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SERIAL: von Neumann Architecture

For fifty years, we have used a simple model of the computer called the
von Neumann computer, consisting of memory (input data and
intermediate results), a processor (carrying out arithmetic and logical
operations), an input/output device, and a clock.

The von Neumann computer runs a program, also stored in memory.

The clock is surprisingly important, providing synchronization. Roughly
speaking, nothing happens faster than a single clock tick.

In particular, no matter how many instructions there are in the program,
just one instruction is carried out each tick. The von Neumann computer
thus carries out sequential or serial execution of the program.
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SERIAL: von Neumann Architecture
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SERIAL: Years of Faster and Faster Clocks

Logically, this is a beautiful and simple model. And we have kept if for
so long, and designed computers and algorithms and programming
languages around it, because over the years, computers have been fast
enough to solve the problems we are interested in.

The problems we are interested in have grown enormously over the years,
and the only reason computers were able to keep up was because it was
possible to relentlessly increase the clock speed (of course, we had to
make faster processors and memory access as well.)

The clock speed increased because of the increasing sophistication and
miniaturization of computer chips.

Sometime around 2005, the clock speed curve hit an immovable ceiling.
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SERIAL: We’ve Hit the Ceiling
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SERIAL: Multicore Processors

The are simple alternatives to the von Neumann model of computation.

Most of these involve the idea of parallel computing, that is, of carrying
out more than one instruction or operation at a time.

if the clock can’t tick faster, then somehow we have to carry out more
work per clock cycle if we want to get done faster, or solve bigger
problems.

One hardware advance involved communication: it was possible for two
different computers to share information during a computation. This fact
led to the development of MPI (next week’s topic!).

Another advance was the development of multicore processors.
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SERIAL: Tilera, One Processor, 64 Cores
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SERIAL: Shared Memory Parallelism

With a multicore processor, we can make a simple modification to the
von Neumann model of the computer. We have the same memory, I/O,
and clock, but now we have many processors.

If these processors can cooperate, then even though the clock ticks at the
same rate as before, we can get done faster.

The problem now: can we write a new kind of computer program that
can correctly control multiple, cooperating processors?

We’ll assume that the processors live in a shared memory space, so that
any processor can read or write any piece of data.
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SERIAL: The “non Neumann” Architecture
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SERIAL: OpenMP Controls Multicore Processors

I’d like you to think about this problem in a simple form. Suppose our
program simply needs to square every number in memory.

Even if we have 64 processors available, each processor will need to get a
copy of the instructions ”square the number in the given location” and a
(unique) subset of the memory locations.

So at least in this case, it’s clear that more processors can be helpful; but
it might not be clear how we, at the user level, can tell the processors
how to divide up the work without interfering with each other.

OpenMP is a system that exactly allows us to write programs that will be
correctly executed on multiple processors; if done correctly, such a parallel
program can run a hundred times faster if we have 100 cores available.
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ALG: An Algorithm Need Not be “Step by Step”

We are use to definitions of algorithms as a step-by-step procedure, in
which step 1 must be completed before step 2 can be started, but this is
not an essential feature of an algorithm!

The step-by-step approach is called serial or sequential programming.

We may be so used to this idea that we look at a problem like

S = X 1 + X 2 + X 3 + X 4 + X 5 + X 6 + X 7 + X 8

and can only see a serial approach:

(clock = 1) S =X 1

(clock = 2) S =S + X 2

(clock = 3) S =S + X 3

...

(clock = 8) S =S + X 8

But for many algorithms, a few steps, maybe even many steps, can be
going on at the same time. The point of parallel programming is to
identify those opportunities.
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ALG: Adding N Numbers Doesn’t Need N Steps

If we have four processors, and room to store 4 temporary sums, and if
all the processors can work at the same time, we can do the addition in 4
clock cycles (we are really working on a binary tree here):

(clock = 1) S1 =X 1,S2 = X 3,S3 = X 5,S4 = X 7

(clock = 2) S1 =S1 + X 2,S2 = S2 + X 4,S3 = S3 + X 6,S4 = S4 + X 8

(clock = 3) S1 =S1 + S2,S3 = S3 + S4

(clock = 4) S1 =S1 + S3

Assuming “unlimited resources” (n/2 processors!), we can add n
numbers in 1 + log2(n) rather than n cycles, so 1,000 numbers could be
added in about 10 steps rather than 1,000, and 1,000,000 numbers could
be added in about 20 steps rather than 1,000,000!

Of course, typically we don’t have thousands of processors available, but
it is still true that we really can solve problems faster if we can find,
describe, and implement an appropriate parallel algorithm.
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ALG: Parallel Problems Obviously Exist

Are there classes of problems we can solve in parallel?

Search: if you need to:

find the joker in a deck of cards;

find the triangle in a mesh that contains a given point;

find proteins in a database that are similar to a sample protein.

then you can divide up the deck, or the mesh, or the database, among the
available processors, and run until one of the processors finds a match.

Sort: each processor can take a portion of the items and sort them,
returning the sorted set to the “master” processor. The master then
simply has to merge the sorted items.
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ALG: Image Processing

Image Processing: An image is simply an array of pixels. We could be
searching for patterns (a tumor, a star, a camouflaged missile battery).

We could be trying to “render” an image, that is, to simulate the look of
a model with a given light source. A standard technique called ray
tracing is to send out thousands of light rays from the source, letting
them hit objects in the model, reflect and bounce off other objects,
before exiting the model. We can do this in parallel by giving each
processor its own set of random light rays to track.
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ALG: Gauss Elimination

Gauss Elimination: Suppose we have a linear system of the form:

A ∗ x = b

Gauss elimination can produce the answer. The k-th step seeks a pivot
row, which is used to eliminate elements in the matrix:

Find Ap,k , the largest entry on or below the diagonal Ak,k ;

Swap rows p and k ;

Add a multiple of row k to rows k + 1 through n to eliminate the
entry in column k ;
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ALG: Jacobi Iteration

Jacobi Iteration: Suppose we have a linear system of the form:

A ∗ x = b

where A is a symmetric positive definite matrix. Then Jacobi iteration
can be used to estimate the solution. On the k-th step of Jacobi
iteration, we compute the solution estimate xk by

Ai,i xk
i = bi −

n∑
j=1;j 6=i

Ai,j xk−1
j

or, in other words:

xk
i = (bi −

n∑
j=1;j 6=i

Ai,j xk−1
j )/Ai,i

so we can update all the entries in xk at the same time.
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ALG: An Ordinary Differential Equation (OOPS!)

An ordinary differential equation in time: Suppose we have a
differential equation of the form:

u′(t) = f (u, t)

u(t = 0) = u0

We can define a discretized problem, in which we seek approximate
values of u() at the sequence of points t1, t2, ... equally spaced by dt. We
might do this with a simple Euler method:

ui = ui−1 + dt ∗ f (ui−1, ti−1)

But such an approach cannot be parallelized! Here, the problem is easy
to see. The calculation of ui cannot begin until the calculation of ui−1 is
complete. But that can’t begin until ui−2 is computed, and so on.
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ALG: Partial Differential Equations

A partial differential equation in time and space: Suppose we have
a differential equation of the form:

∂u

∂t
+ ν(

∂2u

∂2x
+
∂2u

∂2y
) = f (u, t, x , y)

with corresponding initial and boundary conditions. If we discretize space
and time, our solution is an array u(ti , xj , yk). If we use a forward
difference for the time derivative, we relate each value u(ti , xj , yk) to
known values at the previous time ti−1. Given data at one time step, we
can compute all the data at the next time step in parallel.
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ALG: Newton’s Method (OOPS!)

Solving F(X)=0 Using Newton’s Method: Suppose we have a
scalar equation f (x) = 0 to be solved for x . Newton’s method produces a
sequence of presumably improved estimates:

x i+1 = x i − f (x i )/f ′(x i )

However, we can’t do this problem in parallel, since we can’t start
working on x17 until x16 has been computed.

We might be able to give each processor a different starting point. Or, if
x is actually an m-dimensional vector, we might be able to solve the
related linear systems in parallel.
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LOOP: OpenMP Concentrates on FOR and DO Loops

There are several ways that OpenMP allows you to create parallel
programs. However, the simplest and most useful one concentrates
entirely on operations that are carried out in loops - these are for loops in
C/C++ and do loops in Fortran.

The idea is that a loop contains a lot of work (the number of loop
iterations) and that each step is the same (we just repeat the loop logic,
with a different loop index.) That makes it easy to break up the work
into sections, and to tell each processor in advance what to do.
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LOOP: Loop Iterations Are Divided Among Processors

For example, we might imagine that the sequential loop:

for ( i = 0; i < 1000; i++ )

{

x[i] = x[i] + s * y[i];

}

could be parallelized for two processors as:

Processor #1 Processor #2

for ( i = 0; i < 500; i++ ) for ( i = 501; i < 1000; i++ )

{ {

x[i] = x[i] + s * y[i]; x[i] = x[i] + s * y[i];

} }

and it’s easy to see how this could be extended to any number of
processors.
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LOOP: Indexing Can Be More Complicated

We can use more complicated formulas and indices. It’s just important
that distinct iterations in a loop don’t try to set the same variable.

for ( j = 1; j <= n; j++ )

{

x[j] = sqrt ( y[j-1) );

}

for ( i = 0; i <= 1000; i = i + 2 )

{

z[i] = sin ( i * pi );

z[i+1] = cos ( i * pi );

}
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LOOP: “Right Hand Side” Variables Are Usually OK

Things that only appear on the right hand side can have any form or
index. They are simply variables that are “read”, not modified:

for ( i = 0; i <= 1000; i = i + 2 )

{

y[i] = y[i] + x[i-1] - 2.0 * x[i] + x[i+1] + z[99] + w;

}
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LOOP: “Left Hand Side” Variables Can Conflict

Problems occur if more than one loop iteration tries to write or modify
the same variable, which occurs on the left hand side of a statement.
Here, we have a y vector; we’d want to add half of each entry to the
corresponding “left” entry in x and half to the right.

for ( i = 0; i < n; i++ )

{

if ( 0 < i )

{

x[i-1] = x[i-1] + 0.5 * y[i];

}

if ( i < n - 1 )

{

x[i+1] = x[i+1] + 0.5 * y[i];

}

}

Even in our simple two-processor model, this code will have the potential
of conflicts. Suppose that n=1000. Processor #1 might try to execute
the second addition for i = 499 while processor #2 is executing the first
addition for i = 501. 27 / 1



LOOP: “Left/Right Hand Side” Variable Problems

Sometimes a variable occurs on both the left and right hand side.
Since this means that the variable’s value changes during the loop
execution, it means we can’t safely run it in parallel.

for ( i = 1; i < n; i++ )

{

x[i] = x[i] + x[i-1];

}

Note that if we try to compute
x[2] = x[2] + x[1],
the value will depend on whether we have already executed the statement
x[1] = x[1] + x[0].
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LOOP: Another Example of Side Effects

This simple model will work, as long as the loop is “appropriate” for
parallel processing - in other words, it can go wrong. It will go wrong
precisely if the loop has side effects, that is, information computed during
one iteration of the loop is used or needed by a later iteration.

Here’s a simple example:

x = 0.0;

for ( i = 0; i <= 1000; i++ )

{

y[i] = x * x;

x = x + 0.001;

}

This loop can’t execute in parallel with the simple loop model.

Well, maybe it can, but it won’t get the right answers! How could we
easily fix this?
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LOOP: Another Example of Left/Right Variables

Problems can occur if data appears on both the left and right hand
side, and so is changed during the calculation.

Here is a sort of Gauss-Seidel iteration for solving a linear system. Why
does the loop model fail here?

for ( i = 1; i < n - 1; i++ )

{

x[i] = ( b[i] + x[i-1] + x[i+1] ) / 2.0;

}

30 / 1



LOOP: A Summation

Here’s another example, (approximating an integral) which is actually
important enough that we will see how to fix it later:

n = 1000;

q = 0.0;

for ( i = 0; i < n; i++ )

{

x = i / ( double ) n;

q = q + x * x;

}

q = q / n;

In this loop, x is not the problem, it’s q, which is being modified on every
iteration. In our two processor parallel version, would we have two
separate variables called q? If so, what do we do with them at the end?
If there’s just one variable, and the processors have to share it, then how
do we avoid conflicts?
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LOOP: Simple Rules for Parallel Loops

In summary,

If we want to run a loop in parallel, it should be written in such a
way that the loop iterations would get the same results, even if they
were executed in the reverse order, or any order;

Moreover, we need to avoid cases in which the same variable is
modified by two different iterations of the loop;

Some loops, like the integral approximation, use a single variable to
collect results from all the iterations. If we want to use such
methods, we need to come up with a special approach.
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SAXPY: A Basic Linear Algebra Operation

Our simple example starts with an n-vector called x and adds to it the
vector y, multiplied by the scalar s:

~x ← ~x + s · ~y ;

We assume that the values of x and y are set by some formula, about
which we don’t really care that much.

If we have multiple processors, then, all we are asking is that the
processors divide up the range of vector indices, and then carry out the
arithmetic for their part of the work.
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SAXPY: C Example (Before)

int main ( )

{

int i, n = 1000;

double s = 1.23, x[1000], y[1000];

for ( i = 0; i < n; i++ )

{

x[i] = ( double ) ( ( i + 1 ) % 17 );

y[i] = ( double ) ( ( i + 1 ) % 31 );

}

for ( i = 0; i < n; i++ )

{

x[i] = x[i] + s * y[i];

}

return 0;

}

35 / 1



SAXPY: C Example (After)

# include <omp.h>

int main ( )

{

int i, n = 1000;

double s = 1.23, x[1000], y[1000];

for ( i = 0; i < n; i++ )

{

x[i] = ( double ) ( ( i + 1 ) % 17 );

y[i] = ( double ) ( ( i + 1 ) % 31 );

}

# pragma omp parallel

# pragma omp for

for ( i = 0; i < n; i++ )

{

x[i] = x[i] + s * y[i];

}

return 0;

}
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SAXPY: F90 Example (Before)

program main

integer, parameter :: n = 1000

integer i

double precision :: s = 1.23

double precision x(n), y(n)

do i = 1, n

x(i) = mod ( i, 17 )

y(i) = mod ( i, 31 )

end do

do i = 1, n

x(i) = x(i) + s * y(i)

end do

stop

end
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SAXPY: F90 Example (After)

program main

use omp_lib

integer, parameter :: n = 1000

integer i

double precision :: s = 1.23

double precision x(n), y(n)

do i = 1, n

x(i) = mod ( i, 17 )

y(i) = mod ( i, 31 )

end do

!$omp parallel

!$omp do

do i = 1, n

x(i) = x(i) + s * y(i)

end do

!$omp end do

!$omp end parallel

stop

end
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SAXPY: The Changes

Notice that our OpenMP program looks exactly the same as our
original program, except for the OpenMP directives.

These directives, in fact, look like comments to the compiler. In other
words, if you simply compile the OpenMP program in the usual way, it
will compile and run just as it did before.

You might think this is not a big accomplishment, but what it means is
that, as you modify your program to create an OpenMP version, you can
always run the program in sequential mode as a check.

Moreover, we can work on our program one section at a time. There may
be many loops in our program, but OpenMP will only parallelize the
loops we select. So it’s easy to experiment and to work in steps.

Now let’s try to find out a little bit more about the directives that we
added to the program.
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DIRECT: The Parallel Region is Defined by a Directive

OpenMP includes a small number of functions and symbolic constants,
which must be declared.

Therefore, a C or C++ program that uses OpenMP should usually have
the following include statement at the beginning of the file:

# include <omp.h>

Every Fortran77 subroutine or function that uses OpenMP should have
the following include statement:

include ’omp_lib.h’

A FORTRAN90 subroutine or function using OpenMP can use the
Fortran77 include statement, or reference the OpenMP module:

use omp_lib
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DIRECT: The Parallel Region is Defined by a Directive

The C/C++ parallel directive begins a parallel region.

# pragma omp parallel

{

do things in parallel here, if directed!
}

If curly brackets aren’t used to form a block, then the parallel region is
taken to be just the next block of code.

Typically, this parallel region will contain one or more for loops; these
loops may be selected for parallel execution if the user indicates so.
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DIRECT: The Parallel Region is Defined by a Directive

The FORTRAN parallel directive begins a parallel region.

!$omp parallel

do things in parallel here, if directed!
!$omp end parallel

The parallel region must be closed with an end parallel directive.

Typically, this parallel region will contain one or more do loops; these
loops may be selected for parallel execution if the user indicates so.
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DIRECT: Variables in the Parallel Region

All variables inside the parallel region will be classified as:

shared, leave this in shared memory;

private, each processor needs a private copy;

reduction, special treatment.

Except for loop indices, all variables are assumed to be shared.

It’s important that no variable be misclassified. To override the defaults,
or to declare some variables explicitly, add the private() or shared()
clause to your parallel directive.

Our example doesn’t need to specify this information, so we’ll come back
to discuss this in a later example!

44 / 1



DIRECT: PRIVATE and SHARED Clauses

The private() and shared() clauses modify the parallel directive.

In C, this might appear like this:

# pragma omp parallel \

private ( i ) \

shared ( n, s, x, y )

or:
# pragma omp parallel private ( i ) shared ( n, s, x, y )

while in FORTRAN, the same information would look like this:

!$omp parallel &

!$omp private ( i ) &

!$omp shared ( n, s, x, y )

or:
!$omp parallel private ( i ) shared ( n, s, x, y )
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DIRECT: Parallel Loops are Marked by Directives

Inside the parallel region there should be one or more loops.

By default, a loop in the parallel region will not be executed in parallel.
You explicitly indicate which loops are parallel by providing the
appropriate directive.

In C/C++, this is the for directive, and in FORTRAN, the do directive.

If a parallel region has five loops, you can mark any or all of them to run
in parallel.

# pragma omp for

for ( i = 0; i < m; i++ )

{

...xxx...

}

# pragma omp for

for ( i = 0; i < 1000; i++ )

{

...xxx...

}
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DIRECT: Nested Loops

However, a nested loop should only be marked once.

# pragma omp for

for ( i = 0; i < m; i++ )

{

for ( j = 0; j < n; j++ )

{

...xxx...

}

}

!$ omp do

do i = 1, m

do j = 1, n

...xxx...

end do

end do

!$ omp end do
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DIRECT: The Loop Directive in the SAXPY Example

# pragma omp for

for ( i = 0; i < n; i++ )

{

x[i] = x[i] + s * y[i];

}

!$omp do

do i = 1, n

x(i) = x(i) + s * y(i)

end do

!$omp end do
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DIRECT: SAXPY Example in C

# include <omp.h> <-- OpenMP Definitions

int main ( )

{

int i, n = 1000;

double s = 1.23, x[1000], y[1000];

for ( i = 0; i < n; i++ )

{

x[i] = ( double ) ( ( i + 1 ) % 17 );

y[i] = ( double ) ( ( i + 1 ) % 31 );

}

# pragma omp parallel <-- Begin parallel region

{

# pragma omp for <-- Next loop is parallel

for ( i = 0; i < n; i++ )

{

x[i] = x[i] + s * y[i];

}

}

return 0;

}
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DIRECT: SAXPY Example in F90

program main

use omp_lib <-- OpenMP Definitions

integer, parameter :: n = 1000

integer i

double precision :: s = 1.23

double precision x(n), y(n)

do i = 1, n

x(i) = mod ( i, 17 )

y(i) = mod ( i, 31 )

end do

!$omp parallel <-- Begin parallel region

!$omp do <-- Next loop is parallel

do i = 1, n

x(i) = x(i) + s * y(i)

end do

!$omp end do <-- End of that loop

!$omp end parallel <-- End of parallel region

stop

end
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DON’T DESPAIR, WE’RE HALFWAY THERE!
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RUN: OpenMP Directives Are Ignored

Because the OpenMP directives look like comments, your program will
run sequentially if you compile it the usual way:

gcc myprog.c

g++ myprog.cpp

gfortran myprog.f

gfortran myprog.f90
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RUN: Creating and Running an Executable

The compile statement results in the creation of what is called the
executable program - that is, it’s ready to run.

By default, the executable is stored in a file with the peculiar name of
a.out. To avoid confusion, this should be renamed to something sensible:

mv a.out myprog

The executable program can be run by typing its name, preceding by ./,
which is actually shorthand for the current directory:

./myprog
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RUN: OpenMP Directives Can Be Activated

You build a parallel version of your program by telling the compiler to
activate the OpenMP directives.

GNU compilers need the fopenmp switch:

gcc -fopenmp myprog.c

g++ -fopenmp myprog.cpp

gfortran -fopenmp myprog.f

gfortran -fopenmp myprog.f90

Again, we will want to rename the executable, but this time, perhaps we
should choose a different name:

mv a.out myprog_omp
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RUN: Intel Compiler Switches

Intel C compilers need the openmp and parallel switches:

icc myprog.c -openmp -parallel

icpc myprog.cpp -openmp -parallel

Intel Fortran compilers also require the fpp switch:

ifort myprog.f -openmp -parallel -fpp

ifort myprog.f90 -openmp -parallel -fpp
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RUN: Specifying the Number of Threads

When we run a program whose OpenMP directives have been activated,
then OpenMP looks for the value of an environment variable called
OMP NUM THREADS to determine the default number of threads.

You can query this value by typing:

echo $OMP_NUM_THREADS

A blank value is the same as 1. Usually, however, it’s set to a sensible
value, such as the number of cores available.

You can reset this environment variable using a command like:

export OMP_NUM_THREADS=4 <-- (No spaces around equal sign!)

and this new value will hold for any programs you run interactively.
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RUN: Trying Different Numbers of THreads

Changing the number of threads is easy, and can be done at run time.
Suppose our executable program is called myprog omp.

We could experiment with 1, 2, 4 and 8 threads by:

export OMP_NUM_THREADS=1

./myprog_omp

export OMP_NUM_THREADS=2

./myprog_omp

export OMP_NUM_THREADS=4

./myprog_omp

export OMP_NUM_THREADS=8

./myprog_omp
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RUN: Trying Different Numbers of THreads

We know a little bit about how to convert a sequential program into an
OpenMP parallel program (include file, parallel and do/for directives).

We know how to compile;

We know how to run;

We know how to set the number of threads, which make the program
“more parallel”.

But the point of parallel programming is to run faster. Is there a good
way to do timings?
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TIME: Measuring Wall Clock Time

Parallel programming does the same amount of work as sequential
programming, and in fact, it might even do more. So it’s not a good
idea, when making comparisons, to measure the amount of work. Nor is
it a good idea to measure the total CPU time (how much time was used
by all the processors), because this misses the point.

There are two important quantities in parallel programming:

the elapsed wall clock time - how long did you wait for a result?

the relative speedup, that is the wall clock time using 1 processor
divided by the wall clock time using p processors.
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TIME: Measuring Wall Clock Time

There are also several important things to keep in mind when measuring
performance:

parallelizing one big thing is much better than parallelizing many
small things;

some programs run too quickly, or work on too little data, to be
worth parallelizing;

if you let your problem get big enough, it will suddenly slow down
drastically when it reaches the memory limit.
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TIME: OpenMP Functions

OpenMP includes the following functions:

omp set num threads ( t ) : set the number of threads;

t = omp get num threads ( ) : get the number of threads;

p = omp get num procs ( ) : how many processors are there?

id = omp get thread num ( ) : which thread is executing?

wtime = omp get wtime() : how much time has elapsed?

We may come back to review some of the other functions, but for now, I
hope you can see which one we want to use!
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TIME: How Much Time Has Passed?

The function omp get wtime() returns, as a double precision real
number, the current reading of the wall clock.

You read the wall clock time before and after a parallel computation.
The difference gives you the measured time.

wtime = omp_get_wtime ( );

# pragma omp parallel

# pragma omp for

for ( i = 0; i < n; i++ )

{

Do a lot of work in parallel;

}

wtime = omp_get_wtime ( ) - wtime;

cout << "Work took " << wtime << " seconds.\n";
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TIME: The SAXPY Example

# include <omp.h>

int main ( )

{

int i, n = 1000;

double wtime, s = 1.23, x[1000], y[1000];

wtime = omp_get_wtime ( ); <-- Start the clock

# pragma omp parallel

{ <-- parallel region begins with this bracket...
# pragma omp for

for ( i = 0; i < n; i++ )

{

x[i] = ( double ) ( ( i + 1 ) % 17 );

y[i] = ( double ) ( ( i + 1 ) % 31 );

}

# pragma omp for

for ( i = 0; i < n; i++ )

{

x[i] = x[i] + s * y[i];

}

} <-- and parallel region ends with this bracket.
wtime = omp_get_wtime ( ) - wtime; <-- Stop the clock

printf ( "%g seconds.\n", wtime );

return 0;

}
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TIME: the SAXPY Example!

program main

use omp_lib

integer, parameter :: n = 1000

integer i

double precision :: s = 1.23

double precision wtime, x(n), y(n)

wtime = omp_get_wtime ( ); <-- Start the clock.

!$omp parallel

!$omp do

do i = 1, n

x(i) = mod ( i, 17 )

y(i) = mod ( i, 31 )

end do

!$omp end do

!$omp do

do i = 1, n

x(i) = x(i) + s * y(i)

end do

!$omp end do

!$omp end parallel

wtime = omp_get_wtime ( ) - wtime <-- Stop the clock.

write ( *, * ) wtime, ’ seconds.’

stop

end
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TIME: Run SAXPY with Timings

Now our example program is tiny (as far as the number of instructions)
and also as far as the amount of work.

So to start with, let’s increase the value of n to 100,000.

Secondly, we are going to insert the timing calls (this should involve four
new lines of code.)

I will recompile the program with OpenMP enabled, and run with 1, 2, 4,
8 and 16 threads.

If I plot the time, I am likely to get a hyperbola. If I plot the speedup,
that is, p-processor time divided by the 1-processor time, I should get a
diagonal line (if things are going well.). Lines that are diagonal (or not)
are much easier to understand and judge than hyperbolas!
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TIME: GNUPLOT Commands for Time Plot

gnuplot

set term png

set output ’timing1.png’

set style data linespoints

set title "Timing for 1-8 OpenMP Threads"

set grid

plot ’speedup.txt’ using 1:2 lw 3

set output ’timing2.png’

set style data linespoints

set title "Timing for 1-8 OpenMP Threads"

set grid

set yrange [0:*] <-- Important!

plot ’speedup.txt’ using 1:2 lw 3

quit
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TIME: Time Plot (Deceptive)
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TIME: Time Plot (Correctly Plotted)
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TIME: GNUPLOT Commands for Speedup Plot

gnuplot

set term png

set output ’speedup.png’

set style data linespoints

set title "Speedup for 1-8 OpenMP Threads"

set grid

plot ’speedup.txt’ using 1:1 title ’ideal’ lw 3, \

’speedup.txt’ using 1:3 title ’actual’ lw 3

quit
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TIME: Speedup Plot
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PRIV: Lambert’s W Function

Lambert’s W function is the solution of the equation

w(x)ew(x) = x

It’s might not be obvious why this function needed to be invented, but
there was a reason. It’s really not obvious how to evaluate the function,
but there is an algorithm. As you might expect, w(x) is more difficult to
compute than a polynomial or the sine function, but these complications
are typical of what you will encounter in scientific computing. And they
point out some problems that OpenMP will have to work around!
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PRIV: Code to Compute W

for ( i = 0; i < 8; i++ )

{

x = x_vec[i]; <-- x_vec contains test values.

w = x + log ( x ); <-- Initial guess for w(x).

it = 0;

while ( 1 )

{

if ( 100 < it )

{

break;

}

if ( fabs ( ( x - w * exp ( w ) ) ) <

tol * fabs ( ( w + 1.0 ) * exp ( w ) ) )

{

break;

}

a = w * exp ( w ) - x;

b = ( w + 1.0 ) * exp ( w )

- ( w + 2.0 ) * ( w * exp ( w ) - x ) / ( 2.0 * w + 2.0 );

w = w - a / b;

it = it + 1;

}

printf ( " %8.4f %3d %14g %14g %8.2e\n",

x, it, w, w_vec[i], fabs ( w - w_vec[i] ) ); <-- Compare with exact.

}
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PRIV: Lambert’s W Function

We want to compute a table of 100,000 values for w(x) over the range
1 ≤ x ≤ 100. We’d like to use OpenMP to do so.

Do you see some real problems here? This computation is much messier
than the “saxpy” example. In that example, the only variables that
appeared on the left hand side were vector entries, indexed by the loop
index. So there was no possibility of a conflict. Each loop iteration was
working with completely distinct data.

Here, however, notice the variables x, w, it, a, b which all appear on the
left hand side of equations inside the loop. These are all potential
conflicts.

We presumably will fix the problem with x and w by storing them in
arrays for our table. But how do we deal with it, a, b? Remember, if
these variables each represent a single shared location in memory, then all
the processors can be putting and reading stuff from the same location,
which will cause total confusion!
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PRIV: Code to Compute W

We are used to the loop index i being “private”; each process has its
own copy. But now the variables a, b, it must also be stored this way.

# pragma omp parallel shared ( n, tol, w, x ) private ( a, b, i, it )

{

# pragma omp for

for ( i = 0; i < n; i++ )

{

x[i] = ( ( n - i ) * 1.0 + i * 100.0 ) / n;

w[i] = x[i] + log ( x[i] );

it = 0;

while ( 1 )

{

if ( 100 < it )

{

break;

}

if ( fabs ( ( x[i] - w[i] * exp ( w[i] ) ) ) <

tol * fabs ( ( w[i] + 1.0 ) * exp ( w[i] ) ) )

{

break;

}

a = w[i] * exp ( w[i] ) - x[i];

b = ( w[i] + 1.0 ) * exp ( w[i] )

- ( w[i] + 2.0 ) * ( w[i] * exp ( w[i] ) - x[i] ) / ( 2.0 * w[i] + 2.0 );

w[i] = w[i] - a / b;

it = it + 1;

}

}

}
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PRIV: Private/Shared

The very name “shared memory” suggests that the threads share one set
of data that they can all “touch”.

By default, OpenMP assumes that all variables are to be shared – with
the exception of the loop index in the do or for statement.

It’s obvious why each thread will need its own copy of the loop index.
Even a compiler can see that!

However, some other variables may need to be treated specially when
running in parallel. In that case, you must explicitly tell the compiler to
set these aside as private variables.

Usually, such variables are temporary or convenience variables, whose
values are not needed before or after the loop is executed.
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PRIV: Private/Shared

What variables here are private?

Note that pfun is the name of a user function.

do i = 1, n

do j = 1, n

d = 0.0

do k = 1, 3

dif(k) = coord(k,i) - coord(k,j)

d = d + dif(k) * dif(k)

end do

do k = 1, 3

f(k,i) = f(k,i) - dif(k) * pfun ( d ) / d

end do

end do

end do
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PRIV: Private/Shared

I’ve had to cut this example down a bit. So let me point out that coord
and f are big arrays of spatial coordinates and forces, and that f has been
initialized already.

The variable n is counting particles, and where you see a 3, that’s
because we’re in 3-dimensional space.

The mysterious pfun is a function that evaluates a factor that will
modify the force.

List all the variables in this loop, and try to determine if they are shared
or private.

Which variables are already shared or private by default?
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PRIV: QUIZ

do i = 1, n <-- I? N?

do j = 1, n <-- J?

d = 0.0 <-- D?

do k = 1, 3 <-- K

dif(k) = coord(k,i) - coord(k,j) <-- DIF?

d = d + dif(k) * dif(k) -- COORD?

end do

do k = 1, 3

f(k,i) = f(k,i) - dif(k) * pfun ( d ) / d

end do <-- F?, PFUN?

end do

end do
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PRIV: Private/Shared

!$omp parallel private ( i, j, k, d, dif ) &

!$omp shared ( n, coord, f )

!$ omp do

do i = 1, n

do j = 1, n

d = 0.0

do k = 1, 3

dif(k) = coord(k,i) - coord(k,j)

d = d + dif(k) * dif(k)

end do

do k = 1, 3

f(k,i) = f(k,i) - dif(k) * pfun ( d ) / d

end do

end do

end do

!$ omp end do

!$omp end parallel
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PRIV: The SAXPY Example

Remember the SAXPY example?

We didn’t specify any shared() or private() information there, but the
programs compiled, ran correctly, and ran faster, under OpenMP. Are
there rules for when we have to specify this information?

Indeed. By default, OpenMP will assume that the index of any loop
marked with a for or do directive is private (which it must be). In
FORTRAN, it will also assume that the indices of any loops nested inside
such a loop are also private - but in C/C++, it does not make this
assumption.

By default, all other variables are assume to be shared. Therefore,
although it can be useful to indicate the status of all variables, you really
only have to indicate any non-loop index variables that are private, and
any reduction variables.

Just for review, here is the SAXPY example, with the extra clauses that
it turned out we didn’t actually need.
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PRIV: The SAXPY Example

# include <omp.h>

int main ( )

{

int i, n = 1000;

double s = 1.23, x[1000], y[1000];

for ( i = 0; i < n; i++ )

{

x[i] = ( double ) ( ( i + 1 ) % 17 );

y[i] = ( double ) ( ( i + 1 ) % 31 );

}

# pragma omp parallel \

private ( i ) \

shared ( n, s, x, y )

# pragma omp for

for ( i = 0; i < n; i++ )

{

x[i] = x[i] + s * y[i];

}

return 0;

}
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PRIV: The SAXPY Example

program main

use omp_lib

integer, parameter :: n = 1000

integer i

double precision :: s = 1.23

double precision x(n), y(n)

do i = 1, n

x(i) = mod ( i, 17 )

y(i) = mod ( i, 31 )

end do

!$omp parallel &

!$omp private ( i ) &

!$omp shared ( n, s, x, y )

!$omp do

do i = 1, n

x(i) = x(i) + s * y(i)

end do

!$omp end do

!$omp end parallel

stop

end
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REDUCTION: Integral of Lambert Function

Recall the Lambert function w(x) and suppose that we wish to
estimate the integral of this function over the range 1 ≤ x ≤ 100.

For simplicity, let’s also assume that we have rewritten the computation
so that there is now a C or FORTRAN function called w(x) which carries
out the evaluation of the Lambert function for any value of x .

We’ll use a simple approximation that divides [1, 100] into n subintervals
[a, b], and sums the products of w(x) at the midpoints multiplied by the
length of the subintervals.∫ 100

1

w(x)dx ≈
n∑

i=1

w(
ai + bi

2
) (bi − ai )
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REDUCTION: Is Q Private? Shared?

What kind of variable is Q? It can’t be shared, because every process is
trying to update it. It can’t be private, because it has a value before the
loop, and after the loop.

# include <stdlib.h>

# include <stdio.h>

# include <math.h>

int main ( );

double w ( double x );

int main ( )

{

double a;

double b;

int i;

int n = 1000;

double q;

double x;

q = 0.0;

for ( i = 0; i < n; i++ )

{

a = ( ( n - i ) * 1.0 + ( i ) * 100.0 ) / n;

b = ( ( n - i - 1 ) * 1.0 + ( i + 1 ) * 100.0 ) / n;

x = 0.5 * ( a + b );

q = q + ( b - a ) * w ( x );

}

printf ( "Q = %g\n", q );

return 0;

}
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REDUCTION: Q is a Reduction Variable
Q has an intermediate status between private and shared, called a

reduction variable, because a single result is formed from contributions
of all the processes. To indicate such a variable, a reduction clause must
be added to the for or do loop where the variable is computed.
# include <stdlib.h>

# include <stdio.h>

# include <math.h>

# include <omp.h>

int main ( );

double w ( double x );

int main ( )

{

double a;

double b;

int i;

int n = 1000;

double q;

double x;

q = 0.0;

# pragma omp parallel shared ( n ) private ( a, b, i, x )

# pragma for reduction ( + : q )

for ( i = 0; i < n; i++ )

{

a = 1.0 + ( 100.0 - 1.0 ) * ( double ) ( i ) / n;

b = 1.0 + ( 100.0 - 1.0 ) * ( double ) ( i + 1 ) / n;

x = 0.5 * ( a + b );

q = q + ( b - a ) * w ( x );

}

printf ( "Q = %g\n", q );

return 0;

}
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REDUCTION: The Reduction Clause

A reduction operation occurs when you

sum a set of numbers;

compute the dot product of two vectors;

compute the product of a set of numbers;

find the maximum of a set of numbers.

The OpenMP reduction clause is used to indicate variables that are used
to store such computations.

90 / 1



REDUCTION: The Reduction clause

The reduction clause modifies a for or do directive.

Reduction clause examples include:

# omp for reduction ( + : xdoty) ;

# omp for reduction ( + : sum1, sum2, sum3 ) :
several sums in one loop;

# omp for reduction ( * : factorial): a product;

!$omp do reduction ( max : pivot ) :
maximum or minimum value (Fortran only); )

If a variable occurs in a reduction clause, it cannot also occur in a private
or shared clause for that parallel region!

Within a parallel region, a variable is private, shared or reduction.
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REDUCTION: Norm Example

A dot product is another example of reduction:

# pragma omp parallel private ( i ) shared ( n, x, y )

dot = 0.0;

# pragma for reduction ( + : dot )

for ( i = 0; i < n; i++ )

{

dot = dot + x[i] * y[i];

}
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RANDOM: Lambert Integral by Monte Carlo

Now suppose that we wish to approximate the integral of the Lambert W
function from 1 to 100, but instead of using a quadrature rule, we want
to use a Monte Carlo approach.

For this simple problem, the advantages of a Monte Carlo approach
aren’t obvious, but for problems with complicated geometries, or
probabilistic components, or simulations, sometimes this is the only way
to do computations.

Our approximation selects n sample points xi from [1, 100] at random,
and computes the estimate as∫ 100

1

w(x)dx ≈ 100− 1

n

n∑
i=1

w(xi )
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REDUCTION: The Sequential Code

Each time we call drand(), we get a new sample point. We also get a
new value of seed, which is actually what controls the computation.

# include <stdlib.h>

# include <stdio.h>

# include <math.h>

int main ( );

double w ( double x );

double drand ( int *seed );

int main ( )

{

double a;

double b;

int i;

int n = 1000;

double q;

int seed = 123456789;

double u;

double x;

q = 0.0;

for ( i = 0; i < n; i++ )

{

u = drand ( seed ); <-- some random number generator.

x = 1.0 + ( 100.0 - 1.0 ) * u;

q = q + w ( x );

}

q = q * ( 100.0 - 1.0 ) / n;

printf ( "Q = %g\n", q );

return 0;

}
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RUN: Parallel Execution Needs Multiple Seeds

If we want this calculation to run in parallel, then we want each
process to be able to call drand() and get a distinct set of random
numbers. That means each process needs a separate, distinct, private
value of seed. Let’s call this quantity my seed.

A simple idea would be to set

my_seed = seed + id

where seed is our original seed value and id is the identifier or index of
the process. This will give us distinct seeds.

This idea will work, but look carefully at the details in the revised code:
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REDUCTION: Changes for Parallel Code

# include <stdlib.h>

# include <stdio.h>

# include <math.h>

# include <omp.h>

int main ( );

double w ( double x );

double drand ( int *seed );

int main ( )

{

double a;

double b;

int i;

int my_seed;

int n = 1000;

double q;

int seed = 123456789;

double u;

double x;

q = 0.0;

# pragma omp parallel shared ( n, seed ) private ( i, my_seed, u, x )

my_seed = seed + omp_thread_num ( ); <-- omp_thread_num() gets the id.

# pragma omp for reduction ( q : + )

for ( i = 0; i < n; i++ )

{

u = drand ( my_seed );

x = 1.0 + ( 100.0 - 1.0 ) * u;

q = q + w ( x );

}

q = q * ( 100.0 - 1.0 ) / n;

printf ( "Q = %g\n", q );

return 0;
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HPC: Running on a Cluster

If you have a really big job, or lots of them, or you need a lot of
parallel threads, you are not going to want to mess around on our lab
system. Instead, you want to try to run your program on a cluster, such
as the FSU HPC system.

The system we have access to for this class is a cluster, but since we are
using OpenMP, we will only be using one “node” of that cluster. Each
node has 32 cores, so that’s the most parallelism we can get.

This is one important difference between OpenMP and MPI. For
OpenMP to work, all the processors must share memory, which generally
means they are on the same physical processor or chip. That means we
are typically talking about cores on a multicore chip, and right now, 32,
48 and 64 core chips are available, but not much more. MPI, on the
other hand, can run hundreds or thousands of parallel processes.
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HPC: File Transfer with SFTP

If you plan to use the cluster, your program file, perhaps called md.c, is
probably sitting on the lab machine, or your laptop. A copy of this file
must be sent to the login node of the cluster. You do this using the sftp
program.

sftp sc.hpc.fsu.edu

put md.c

quit <-- (You can keep the connection and transfer other files.)

The command for bringing something from the HPC back to your local
system is get instead of put.

You may find other file transfer programs that you prefer.
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HPC: Logging in with SSH

You need to log into the HPC. The standard way to do this is with the
ssh command.

ssh sc.hpc.fsu.edu

Carry out your login session on the HPC
quit

One of the things you will definitely need to do is to recompile your
program on the cluster. You can use the same Gnu compilers that are
available on the lab machines:

gcc -fopenmp md.c

g++ -fopenmp md.cpp

gfortran -fopenmp md.f

gfortran -fopenmp md.f90
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HPC: Logging in with SSH

Now rename your executable program to something more memorable
than “a.out”.

mv a.out md

At this point, on the lab machines, we could run the program (and we
might want to set the number of threads as well).

On the HPC, we are not supposed to run interactively. Instead, we
prepare a script file for the run...which might be called md batch.sh.
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HPC: An HPC Batch Script

#!/bin/bash << Job uses BASH shell

#MOAB -N md << Job name is "MD"

#MOAB -q classroom << Run job in this queue

#MOAB -l nodes=1:ppn=8 << Want 1 node, 8 processors.

#MOAB -l walltime=00:02:00 << Request 2 minutes of time.

#MOAB -j oe << Join output and error files.

cd $PBS_O_WORKDIR << Move to directory

export OMP_NUM_THREADS=8 << Number of threads <= PPN

./md > output.txt << Finally!
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HPC: Running Your Job

Briefly, once you have a compiled version of md on the HPC, and your
batch script file md batch.sh, you “submit” the job with the command

msub md_batch.sh

and then you wait for the job to complete. You can check the job’s
program using the command

showq

and, the way this script was written, the interesting results will show up
in the file output.txt.

We will go over the details of HPC job execution during the lab.
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