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Inspiration

“There comes a time when, for every addition of knowledge, you forget
something that you knew before. It is of the highest importance,
therefore, not to have useless facts elbowing out the useful ones!”

–Sherlock Holmes in “A Study in Scarlet”
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The IN/OUT Steady State Vector Field

Figure: Steady state velocity field for IN/OUT
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The IN/OUT Steady State Direction Field

Figure: Steady state direction field for IN/OUT
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The Setting

Our system is time-dependent, and parameterized;

We have “snapshots” at various times and parameters;

(Snapshots from finite element simulation, or windtunnel).

We need trajectories for many parameter values;

Generic finite elements too slow or too expensive.

7 / 1



Observations

Most finite element “degrees of freedom” are not used;

Solutions inhabit a low dimensional space of “likely behaviors”;

New behaviors emerge with increasing energy;

Trajectories: energy moves to preferred behavior subspace;

A basis using “preferred behaviors” would be tiny.
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Goals

System exploration + experiment design

Data analysis, weighting, compression

Choice of reduced model

Computation of approximate trajectories

Long range goal:

Closed loop control of parameterized flow.
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Goals (Comments)

System exploration + experiment design:
may we choose which snapshots to create?;
which parameter and boundary values should be tested?
can we identify and weight “important” behaviors?

Data analysis, weighting, compression:
a behavior is important if it has high energy;
a behavior is important if it is “far away” from others;
a behavior is important if it occurs often;

Model reduction:
reduce existing snapshot data to a smaller representative set;
find a low dimensional basis for fluid behavior;

Approximate trajectories:
approximate points on known trajectory;
calculate points on unknown trajectory using reduced model;

Long range goal:
closed loop control of parameterized flow.
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Case Study: SVD

Given an m by n matrix A, regard the columns as “behaviors”.

The energy associated with a direction is the projection of all columns
onto that direction.

The SVD produces a factorization:

A = U · Σ · V ′ (1)

The leading columns of U are the “preferred behaviors”;

The diagonal of Σ is an energy or importance weight;

A reduced model of A can be constructed;
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A 9-D Space with 2-D Subspace
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PDE Data Reduction: POD

Each column of an m by n matrix A is a solution or “snapshot”.

1 compute the m by m matrix B = A ∗ A′,

2 determine eigen-decomposition B = X ∗ Λ ∗ X ′,

3 each eigenvector xi is a mode;

4 each eigenvalue λi is the energy of a mode;

5 select eigenvectors by energy to get dominant modes.

In fact, we can carry out the same computation by computing the SVD
of A. The σ′s are the square roots of the energy, and the corresponding
left singular vectors of U are the mode vectors.
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An Algorithm of Many Names!

The method has many names, depending in part on the field
(meteorology, statistics, biomedical data analysis, mechanical
engineering):

KL: the Karhunen Loève analysis;

POD: Principal Orthogonal Direction

POD: Proper Orthogonal Decomposition

EOF: Empirical Orthogonal Functions

MDS: Multidirectional Scaling

PCA: Principal Component Analysis
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Sample Flow Problems

BACKSTEP used to model flow separation;

CAVITY, driven cavity;

IN/OUT, flow into box and out again;

TCELL, driven cavity + flow region above it;

Most of our results will concern the INOUT problem:

square 2D box, 1 by 1 units;

parabolic inflow from the lower right

inflow amplitude parameter α.

outflow on the upper right.

dynamic viscosity = 1/300;
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An IN/OUT Velocity Field

Figure: Velocity field at time step 100 for IN/OUT

The inflow parameter is α = 5/3 for this snapshot;
MATLAB’s automatic scaling makes the largest vector one cell long. This
has been doubled for visibility, and 3/4 of the data has been deleted!
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An IN/OUT Direction Field

Figure: Direction field at time step 1 for IN/OUT

All vectors are shown with the same length. This allows smaller
magnitude portions of the flow to be visible.
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Generating Snapshots

Collecting snapshots involves observing the system, if possible, over a
range of parameters and times.

initial condition is steady state (α = 1/3);

time step ∆t = 0.01;

solve with α = 5/3 for 250 time steps.

continue with α = 1/3 for 250 time steps.

two impulsive changes to α intended to excite many modes;

41 by 41 evenly spaced grid of nodes;

800 elements (quadratic velocity, linear pressure);

This system has 3,362 degrees of freedom. We are interested in
approximating it with 2, 4, 8 or 16 degrees of freedom!
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IN/OUT Animation

This animation displays the velocity direction field in the IN/OUT flow.
The sharp change in the value of α is quite noticeable.

For clarity, only 1/4 of the nodes are shown.

This animation is available as an MPEG-4 file at

http://people.sc.fsu.edu/∼jburkardt...
/datasets/inout flow/inout flow movie.html
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The IN/OUT Modal Energies (Figure)

Figure: Energies for first 16 POD vectors
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The IN/OUT Modal Energies (Table)

For this problem, the energy is concentrated in a few modes. The 12-th
mode has 1/100 the energy of the first. If energy “prefers” to stay in the
first few modes, everything is fine, but if changes to the parameters mean
the energy moves to other modes, we may be in trouble!

Vector Singular value Vector Singular value
1 26.9107 9 0.5738
2 7.0878 10 0.4570
3 6.5015 11 0.3736
4 3.1420 12 0.2749
5 1.6973 13 0.2707
6 1.4947 14 0.1787
7 0.9253 15 0.1453
8 0.7592 16 0.0994
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The IN/OUT Modal Vectors

The modes read left to right, and are plausibly organized by complexity,
which we presume reflects their natural energy capacity.
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The IN/OUT Modal Vectors
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Strengths of POD

POD strengths are largely the strengths of eigen-analysis:

the data is easy to set up, process and use;

LAPACK provides standard efficient software;

parallel LAPACK available;

basis vectors are orthonormal;

basis vectors are ordered by energy;

basis vectors have physical meaning as modes;

the basis vectors are “nested”, the set of 8 is created by adding 1 to
the set of 7.

the weights have physical meaning as energy;

the energies give a natural way to measure approximation error;

24 / 1



Weaknesses of POD

POD weaknesses include:

requires solution of large eigensystem or SVD;

adding just one more snapshot requires recomputation;

high energy modes may not be the only interesting phenomena;

rapid drop-off in energy may not be be typical;

limited modeling of boundary conditions;
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PDE Data Reduction: Clustering

We can also seek “preferred behaviors” by looking for clusters in the
data, using K-means.
We seek k “generators” G minimizing

E (X ,G ) = ΣN
i=1||X (i)− nearestG ||2 (2)

Figure: 100 random points in the unit square
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Clustering by K-Means

Figure: 100 random points clustered by K-Means
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The K-Means Algorithm

Given N points X to be assigned to K clusters:

Assign each X to a random cluster;

Do Forever

For each point X

For each cluster C

determine energy change if X -> C

Move X to its preferred cluster.

If no point moved, exit;

End Forever
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Comments on K-Means

if any X switches clusters, affects all points.

Algorithm terminates at “local minimum” of cluster energy;

Result depends on initial cluster assignment;

The weaker H-means algorithm can precondition.

Parallel execution?

H-means can be parallelized.

K-means is not parallel;

Want to do several (∼15 to 30) cycles, these can be in parallel.

Questions:

Should we normalize the snapshot data?
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The IN/OUT Clustering Energies

Note that the clusters correspond to time intervals. This makes the
clustering plausible. In some runs, the two relatively quiet “tail ends”
(here, clusters 4 and 5) are clustered together.

Table: Cluster Energy

Vector Cluster energy Population Extent
1 6.30 15 [ 1, 15]
2 4.79 27 [ 37, 63]
3 3.77 30 [267,296]
4 3.28 153 [348,500]
5 4.68 187 [ 64,250]
6 5.54 21 [ 16, 36]
7 3.43 51 [297,347]
8 4.75 16 [251,266]

Total 36.58 500 [ 1,500]
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The IN/OUT 8-Cluster Vectors

The first four of the set of 8.
Here, the CVT basis vectors are not orthogonalized, so they share a large
component in common.
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The IN/OUT 8-Cluster Vectors

The first four of the set of 8.
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Clustering Strengths

Clustering strengths include:

can cluster anything for which you can define a distance;

a clustering can be updated, rather than being recomputed, when
data is added (or removed);
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Clustering Weaknesses

Clustering weaknesses include:

vectors are not orthogonal;

the cluster energies do not yield the same information as POD
energies;

the K-means computation must be designed by hand;

possibility of local minima;

limited parallelizability (H-means versus K-Means)

the solution of the 8 vector problem is not the 7 vector problem plus
1!
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Solving New Reduced Problems

The same procedure for POD or clustering (once cluster vectors are
orthonormalized).

Basis vectors Zi form reduced order finite element basis functions zi (x).

A typical reduced model solution:

u(x, t) = β(t)v(x) + Σd
i=1ci (t)zi (x) (3)

where v is a flow solution satisfying the boundary conditions.

The momentum equations are formally the same;

The continuity equation is unnecesary;

The boundary conditions are taken care of by β. (not so easy for
complicated boundary cases!)

System was solved using 4th order Runge-Kutta.
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Simulation of IN/OUT with Varying Inflow

,

Figure: The time history of α for HAT and SINUSOID problems

This animation shows the simulation of the IN/OUT flow with a
sinusoidal inflow parameter α.

36 / 1



Simulation of IN/OUT with Varying Inflow

This flow field is to be approximated by a reduced order model POD or
CVT basis set derived from the original set of snapshots in which α took
on the values 1/3 and 5/3.

This animation is available as an MPEG-4 file at

http://people.sc.fsu.edu/∼jburkardt/datasets/...
inout flow/inout case2 movie.html
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Errors of IN/OUT with SINUSOIDAL Inflow

Figure: CVT approximation error, snapshots were NOT normalized

Figure: CVT approximation error, snapshots WERE normalized
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Conclusion

better methods of exhibiting modes than by impulse?;

weighting by energy or distance?;

for clustering, normalization of snapshot data helps and hurts;

treatment of problems with complex boundary conditions?

can we adjust basis functions to account for parameter change?
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