameter Sweep ’)
x l a b e l (’ Damping B ’) ;
y l a b e l (’ S t i f f n e s s K ’) ;
z l a b e l (’ Peak Di sp lacement ’) ;
view (50 , 30)

53 / 68

ODE: A Parameterized Problem

54 / 68

ODE: A Very Loosely Coupled Calculation

In the MD program, the parfor loop was only a part of the
calculation; other parts of the calculation had to run in order, and
the loop itself was called several times, but each time the input
depended on previous computations.

In the ODE parameter sweep, we have several thousand ODE’s to
solve, but we could solve them in any order, on various computers,
or any way we wanted to. All that was important was that when
the computations were completed, every value xmax(b, x) had
been computed.

This kind of loosely-coupled problem can be treated as a task
computing problem, and we will see later on how MATLAB can
treat this problem as a collection of many little tasks to be
computed in an arbitrary fashion and assembled at the end.

55 / 68

MATLAB Parallel Computing

Introduction

QUAD Example

Executing a PARFOR Program

Classification of variables

MD Example

PRIME Example

ODE SWEEP Example

FMINCON Example

Conclusion

56 / 68

FMINCON: Hidden Parallelism

FMINCON is a popular MATLAB function available in the
Optimization Toolbox. It finds the minimizer of a function of
several variables with constraints:

min F(X) subject to:

A*X <= B,
Aeq*X = Beq (linear constraints)
C(X) <= 0,
Ceq(X) = 0 (nonlinear constraints)
LB <= X <= UB (bounds)

If no derivative or Hessian information is supplied by the user, then
FMINCON uses finite differences to estimate these quantities. If
fun is expensive to evaluate, the finite differencing can dominate
the execution.

57 / 68

FMINCON: Path of a Boat Against a Current

An example using FMINCON involves a boat trying to cross a river
against a current. The boat is given 10 minutes to make the
crossing, and must try to land as far as possible upstream. In this
unusual river, the current is zero midstream, negative above the x
axis, and positive (helpful) below the x axis!

58 / 68

FMINCON: Riding the Helpful Current

The correct solution takes maximum advantage of the favorable
current, and then steers back hard to the land on the line y = 1.

59 / 68

FMINCON: Hidden Parallelism

FMINCON uses an options structure that contains default
settings. The user can modify these by calling the procedure
optimset. The finite differencing process can be done in parallel if
the user sets the appropriate option:

options = optimset (optimset(’fmincon’), ...
’LargeScale’,’off’, ...
’Algorithm’, ’active-set’, ...
’Display’ , ’iter’, ...

’UseParallel’, ’Always’);

[x_star, f_star, exit] = fmincon (h_cost, z0, ...
[], [], [], [], LB, UB, h_cnst, options);

...and uses the matlabpool command to make workers available!

60 / 68

MATLAB Parallel Computing

Introduction

QUAD Example

Executing a PARFOR Program

Classification of variables

MD Example

PRIME Example

ODE SWEEP Example

FMINCON Example

Conclusion

61 / 68

CONCLUSION: Summary of Examples

The QUAD example showed the simplest use of parfor. We will
see new versions of this example again when we talk about spmd
and task programming.

In the MD example, we did a profile first to identify where the
work was.

By timing the PRIME example, we saw that it is inefficient to work
on small problems, or with only a few processors.

In the ODE SWEEP example, the loop we modified was not a
small internal loop, but a big “outer” loop that defined the whole
calculation.

In the FMINCON example, all we had to do to take advantage of
parallelism was set an option (and then make sure some workers
were available).

62 / 68

CONCLUSION: Summary of Examples

We only briefly mentioned the limitations of the parfor statement.

You can look in the User’s Guide for some more information on
when you are allowed to turn a for loop into a parfor loop. It’s not
as simple as just knowing that the loop iterations are independent.
MATLAB has concerns about data usage as well.

MATLAB’s built in program editor (mlint) knows all about the
rules for using parfor. You can experiment by changing a for to
parfor, and the editor will immediately complain to you if there is a
reason that MATLAB will not accept a parfor version of the loop.

63 / 68

CONCLUSION: Desktop Experiments

Virginia Tech has a limited number of concurrent MATLAB
licenses, which include the Parallel Computing Toolbox.

This is one way you can test parallel MATLAB on your desktop
machine.

If you don’t have a multicore machine, you won’t see any speedup,
but you may still be able to run some “parallel” programs.

64 / 68

CONCLUSION: Cluster Experiments

If you want to work with parallel MATLAB on Ithaca, you must
first get an account, by going to this website:

http://www.arc.vt.edu/index.php

Under the item Services & Support select User Accounts.

On the new page, under Ithaca Account Requests, select ARC
Systems Account Request Form. Fill in the information and
submit it. Although you’re asked to describe the research you want
the account for, you can say that this account is to experiment
with Ithaca to see if it is suitable for your work.

65 / 68

CONCLUSION:Desktop-to-Cluster Submission

If you want to use parallel MATLAB regularly, you may want to set
up a way to submit jobs from your desktop to Ithaca, without
logging in directly.

This requires defining a configuration file on your desktop, adding
some scripts to your MATLAB directory, and setting up a secure
connection to Ithaca (not necessary since R2010b).

The steps for doing this are described in the document:

https://portal.arc.vt.edu/matlab/...
RemoteMatlabSubmission.pdf

We will be available to help you with this process.

66 / 68

CONCLUSION: VT MATLAB LISTSERV

There is a local LISTSERV for people interested in MATLAB on
the Virginia Tech campus. We try not to post messages here
unless we really consider them of importance!

Important messages include information about workshops, special
MATLAB events, and other issues affecting MATLAB users.

To subscribe to the mathworks listserver, send email to:

listserv@listserv.vt.edu.

The body of the message should simply be:

subscribe mathworks firstname lastname

67 / 68

CONCLUSION: Where is it?

Matlab Parallel Computing Toolbox Product Documentation
www.mathworks.com/help/toolbox/distcomp/rn/bqqhj28-
1 1.html

Gaurav Sharma, Jos Martin,
MATLAB: A Language for Parallel Computing,
International Journal of Parallel Programming,
Volume 37, Number 1, pages 3-36, February 2009.

http://scholar.vt.edu/.../parfor codes

quad parfor
md parfor
prime parfor
ode sweep parfor
fmincon parallel

68 / 68

