
Shared Memory Programming With OpenMP

John Burkardt
Information Technology Department

Virginia Tech
..........

HPPC-2008
High Performance Parallel Computing Bootcamp

..........
https://people.sc.fsu.edu/∼jburkardt/presentations/...

openmp 2008 vt.pdf

28 July - 02 August
2008

1 / 1

Shared Memory Programming with OpenMP

1 INTRODUCTION

2 Sections

3 Loops

4 Critical Regions and Reductions

5 Data Conflicts and Data Dependence

6 Environment Variables and Functions

7 Parallel Control Structures

8 Data Classification

9 Examples

10 Conclusion

2 / 1

Introduction

OpenMP is a bridge between yesterday’s programming languages and
tomorrow’s multicore chips.

3 / 1

Introduction: Where OpenMP is Used

OpenMP runs a user program on any shared memory system.

A shared memory system might be:

a single core chip (older PC’s, sequential execution)

a multicore chip (such as your laptop?)

multiple single core chips in a NUMA system

multiple multicore chips in a NUMA system (VT SGI system)

OpenMP can be combined with MPI if a distributed system is made up
of multi-processor chips.

4 / 1

Introduction: How OpenMP is Used

The user inserts OpenMP “directives” in a program.

The user compiles the program with OpenMP directives enabled.

The number of “threads” is chosen by an environment variable or a
function call.

(Usually set the number of threads to the number of processors)

The user runs the program.

5 / 1

Introduction: Compiler Support

Compiler writers support OpenMP:

Gnu gcc/g++ 4.2, gfortran 2.0;

IBM xlc, xlf

Intel icc, icpc, ifort

Microsoft Visual C++ (2005 Professional edition)

Portland C/C++/Fortran, pgcc, pgf95

Sun Studio C/C++/Fortran

Mac users: Apple distributes old compilers. Get latest gcc from
http://hpc.sourceforge.net/
You also need Apple Developer Tools (CodeWarrior).

6 / 1

Introduction: Compilation with Gnu Compilers

You build a parallel version of your program by telling the compiler to
activate the OpenMP directives.

For the GNU compilers, include the fopenmp switch:

gcc -fopenmp myprog.c

g++ -fopenmp myprog.cpp

gfortran -fopenmp myprog.f

gfortran -fopenmp myprog.f90

7 / 1

Introduction: Compilation with Intel Compilers

For the Intel C compilers, include the openmp and parallel switches:

icc myprog.c -openmp -parallel

icpc myprog.cpp -openmp -parallel

Intel Fortran compilers also require the fpp switch:

ifort myprog.f -openmp -parallel -fpp

ifort myprog.f90 -openmp -parallel -fpp

8 / 1

Introduction: What Do Directives Look Like?

In C or C++, directives begin with the # preprocessor comment
character and the string pragma omp followed by the name of the
directive.

pragma omp parallel

pragma omp sections

pragma omp for

pragma omp critical

One or more directives may appear, just before a block of code, which is
typically delimited by { curly brackets } or the body of a for
statement.

9 / 1

Introduction: What Do Directives Look Like?

The parallel directive begins a parallel region.

pragma omp parallel

{

do things in parallel here

}

If the entire parallel region is a single for or do loop, or a single sections
directive, the directives can be combined:

pragma omp parallel for

for (i = 0; i < n; i++)

{

do things in parallel here

}

10 / 1

Introduction: What Do Directives Look Like?

There’s overhead in starting up a parallel region. If you have several
loops in a row, try to include them all in one parallel region:

!$omp parallel

!$omp do

do i = 1, nedge

parallel loop 1

end do

!$omp end do

!$omp do

do j = 1, nface

parallel loop 2

end do

!$omp end do

!$omp end parallel

11 / 1

Introduction: What Do Directives Look Like?

The end of each loop normally forces all threads to wait. If there are
several loops in one parallel region, you can use a nowait command to let
a fast thread move on to the next one.

!$omp parallel

!$omp do nowait

do i = 1, nedge

parallel loop 1

end do

!$omp end do

!$omp do

do j = 1, nface

parallel loop 2

end do

!$omp end do

!$omp end parallel

12 / 1

Introduction: What Do Directives Look Like?

CLAUSES are additional information included on a directive.

The most common clauses define a list of private or shared variables.

pragma omp parallel shared (n,s,x,y) private (i,t)

pragma omp for

for (i = 0; i < n; i++)

{

t = tan (y[i] / x[i]);

x[i] = s * x[i] + t * y[i];

}

13 / 1

Introduction: Long Directive Lines

You may often find that the text of a directive becomes rather long.

In C and C++, you can break the directive at a convenient point,
interrupting the text with a backslash character, \, and then continuing
the text on a new line.

pragma omp parallel for \

shared (n, s, x, y) \

private (i, t)

for (i = 0; i < n; i++)

{

t = tan (y[i] / x[i]);

x[i] = s * x[i] + t * y[i];

}

14 / 1

Introduction: What Do Directives Look Like?

FORTRAN77 directives begin with the string c$omp.

c$omp parallel do private (i, j)

Directives longer than 72 characters must continue on a new line.

The continuation line also begins with the c$omp marker AND a
continuation character in column 6, such as &.

c$omp parallel do

c$omp& shared (n, s, x, y)

c$omp& private (i, t)

do i = 1, n

t = tan (y(i) / x(i))

x(i) = s * x(i) + t * y(i)

end do

15 / 1

Introduction: What Do Directives Look Like?

FORTRAN90 directives begin with the string !$omp.

!$omp parallel do private (i, j)

Long lines may be continued using a terminal &.

The continued line must also be “commented out” with the !$omp
marker.

!$omp parallel do &

!$omp shared (n, s, x, y) &

!$omp private (i, t)

do i = 1, n

t = tan (y(i) / x(i))

x(i) = s * x(i) + t * y(i)

end do

16 / 1

Introduction: What Do Directives Do?

indicate parallel sections of the code:
pragma omp parallel

indicate code that only one thread can do at a time:
pragma omp critical

suggest how the work is to be divided:
pragma omp parallel for schedule (dynamic)

mark variables that must be kept private:
pragma omp parallel private (x, y, z)

suggest how some results are to be combined into one:
pragma omp parallel reduction (+ : sum)

force threads to wait til all are done:
pragma omp barrier

17 / 1

Introduction: Threads

OpenMP assigns pieces of a computation to threads.

Each thread is an independent but “obedient” entity. It has access to the
shared memory. It has “private” space for its own working data.

We usually ask for one thread per available core:
ask for fewer, some cores are idle;
ask for more, some cores will run several threads, (probably slower).

An OpenMP program begins with one master thread executing.

The other threads begin in idle mode, waiting for work.

18 / 1

Introduction: Fork and Join

The program proceeds in sequential execution until it encounters a region
that the user has marked as a parallel section

The master thread activates the idle threads. (Technically, the master
thread forks into multiple threads.)

The work is divided up into chunks (that’s really the term!); each chunk
is assigned to a thread until all the work is done.

The end of the parallel section is an implicit barrier. Program execution
will not proceed until all threads have exited the parallel section and
joined the master thread. (This is called “synchronization”.)

The helper threads go idle until the next parallel section.

19 / 1

Shared Memory Programming with OpenMP

1 Introduction

2 SECTIONS

3 Loops

4 Critical Regions and Reductions

5 Data Conflicts and Data Dependence

6 Environment Variables and Functions

7 Parallel Control Structures

8 Data Classification

9 Examples

10 Conclusion

20 / 1

Sections

The easiest kind of parallelism to understand involves a set of jobs which
can be done in any order.

Often, the number of tasks is small (2 to 5, say), and known in advance.
It’s possible that each task, by itself, is not suitable for processing by
multiple threads.

We may try to speed up the computation by working on all the tasks at
the same time, assigning one thread to each.

21 / 1

Sections: Syntax for C/C++

#pragma omp parallel <-- inside "parallel"

{

#pragma omp sections (nowait) <--optional nowait

{

#pragma omp section

{

code for section 1

}

#pragma omp section

{

code for section 2

} <-- more sections

} could follow

}

22 / 1

Sections: Syntax for FORTRAN90

!omp parallel <-- inside "parallel"

... <-- optional initial work

!omp sections (nowait) <-- optional nowait

!omp section

code for section 1

!omp section

code for section 2

<-- more sections

could follow

!omp end sections

... <-- optional later work

!omp end parallel

23 / 1

Sections

Each section will be executed by one thread.

If there are more sections than threads, some threads will do several
sections.

Any extra threads will be idle.

The end of the sections block is a barrier, or synchronization point. Idle
threads, and threads which have completed their sections, wait here for
the others.

If the nowait clause is added to the sections directive, then idle and
finished threads move on immediately.

24 / 1

Sections

Notice that, if the program is executed sequentially, (ignoring the
directives), then the sections will simply be computed one at a time, in
the given order.

A Fast Fourier Transform program needs to compute two tables,
containing the sines and cosines of angles. Sections could be used if two
threads are available:

!omp parallel sections nowait

!omp section

call sin_table (n, s)

!omp section

call cos_table (n, c)

!omp end parallel sections

25 / 1

Shared Memory Programming with OpenMP

1 Introduction

2 Sections

3 LOOPS

4 Critical Regions and Reductions

5 Data Conflicts and Data Dependence

6 Environment Variables and Functions

7 Parallel Control Structures

8 Data Classification

9 Examples

10 Conclusion

26 / 1

Loops

OpenMP is ideal for parallel execution of for or do loops.

It’s really as though we had a huge number of parallel sections, which are
all the same except for the iteration counter I.

To execute a loop in parallel requires a parallel directive, followed by a
for or do directive.

For convenience, there is a combined form, the parallel do or parallel
for directive.

We’ll look at a simple example of such a loop to get a feeling for how
OpenMP works.

27 / 1

Loops: Default Behavior

OpenMP assigns “chunks” of the index range to each thread.

It’s as though 20 programs (threads) are running at the same time.

In fact, that’s exactly what is happening!

If you have nested loops, the order is significant! OpenMP splits up the
outer loop, not the inner.

If you can write a pair of loops either way, you want to make sure the
outer loop has a sizable iteration count!

for (i = 0; i < 3; i++)

for (j = 0; j < 100000; j++)

28 / 1

Loops: Default Behavior

When OpenMP splits up the loop iterations, it has to decide what data is
shared (in common), and what is private (each thread gets a separate
variable of the same name).

Each thread automatically gets its own private copy of the loop index.

In FORTRAN only, each thread also gets a private copy of the loop index
for any loops nested inside the main loop. In C/C++, nested loop indices
are not automatically “privatized”.

By default, all other variables are shared, and open for “contention”.

A simple test: if your loop executes correctly even if the iterations are
done in reverse order, things are probably going to be OK!

29 / 1

Loops: Shared and Private Data

In the ideal case, each iteration of the loop uses data in a way that
doesn’t depend on other iterations. Loosely, this is the meaning of the
term shared data.

A SAXPY computation adds a multiple of one vector to another. Each
iteration is

y(i) = s * x(i) + y(i)

30 / 1

Loops: Sequential Version

i n c l u d e <s t d l i b . h>
i n c l u d e <s t d i o . h>

i n t main (i n t argc , char *a rgv [])
{

i n t i , n = 1000 ;
double x [1 0 0 0] , y [1 0 0 0] , s ;

s = 123 . 456 ;

f o r (i = 0 ; i < n ; i++)
{

x [i] = (double) rand () / (double) RAND MAX;
y [i] = (double) rand () / (double) RAND MAX;

}

f o r (i = 0 ; i < n ; i++)
{

y [i] = y [i] + s * x [i] ;
}
r e t u r n 0 ;

}

31 / 1

Loops: The SAXPY task

This is a “perfect” parallel application: no private data, no memory
contention.

The arrays X and Y can be shared, because only the thread associated
with loop index I needs to look at the I-th entries.

Each thread will need to know the value of S but they can all agree on
what that value is. (They “share” the same value).

32 / 1

Loops: SAXPY with OpenMP Directives

i n c l u d e <s t d l i b . h>
i n c l u d e <s t d i o . h>
i n c l u d e <omp . h>

i n t main (i n t argc , char *a rgv [])
{

i n t i , n = 1000 ;
double x [1 0 0 0] , y [1 0 0 0] , s ;

s = 123 . 456 ;

f o r (i = 0 ; i < n ; i++)
{

x [i] = (double) rand () / (double) RAND MAX;
y [i] = (double) rand () / (double) RAND MAX;

}

pragma omp p a r a l l e l
pragma omp f o r

f o r (i = 0 ; i < n ; i++)
{

y [i] = y [i] + s * x [i] ;
}
r e t u r n 0 ;

}

33 / 1

Loops: C Syntax

We’ve included the <omp.h> file, but this is only needed to refer to
predefined constants, or call OpenMP functions.

The #pragma omp string is a marker that indicates to the compiler
that this is an OpenMP directive.

The parallel for clause requests parallel execution of the following for
loop.

The parallel section terminates at the closing brace of the for loop block.

34 / 1

Loops: Fortran Syntax

The include ’omp lib.h’ command is only needed to refer to predefined
constants, or call OpenMP functions.

In FORTRAN90, try use omp lib instead.

The marker string is c$omp or !$omp.

The parallel do clause requests parallel execution of a do loop.

In Fortran, but not C, the end of the parallel loop must also be marked.
A c$omp end parallel directive is used for this.

35 / 1

Loops: SAXPY with OpenMP Directives

program main

i n c l u d e ’ omp l i b . h ’

i n t e g e r i , n
double p r e c i s i o n x (1000) , y (1000) , s

n = 1000
s = 123.456

do i = 1 , n
x (i) = rand ()
y (i) = rand ()

end do

c$omp p a r a l l e l do
do i = 1 , n

y (i) = y (i) + s * x (i)
end do

c$omp end p a r a l l e l do

stop
end

36 / 1

Loops: QUIZ: Which of these loops are “safe”?

do i = 2, n - 1

y(i) = (x(i) + x(i-1)) / 2 Loop #1

end do

do i = 2, n - 1

y(i) = (x(i) + x(i+1)) / 2 Loop #2

end do

do i = 2, n - 1

x(i) = (x(i) + x(i-1)) / 2 Loop #3

end do

do i = 2, n - 1

x(i) = (x(i) + x(i+1)) / 2 Loop #4

end do

37 / 1

Loops: How To Think About Threads

To visualize parallel execution, suppose 4 threads will execute the 1,000
iterations of the SAXPY loop.

OpenMP might assign the iterations in chunks of 50, so thread 1 will go
from 1 to 50, then 201 to 251, then 401 to 450, and so on.

Then you also have to imagine that the four threads each execute their
loops more or less simultaneously.

Even this simple model of what’s going on will suggest some of the
things that can go wrong in a parallel program!

38 / 1

Loops: The SAXPY loop, as OpenMP might think of it

i f (t h r e a d i d == 0) then
do i l o = 1 , 801 , 200

do i = i l o , i l o + 49
y (i) = y (i) + s * x (i)

end do
end do

e l s e i f (t h r e a d i d == 1) then
do i l o = 51 , 851 , 200

do i = i l o , i l o + 49
y (i) = y (i) + s * x (i)

end do
end do

e l s e i f (t h r e a d i d == 2) then
do i l o = 101 , 901 , 200

do i = i l o , i l o + 49
y (i) = y (i) + s * x (i)

end do
end do

e l s e i f (t h r e a d i d == 3) then
do i l o = 151 , 951 , 200

do i = i l o , i l o + 49
y (i) = y (i) + s * x (i)

end do
end do

end i f

39 / 1

Loops: Comments

What about the loop that initializes X and Y?

The problem here is that we’re calling the rand function.

Normally, inside a parallel loop, you can call a function and it will also
run in parallel. However, the function cannot have side effects.

The rand function is a special case; it has an internal “static” or “saved”
variable whose value is changed and remembered internally.

Getting random numbers in a parallel loop requires care. We will leave
this topic for later discussion.

40 / 1

Shared Memory Programming with OpenMP

1 Introduction

2 Sections

3 Loops

4 CRITICAL REGIONS AND REDUCTIONS

5 Data Conflicts and Data Dependence

6 Environment Variables and Functions

7 Parallel Control Structures

8 Data Classification

9 Examples

10 Conclusion

41 / 1

Critical Regions and Reductions

Critical regions of a code contain operations that should not be
performed by more than one thread at a time.

A common cause of critical regions occurs when several threads want to
modify the same variable, perhaps in a summation:

total = total + x[i]

To see what a critical region looks like, let’s consider the following
program, which computes the maximum entry of a vector.

42 / 1

VECTOR SUM: Sequential version

i n c l u d e <c s t d l i b>
i n c l u d e <i o s t r eam>
u s i n g namespace s td ;

i n t main (i n t argc , char *a rgv [])
{

i n t i , n = 1000 ;
double t o t a l , x [1 0 0 0] ;

f o r (i = 0 ; i < n ; i++)
{

x [i] = (double) rand () / (double) RAND MAX;
}

t o t a l = 0 . 0 ;
f o r (i = 0 ; i < n ; i++)
{

t o t a l = t o t a l + x [i] ;
}
cout << ”Sum = ” << t o t a l << ”\n” ;
r e t u r n 0 ;

}

43 / 1

Critical Regions and Reductions

To turn our program into an OpenMP program is easy:

add the statement # include <omp.h>

add the directive # pragma omp parallel for just before the for
loop

compile, say with g++ -fopenmp vector sum.cpp

But to turn our program into a CORRECT OpenMP program is not so
easy!

This code cannot be guaranteed to run correctly on more than 1
processor!

44 / 1

VECTOR SUM: First OpenMP version

i n c l u d e <c s t d l i b>
i n c l u d e <i o s t r eam>
i n c l u d e <omp . h>
u s i n g namespace s td ;

i n t main (i n t argc , char *a rgv [])
{

i n t i , n = 1000 ;
double t o t a l , x [1 0 0 0] ;

f o r (i = 0 ; i < n ; i++)
{

x [i] = (double) rand () / (double) RAND MAX;
}

t o t a l = 0 . 0 ;
pragma omp p a r a l l e l f o r

f o r (i = 0 ; i < n ; i++)
{

t o t a l = t o t a l + x [i] ;
}
cout << ”Sum = ” << t o t a l << ”\n” ;
r e t u r n 0 ;

}

45 / 1

Critical Regions and Reductions

The problem is one of synchronization. Because more than one thread
is reading and writing the same data, it is possible for information to be
mishandled.

When OpenMP uses threads to execute the iterations of a loop:

the statements in a particular iteration of the loop will be carried out
by one thread, in the given order

but the statements in different iterations, carried out by different
threads, may be “interleaved” arbitrarily.

46 / 1

Critical Regions and Reductions

The processors must work on local copies of data.

P0: read TOTAL, X1

P1: read TOTAL, X2

P0: local TOTAL = TOTAL + X1

P0: write TOTAL

P1: local TOTAL = TOTAL + X2

P1: write TOTAL

If X = [10,20], what is TOTAL at the end?

47 / 1

Critical Region and Reductions

As soon as processor 0 reads TOTAL into its local memory, no other
processor should try to read or write TOTAL until processor 0 is done.

The update of TOTAL is called a critical region.

The OpenMP critical clause allows us to indicate that even though we
are inside a parallel section, the critical code may only be performed by
one thread at a time.

Fortran codes also need to use an end critical directive. C/C++ codes
simply use curly braces to delimit the critical region.

48 / 1

VECTOR SUM: Second OpenMP version

i n c l u d e <c s t d l i b>
i n c l u d e <i o s t r eam>
i n c l u d e <omp . h>
u s i n g namespace s td ;

i n t main (i n t argc , char *a rgv [])
{

i n t i , n = 1000 ;
double t o t a l , x [1 0 0 0] ;

f o r (i = 0 ; i < n ; i++)
{

x [i] = (double) rand () / (double) RAND MAX;
}

t o t a l = 0 . 0 ;
pragma omp p a r a l l e l f o r

f o r (i = 0 ; i < n ; i++)
{

pragma omp c r i t i c a l
{

t o t a l = t o t a l + x [i] ;
}
}
cout << ”Sum = ” << t o t a l << ”\n” ;
r e t u r n 0 ;

}

49 / 1

Critical Regions and Reductions

This is code is correct, and it uses OpenMP.

However, it runs no faster than sequential code! That’s because our
critical region is the entire loop. So one processor adds a value, than
waits. The other processor adds a value and waits. Nothing really
happens in parallel!

Here’s a better solution. Each processor keeps its own local total, and we
only have to combine these at the end.

50 / 1

VECTOR SUM: Third OpenMP version

i n c l u d e <c s t d l i b>
i n c l u d e <i o s t r eam>
i n c l u d e <omp . h>
u s i n g namespace s td ;
i n t main (i n t argc , char *a rgv [])
{

i n t i , id , n = 1000 ;
double t o t a l , t o t a l l o c a l , x [1 0 0 0] ;

f o r (i = 0 ; i < n ; i++)
{

x [i] = (double) rand () / (double) RAND MAX;
}
t o t a l = 0 . 0 ;

pragma omp p a r a l l e l p r i v a t e (id , t o t a l l o c a l)
{

i d = omp get thread num () ;
t o t a l l o c a l = 0 . 0 ;

pragma omp f o r
f o r (i = 0 ; i < n ; i++)
{

t o t a l l o c a l = t o t a l l o c a l + x [i] ;
}

pragma omp c r i t i c a l
{

t o t a l = t o t a l + t o t a l l o c a l ;
}
}
cout << ”Sum = ” << t o t a l << ”\n” ;
r e t u r n 0 ;

}

51 / 1

Critical Regions and Reductions

This code is correct, and efficient.

I’ve had to jump ahead and include some OpenMP clause and function
calls you won’t recognize yet.

Can you see where and why the nowait clause might be useful?

However, without understanding the details, it is not hard to see that the
critical clause allows us to control the modification of the TOTAL
variable, and that the private clause allows each thread to work on its
own partial sum until needed.

52 / 1

Critical Regions and Reductions

Simple operations like summations and maximums, which require a
critical section, come up so often that OpenMP offers a way to hide the
details of handling the critical section.

OpenMP offers the reduction clause for handling these special examples
of critical section programming.

Computing a dot product is an example where help is needed.

The variable summing the individual products is going to cause conflicts -
delays when several threads try to read its current value, or errors, if
several threads try to write updated versions of the value.

53 / 1

DOT PRODUCT: Sequential version

i n c l u d e <s t d l i b . h>
i n c l u d e <s t d i o . h>

i n t main (i n t argc , char *a rgv [])
{

i n t i , n = 1000 ;
double x [1 0 0 0] , y [1 0 0 0] , xdoty ;

f o r (i = 0 ; i < n ; i++)
{

x [i] = (double) rand () / (double) RAND MAX;
y [i] = (double) rand () / (double) RAND MAX;

}

xdoty = 0 . 0 ;
f o r (i = 0 ; i < n ; i++)
{

xdoty = xdoty + x [i] * y [i] ;
}
p r i n t f (”XDOTY = %e\n” , xdoty) ;
r e t u r n 0 ;

}

54 / 1

Critical Regions and Reductions: Examples

The vector dot product is one example of a reduction operation.

Other examples;

the sum of the entries of a vector,

the product of the entries of a vector,

the maximum or minimum of a vector,

the Euclidean norm of a vector,

Reduction operations, if recognized, can be carried out in parallel.

The OpenMP reduction clause allows the compiler to set up the
reduction correctly and efficiently.

55 / 1

DOT PRODUCT: OpenMP version

i n c l u d e <s t d l i b . h>
i n c l u d e <s t d i o . h>
i n c l u d e <omp . h>

i n t main (i n t argc , char *a rgv [])
{

i n t i , n = 1000 ;
double x [1 0 0 0] , y [1 0 0 0] , xdoty ;

f o r (i = 0 ; i < n ; i++)
{

x [i] = (double) rand () / (double) RAND MAX;
y [i] = (double) rand () / (double) RAND MAX;

}

xdoty = 0 . 0 ;
#pragma omp p a r a l l e l f o r r e d u c t i o n (+ : xdoty)

f o r (i = 0 ; i < n ; i++)
{

xdoty = xdoty + x [i] * y [i] ;
}
p r i n t f (”XDOTY = %e\n” , xdoty) ;
r e t u r n 0 ;

}

56 / 1

Critical Regions and Reductions: The reduction clause

Any variable which contains the result of a reduction operator must be
identified in a reduction clause of the OpenMP directive.

Reduction clause examples include:

reduction (+ : xdoty) (we just saw this)

reduction (+ : sum1, sum2, sum3) , (several sums)

reduction (* : factorial), a product

reduction (max : pivot) , maximum value (Fortran only))

57 / 1

Shared Memory Programming with OpenMP

1 Introduction

2 Sections

3 Loops

4 Critical Regions and Reductions

5 DATA CONFLICTS AND DATA DEPENDENCE

6 Environment Variables and Functions

7 Parallel Control Structures

8 Data Classification

9 Examples

10 Conclusion

58 / 1

Data Conflicts and Data Dependence

Shared data is data that can be safely shared by threads during a
particular parallel operation, without leading to conflicts or errors.

By default, OpenMP will assume all data is shared.

A variable that is only “read” can obviously be shared. (Although in
some cases, delays might occur if several threads want to read it at the
same time).

Some variables may be shared even though they seem to be written by
multiple threads;

An example is an array A. If entry A[I] is only written during loop
iteration I, then the array A can probably be shared.

59 / 1

Data Conflicts and Data Dependence

Private data is information each thread keeps separately.

A single variable name now refers to multiple copies for each thread.

Simple examples:

the iteration index of the loop, i

temporary variables

For instance, it’s common to create variables called im1 and ip1 equal to
the loop index decremented and incremented by 1.

A temporary variable x inv defined by x inv = 1.0 / x[i] would also
have to be private, even though x would not be.

60 / 1

Data Conflicts and Data Dependence: PRIME SUM

The PRIME SUM program illustrates private and shared variables.

Our task is to compute the sum of the prime numbers from 1 to N.

A natural formulation stores the result in TOTAL, then checks each
number I from 2 to N.

To check if the number I is prime, we ask whether it can be evenly
divided by any of the numbers J from 2 to I − 1.

We can use a temporary variable PRIME to help us.

61 / 1

PRIME SUM: Sequential Version

i n c l u d e <c s t d l i b>
i n c l u d e <i o s t r eam>
u s i n g namespace s t d ;

i n t main (i n t argc , char *a rgv [])
{

i n t i , j , t o t a l ;
i n t n = 1000 ;
boo l pr ime ;

t o t a l = 0 ;
f o r (i = 2 ; i <= n ; i++)
{

pr ime = t r u e ;

f o r (j = 2 ; j < i ; j++)
{

i f (i % j == 0)
{

pr ime = f a l s e ;
break ;

}
}
i f (pr ime)
{

t o t a l = t o t a l + i ;
}
}
cout << ”PRIME SUM(2 : ” << n << ”) = ” << t o t a l << ”\n” ;
r e t u r n 0 ;

}

62 / 1

Data Conflicts and Data Dependence: Handling Conflicts!

Data conflicts will occur in PRIME SUM if all the data is shared
during a parallel execution. We can’t share a variable if two threads want
to put different numbers into it.

A given thread, carrying out iteration I:

works on an integer I

initializes PRIME to be TRUE

checks if any J divides I and resets PRIME if necessary;

adds I to TOTAL if PRIME is TRUE.

The variables J, PRIME and TOTAL represent possible data conflicts
that we must resolve.

63 / 1

PRIME SUM: With OpenMP Directives

i n c l u d e <c s t d l i b>
i n c l u d e <i o s t r eam>
i n c l u d e <omp . h>
u s i n g namespace s t d ;

i n t main (i n t argc , char *a rgv [])
{

i n t i , j , t o t a l , n = 1000 , t o t a l = 0 ;
boo l pr ime ;

pragma omp p a r a l l e l f o r p r i v a t e (i , pr ime , j) sha r ed (n)
pragma omp r e d u c t i o n (+ : t o t a l)

f o r (i = 2 ; i <= n ; i++)
{

pr ime = t r u e ;

f o r (j = 2 ; j < i ; j++)
{

i f (i % j == 0)
{

pr ime = f a l s e ;
break ;

}
}
i f (pr ime)
{

t o t a l = t o t a l + i ;
}
}
cout << ”PRIME SUM(2 : ” << n << ”) = ” << t o t a l << ”\n” ;
r e t u r n 0 ;

}

64 / 1

Data Conflicts and Data Dependence

The shared, private and reduction clauses allow us to specify how every
variable is to be treated in the following loop.

We didn’t have to declare that i was private...but we did have to declare
that j was private!

The default treatment of private variables is that they have no value
before or after the loop - they are purely temporary quantities.

If you find that you need to initialize your private variables, or if you need
to save the value stored by the very last iteration of the loop, OpenMP
offers the firstprivate and lastprivate clauses.

65 / 1

Data Conflicts and Data Dependence

Data Dependence is an obstacle to parallel execution. Sometimes it can
be repaired, and sometimes it is unavoidable.

In a loop, the problem arises when the value of a variable depends on
results from a previous iteration of the loop.

Examples where this problem occurs include the solution of a differential
equation or the application of Newton’s method to a nonlinear equation.

In both examples, each step of the approximation requires the result of
the previous approximation to proceed.

66 / 1

Data Conflicts and Data Dependence

Suppose, for instance, we computed a table of factorials this way:

fact[0] = 1;

for (i = 1; i < n; i++)

{

fact[i] = fact[i-1] * i;

}

We can’t let OpenMP handle this calculation. The way we’ve written it,
the iterations must be computed sequentially.

The variable on the right hand side, fact[i-1], is not guaranteed to be
ready, unless the previous iteration has completed.

67 / 1

Data Conflicts and Data Dependence

The STEPS program illustrates an example of data dependence. Here,
we evaluate a function at equally spaced points in the unit square.

Start (X,Y) at (0,0), increment X by DX. If X exceeds 1, reset to zero,
and increment Y by DY.

This is a natural way to “visit” every point.

This simple idea won’t work in parallel without some changes.

Each thread will need a private copy of (X,Y).

...but, much worse, the value (X,Y) is data dependent.

68 / 1

The STEPS program: Sequential Version

program main

i n t e g e r i , j , m, n
r e a l dx , dy , f , t o t a l , x , y

t o t a l = 0 .0
y = 0 .0
do j = 1 , n

x = 0 .0
do i = 1 , m

t o t a l = t o t a l + f (x , y)
x = x + dx

end do
y = y + dy

end do

stop
end

69 / 1

Data Conflicts and Data Dependence

In this example, the data dependence is simply a consequence of a
common programming pattern. It’s not hard to avoid the dependence
once we recognize it.

Our options include:

precompute X(1:M) and Y(1:N) in arrays.

or notice X = I/M and Y = J/N

The first solution, converting some temporary scalar variables to vectors
and precomputing them, may be able to help you parallelize a stubborn
loop.

The second solution is simple and saves us a separate preparation loop
and extra storage.

70 / 1

The STEPS program: With OpenMP directives

program main

use omp l i b

i n t e g e r i , j , m, n
r e a l f , t o t a l , x , y

t o t a l = 0 .0
!$omp p a r a l l e l do p r i v a t e (i , j , x , y) sha r ed (m, n) r e d u c t i o n (+ : t o t a l)

do j = 1 , n
y = j / r e a l (n)
do i = 1 , m

x = i / r e a l (m)
t o t a l = t o t a l + f (x , y)

end do
end do

!$omp end p a r a l l e l do

stop
end

71 / 1

Data Conflicts and Data Dependence

Another issue pops up in the STEPS program. What happens when you
call the function f(x,y) inside the loop?

Notice that f is not a variable, it’s a function, so it is not declared private
or shared.

The function might have internal variables, loops, might call other
functions, and so on.

OpenMP works in such a way that a function called within a parallel
loop will also participate in the parallel execution. We don’t have to
make any declarations about the function or its internal variables at all.

Each thread runs a separate copy of f.

(But if f includes static or saved variables, trouble!)

72 / 1

Shared Memory Programming with OpenMP

1 Introduction

2 Sections

3 Loops

4 Critical Regions and Reductions

5 Data Conflicts and Data Dependence

6 ENVIRONMENT VARIABLES AND FUNCTIONS

7 Parallel Control Structures

8 Data Classification

9 Examples

10 Conclusion

73 / 1

OpenMP Environment

OpenMP uses internal data which can be of use or interest.

In a few cases, the user can set some of these values by means of a Unix
environmental variable.

There are also functions the user may call to get or set this information.

74 / 1

OpenMP Environment

You can set:

maximum number of threads - most useful!

details of how to handle loops, nesting, and so on

You can get:

number of “processors” (=cores) are available

individual thread id’s

maximum number of threads

wall clock time

75 / 1

OpenMP Environment: Variables

If you are working on a UNIX system, you can “talk” to OpenMP by
setting certain environment variables.

The syntax for setting such variables varies slightly, depending on the
shell you are using.

Many people use this method in order to specify the number of threads to
be used. If you don’t set this variable, your program runs on one thread.

76 / 1

OpenMP Environment: Variables

There are just 4 OpenMP environment variables:

OMP NUM THREADS, maximum number of threads

OMP DYNAMIC, allows dynamic thread adjustment

OMP NESTED, allows nested parallelism, default 0/FALSE

OMP SCHEDULE, determines how loop work is divided up

77 / 1

OpenMP Environment: Variables

Determine your shell by:

echo $SHELL

Set the number of threads in the Bourne, Korn and Bash shells:

export OMP NUM THREADS=4

In the C or T shells, use a command like

setenv OMP NUM THREADS 4

To verify:

echo $OMP NUM THREADS

78 / 1

OpenMP Environment: Functions

OpenMP environment functions include:

omp set num threads (t num)

t num = omp get num threads ()

p num = omp get num procs ()

t id = omp get thread num ()

wtime = omp get wtime()

79 / 1

OpenMP Environment: How Many Threads May I Use?

A thread is one of the “workers” that OpenMP assigns to help do your
work.

There is a limit of

1 thread in the sequential sections.

T NUM threads in the parallel sections.

80 / 1

OpenMP Environment: How Many Threads May I Use?

T NUM

has a default for your computer.

can be initialized by setting OMP NUM THREADS before
execution

can be reset by calling omp set num threads(t num)

can be checked by calling t num=omp get num threads()

81 / 1

OpenMP Environment: How Many Threads Should I Use?

If T NUM is 1, then you get no parallel speed up at all, and probably
actually slow down.

You can set T NUM much higher than the number of processors; some
threads will then “share” a processor.

Reasonable: one thread per processor.

p_num = omp_get_num_procs ();

t_num = p_num;

omp_set_num_threads (t_num);

These three commands can be compressed into one.

82 / 1

OpenMP Environment: Which Thread Am I Using?

In any parallel section, you can ask each thread to identify itself, and
assign it tasks based on its index.

!$omp parallel

t_id = omp_get_thread_num ()

write (*, *) ’Thread ’, t_id, ’ is running.’

!$omp end parallel

83 / 1

OpenMP Environment: How Much Time Has Passed?

You can take “readings” of the wall clock time before and after a parallel
computation.

wtime = omp_get_wtime ();

#pragma omp parallel for

for (i = 0; i < n; i++)

{

Do a lot of work in parallel;

}

wtime = omp_get_wtime () - wtime;

cout << "Work took " << wtime << " seconds.\n";

84 / 1

OpenMP Environment: ”Hiding” Parallel Code

OpenMP tries to make it possible for you to have your sequential code
and parallelize it too. In other words, a single program file should be able
to be run sequentially or in parallel, simply by turning on the directives.

This isn’t going to work so well if we have these calls to omp get wtime
or omp get proc num running around. They will cause an error when
the program is compiled and loaded sequentially, because the OpenMP
library will not be available.

Fortunately, you can “comment out” all such calls, just as you do the
directives, or, in C and C++, check whether the symbol OPENMP is
defined.

85 / 1

OpenMP Environment: Hiding Parallel Code in C++

ifdef _OPENMP

include <omp.h>

endif

ifdef _OPENMP

wtime = omp_get_wtime ();

endif

#pragma omp parallel for

for (i = 0; i < n; i++){

Do a lot of work in parallel; }

ifdef _OPENMP

wtime = omp_get_wtime () - wtime;

cout << "Work took " << wtime << " seconds.\n";

else

cout << "Elapsed time not measured.\n";

endif

86 / 1

OpenMP Environment: Hiding Parallel Code in
FORTRAN90

!$omp use omp_lib

!$omp wtime = omp_get_wtime ()

!$omp parallel do

do i = 1, n

Do a lot of work in parallel;

end do

!$omp end parallel do

!$omp wtime = omp_get_wtime () - wtime

!$omp write (*, *) ’Work took’, wtime, ’ seconds.’

87 / 1

Shared Memory Programming with OpenMP

1 Introduction

2 Sections

3 Loops

4 Critical Regions and Reductions

5 Data Conflicts and Data Dependence

6 Environment Variables and Functions

7 PARALLEL CONTROL STRUCTURES

8 Data Classification

9 Examples

10 Conclusion

88 / 1

Parallel Control Structures, Loops

#pragma omp parallel for

for (i = ilo; i <= ihi; i++)

{

C/C++ code to be performed in parallel

}

!$omp parallel do

do i = ilo, ihi

FORTRAN code to be performed in parallel

end do

!$omp end parallel do

89 / 1

Parallel Control Structure, Loops

FORTRAN Loop Restrictions:

The loop must be a do loop of the form;

do i = low, high (, increment)

The limits low, high (and increment if used), cannot change during the
iteration.

The program cannot jump out of the loop, using an exit or goto.

The loop cannot be a do while, and it cannot be a do with no iteration
limits.

90 / 1

Parallel Control Structure, Loops

C Loop Restrictions:

The loop must be a for loop of the form:

for (i = low; i < high; increment)

The limits low and high cannot change during the iteration;

The increment (or decrement) must be by a fixed amount.

The program cannot break from the loop.

91 / 1

Parallel Control Structures, No Loop

It is possible to set up parallel work without a loop.

In this case, the user can assign work based on the ID of each thread.

For instance, if the computation models a crystallization process over
time, then at each time step, half the threads might work on updating
the solid part, half the liquid.

If the size of the solid region increases greatly, the proportion of threads
assigned to it could be increased.

92 / 1

Parallel Control Stuctures, No Loop, C/C++

#pragma omp parallel

{

t_id = omp_get_thread_num ();

if (t_id % 2 == 0)

{

solid_update ();

}

else

{

liquid_update ();

}

}

93 / 1

Parallel Control Stuctures, No Loop, FORTRAN

!$omp parallel

t_id = omp_get_thread_num ()

if (mod (t_id, 2) == 0) then

call solid_update ()

else if (mod (t_id, 4) == 1) then

call liquid_update ()

else if (mod (t_id, 4) == 3) then

call gas_update ()

end if

!$omp end parallel

(Now we’ve added a gas update task as well.)

94 / 1

Parallel Control Structures, WORKSHARE

FORTRAN90 expresses implicit vector operations using colon notation.

OpenMP includes the WORKSHARE directive, which says that the
marked code is to be performed in parallel.

The directive can also be used to parallelize the FORTRAN90 WHERE
and the FORTRAN95 FORALL statements.

95 / 1

Parallel Control Stuctures, FORTRAN90

!$omp parallel workshare

y(1:n) = a * x(1:n) + y(1:n)

!$omp end parallel workshare

!$omp parallel workshare

where (x(1:n) /= 0.0)

y(1:n) = log (x(1:n))

elsewhere

y(1:n) = 0.0

end where

!$omp end parallel workshare

96 / 1

Parallel Control Stuctures, FORTRAN95

!$omp parallel workshare

forall (i = k+1:n,j = k+1:n)

a(i,j) = a(i,j) - a(i,k) * a(k,j)

end forall

!$omp end parallel workshare

(This calculation corresponds to one of the steps of Gauss elimination or
LU factorization)

97 / 1

SATISFY: Parallel Computing Without Loops

OpenMP is easiest to use with loops.

Here is an example where we get parallel execution without using loops.

Doing the problem this way will make OpenMP seem like a small scale
version of MPI.

98 / 1

SATISFY: Problem specification

What sets of 16 logical input values X will cause the following function
to have the value TRUE?

f(x) = (x(1) || x(2)) && (!x(2) || !x(4)) &&

(x(3) || x(4)) && (!x(4) || !x(5)) &&

(x(5) || !x(6)) && (x(6) || !x(7)) &&

(x(6) || x(7)) && (x(7) || !x(16)) &&

(x(8) || !x(9)) && (!x(8) || !x(14)) &&

(x(9) || x(10)) && (x(9) || !x(10)) &&

(!x(10) || !x(11)) && (x(10) || x(12)) &&

(x(11) || x(12)) && (x(13) || x(14)) &&

(x(14) || !x(15)) && (x(15) || x(16))

99 / 1

SATISFY: Problem specification

Sadly, there is no clever way to solve a problem like this in general. You
simply try every possible input.

How do we generate all the inputs?

Can we divide the work among multiple processors?

100 / 1

SATISFY: Algorithm Design

There are 216 = 65, 536 distinct input vectors.

There is a natural correspondence between the input vectors and the
integers from 0 to 65535.

We can divide the range [0,65536] into T NUM distinct (probably
unequal) subranges.

Each thread can generate its input vectors one at a time, evaluate the
function, and print any successes.

101 / 1

SATISFY: Program Design

#pragma omp parallel

{

T_NUM = omp_get_num_threads ();

T_ID = omp_get_thread_num ();

ILO = (T_ID) * 65535 / T_NUM;

IHI = (T_ID + 1) * 65535 / T_NUM;

for (I = ILO; I < IHI; I++)

{

X[0:15] <= I (set binary input)

VALUE = F (X) (evaluate function)

if (VALUE) print X

end

}

102 / 1

SATISFY: FORTRAN90 Implementation

thread num = omp get num threads ()
s o l u t i on num = 0

!$omp p a r a l l e l p r i v a t e (i , i l o , i h i , j , va lue , x) &
!$omp sha r ed (n , thread num) &
!$omp r e d u c t i o n (+ : so l u t i on num)

i d = omp get thread num ()
i l o = i d * 65536 / thread num
i h i = (i d + 1) * 65536 / thread num

j = i l o
do i = n , 1 , −1

x (i) = mod (j , 2)
j = j / 2

end do

do i = i l o , i h i − 1
va l u e = c i r c u i t v a l u e (n , x)
i f (v a l u e == 1) then

s o l u t i on num = so l u t i on num + 1
w r i t e (* , ’ (2 x , i2 , 2 x , i10 , 3 x , 16 i 2) ’) so lu t i on num , i − 1 , x (1 : n)

end i f
c a l l bve c ne x t (n , x)

end do
!$omp end p a r a l l e l

103 / 1

SATISFY: Observations

I wanted an example where parallelism didn’t require a for or do loop.
The loop you see is carried out entirely by one (each) thread.

The “implicit loop” occurs when when we begin the parallel section and
we generate all the threads.

The idea to take from this example is that the environment functions
allow you to set up your own parallel structures in cases where loops
aren’t appropriate.

104 / 1

Shared Memory Programming with OpenMP

1 Introduction

2 Sections

3 Loops

4 Critical Regions and Reductions

5 Data Conflicts and Data Dependence

6 Environment Variables and Functions

7 Parallel Control Structures

8 DATA CLASSIFICATION

9 Examples

10 Conclusion

105 / 1

Data Classification (Private/Shared)

The very name “shared memory” suggests that the threads share one set
of data that they can all “touch”.

By default, OpenMP assumes that all variables are to be shared – with
the exception of the loop index in the do or for statement.

It’s obvious why each thread will need its own copy of the loop index.
Even a compiler can see that!

However, some other variables may need to be treated specially when
running in parallel. In that case, you must explicitly tell the compiler to
set these aside as private variables.

It’s a good practice to explicitly declare all variables in a loop.

106 / 1

Data Classification (Private/Shared)

do i = 1, n

do j = 1, n

d = 0.0

do k = 1, 3

dif(k) = coord(k,i) - coord(k,j)

d = d + dif(k) * dif(k)

end do

do k = 1, 3

f(k,i) = f(k,i) - dif(k) * pfun (d) / d

end do

end do

end do

107 / 1

Data Classification (Private/Shared)

I’ve had to cut this example down a bit. So let me point out that coord
and f are big arrays of spatial coordinates and forces, and that f has been
initialized already.

The variable n is counting particles, and where you see a 3, that’s
because we’re in 3-dimensional space.

The mysterious pfun is a function that evaluates a factor that will
modify the force.

You should list all the variables that show up in this loop, and try to
determine if they are shared or private or perhaps a reduction variable.

Also point out which variables are shared or private by default.

108 / 1

Data Classification (QUIZ)

do i = 1, n <-- I? N?

do j = 1, n <-- J?

d = 0.0 <-- D?

do k = 1, 3 <-- K

dif(k) = coord(k,i) - coord(k,j) <-- DIF?

d = d + dif(k) * dif(k) -- COORD?

end do

do k = 1, 3

f(k,i) = f(k,i) - dif(k) * pfun (d) / d

end do <-- F?, PFUN?

end do

end do

109 / 1

Data Classification (Private/Shared)

!$omp parallel do private (i, j, k, d, dif) &

!$omp shared (n, coord, f)

do i = 1, n

do j = 1, n

d = 0.0

do k = 1, 3

dif(k) = coord(k,i) - coord(k,j)

d = d + dif(k) * dif(k)

end do

do k = 1, 3

f(k,i) = f(k,i) - dif(k) * pfun (d) / d

end do

end do

end do

!$omp end parallel do

110 / 1

Data Classification (Private/Shared/Reduction)

In the previous example, the variable D looked like a reduction variable.

But that would only be the case if the loop index K was executed as a
parallel do.

We could work very hard to interchange the order of the I, J and K loops,
or even try to use nested parallelism on the K loop.

But these efforts would be pointless, since the loop runs from 1 to 3, a
range too small to get a parallel benefit.

111 / 1

Data Classification (Private/Shared/Reduction)

Suppose in FORTRAN90 we need the maximum of a vector.

x_max = - huge (x_max) ---+

do i = 1, n |

x_max = max (x_max, x(i)) | Loop #1

end do ---+

x_max = maxval (x(1:n)) ---> Loop #2

In loop #2, we give the compiler freedom to do the calculation the best
it can. Is this always the solution? In an actual computation, we might
only compute the vector X one element at a time, so we would never
have an actual array to process.

Please suggest how we would parallelize loop #1 or loop #2!

112 / 1

Data Classification (Private/Shared/Reduction)

In loop 1, the reduction variable x max will automatically be initialized
to the minimum real number.

!$omp parallel do private (i) shared (n, x) &

!$omp reduction (max : x_max)

do i = 1, n

x_max = max (x_max, x(i))

end do

!$omp end parallel do

!$omp parallel workshare

x_max = maxval (x(1:n))

!$omp end parallel workshare

113 / 1

Shared Memory Programming with OpenMP

1 Introduction

2 Sections

3 Loops

4 Critical Regions and Reductions

5 Data Conflicts and Data Dependence

6 Environment Variables and Functions

7 Parallel Control Structures

8 Data Classification

9 EXAMPLES

10 Conclusion

114 / 1

Examples: The Index of the Maximum Entry

In Gauss elimination, the K-th step involves finding the row index P of
the largest element on or below the diagonal in column K of the matrix.

What’s important isn’t the maximum value, but its index.

That means that we can’t simply use OpenMP’s reduction clause.

Let’s simplify the problem a little, and ask:

Can we determine the index of the largest element of a vector in parallel?

115 / 1

Examples: The Index of the Maximum Entry

The reduction clause can be thought of as carrying out a critical section
for us. Since there’s no OpenMP reduction clause for index of maximum
value, we’ll have to do it ourselves.

We want to do this in such a way that, as much as possible, all the
threads are kept busy.

We can let each thread find the maximum (and its index) on a subset of
the vector, and then have a cleanup code (and now we use the critical
section!) which just compares each thread’s results, and takes the
appropriate one.

116 / 1

Examples: The Index of the Maximum Entry

all_max = 1

!$omp parallel private (i,id,i_max) shared (n,p_num,x)

id = omp_get_thread_num ();

i_max = id + 1;

do i = id + 1, n, p_num

if (x(i_max) < x(i)) then

i_max = i;

end if

end do

!$omp critical

if (x(all_max) < x(i_max)) then

all_max = i_max

end if

!$omp end critical

!$omp end parallel

117 / 1

Examples: Random Numbers

Random numbers are a vital part of many algorithms. But you must be
sure that your random number generator behaves properly.

It is acceptable (but hard to check) that your parallel random numbers
are at least “similarly distributed.”

It would be ideal if you could generate the same stream of random
numbers whether in sequential or parallel mode.

118 / 1

Examples: Random Numbers

Most random number generators work by repeatedly ”scrambling” an
integer value called the seed. One kind of scrambling is the linear
congruential generator:

SEED = (A * SEED + B) modulo C

If you want a real number returned, this is computed indirectly, by an
operation such as

R = (double) SEED / 2147483647.0

Most random number generators hide the seed internal in static memory,
initialized to a default value, which you can see or change only by calling
the appropriate routine.

119 / 1

Examples: Random Numbers

Some system random number generators will work properly under
OpenMP, but it’s very important to test them. Initialize the seed to
123456789 (for example), and compute 20 random values sequentially.
Repeat the process in parallel and compare.

SEED = (A * SEED + B) modulo C

If you want a real number returned, this is computed indirectly, by an
operation such as

R = (double) SEED / 2147483647.0

Most random number generators hide the seed internal in static memory,
initialized to a default value, which you can see or change only by calling
the appropriate routine.

120 / 1

Examples: Random Numbers

include ...stuff...

int main (void)

{

int i;

unsigned int seed = 123456789;

double y[20];

srand (seed);

for (i = 0; i < 20; i++)

{

y[i] = (double) rand () / (double) RAND_MAX;

}

return 0;

}

121 / 1

Examples: Random Numbers

Make a parallel version of this program and compare the results. But
even if you happen to get the same results, I still am not comfortable
with this!

If you can, you should seek a random number function whose seed is an
explicit argument.

Secondly, it seems to me you can’t in general, hope to set up a random
number generator that allows you to compute the ”50th” random
number immediately, because of the way they are set up.

So perhaps a compromise is this: use a parallel section, set a seed based
on the thread index, and then start a loop.

122 / 1

Examples: Random Numbers

#pragma omp parallel private (i, id, r, seed)

id = omp_get_thread_num ();

seed = 123456789 * id

for (i = 0; i < 1000; i++)

{

r = my_random (seed);

(do stuff with random number r)

}

#pragma omp end parallel

123 / 1

Examples: Random Numbers

Do you see why I have made my choices this way?

Do you see why I am still unhappy with this setup? (we’re not really
emulating a sequential version.) (when you pick several seed arbitrary,
it’s actually possible for one sequence to overlap another)

After setting SEED, could I call srand (seed) and then use the system
rand() function?

Note that, for MPI, there is at least one package, called SPRNG, which
can generate random numbers that are guaranteed to be well distributed.

124 / 1

Examples: Carry Digits

Suppose vectors X and Y contain digits base B, and that Z is to hold the
base B representation of their sum. (Let’s assume for discussion that
base B is 10).

Adding is easy. But then we have to carry. Every entry of Z that is B or
greater has to have the excess subtracted off and carried to the next
higher digit. This works in one pass of the loop only if we start at the
lowest digit.

And adding 1 to 9,999,999,999 shows that a single carry operation could
end up changing every digit we have.

125 / 1

Examples: Carry Digits

do i = 1, n

z(i) = x(i) + y(i)

end do

overflow = .false.

do i = 1, n

carry = z(i) / b

z(i) = z(i) - carry * b

if (i < n) then

z(i+1) = z(i+1) + carry

else

overflow = .true.

end if

end do

126 / 1

Examples: Carry Digits

In the carry loop, notice that on the I-th iteration, we might write
(modify) both z[i] and z[i+1].

In parallel execution, the value of z[i] used by iteration I might be read as
17, then iteration I-1, which is also executing, might change the 17 to 18
because of a carry, but then iteration I, still working with its temporary
copy, might carry the 10, and return the 7, meaning that the carry from
iteration I-1 was lost!

99% of carries in base 10 only affect at most two higher digits. So if we
were desperate to use parallel processing, we could use repeated carrying
in a loop, plus a temporary array z2.

127 / 1

Examples: Carry Digits

do

!$omp parallel workshare

z2(1) = mod (z(1) , b)

z2(2:n) = mod (z(2:n), b) + z(1:n-1) / b

z(1:n) = z2(1:n)

done = all (z(1:n-1) / b == 0)

!$omp end parallel workshare

if (done)

exit

end if

end do

128 / 1

Shared Memory Programming with OpenMP

1 Introduction

2 Sections

3 Loops

4 Critical Regions and Reductions

5 Data Conflicts and Data Dependence

6 Environment Variables and Functions

7 Parallel Control Structures

8 Data Classification

9 Examples

10 CONCLUSION

129 / 1

Conclusion

Although OpenMP is a relatively simple programming system, there is a
lot we have not covered.

The single clause allows you to insist that only one thread will actually
execute a block of code, while the others wait. (Useful for initialization,
or print out).

The schedule clause, which allows you to override the default rules for
how the work in a loop is divided.

There is a family of functions that allow you to use a lock variable
instead of a critical clause. Locks are turned on and off by function calls,
which can be made anywhere within the code.

130 / 1

Conclusion

In nested parallelism, a parallel region contains smaller parallel regions. A
thread coming to one of these nested regions can then fork into even
more threads. Nested parallelism is only supported on some systems.

OpenMP has the environment variable OMP NESTED to tell if nesting
is supported, and functions to determine how nesting is to be handled.

131 / 1

Conclusion

Debugging a parallel programming can be quite difficult.

If you are familiar with the Berkeley dbx or Gnu gdb debuggers, these
have been extended to deal with multithreaded programs.

There is also a program called TotalView with an intuitive graphical
interface.

However, I have a colleague who has worked in parallel programming for
years, and who insists that he can always track down every problem by
using print statements!

He’s not as disorganized as that sounds. When debugging, he has each
thread write a separate log file of what it’s doing, and this gives him the
evidence he needs.

132 / 1

Conclusion

Exercises for this afternoon’s hands on session will introduce you to
OpenMP.

You’ll write a simple program to do a sum.

You will take the FFT and molecular dynamics programs and try to make
OpenMP versions, demonstrate a speedup, and investigate the
dependence of that speedup on the number of processors and the
problem size.

You will also work on an OpenMP program in which the parallelism is not
expressed in a for or do loop.

133 / 1

Conclusion

References:

1 Chandra, Parallel Programming in OpenMP

2 Chapman, Using OpenMP

3 Petersen, Arbenz, Introduction to Parallel Programming

4 Quinn, Parallel Programming in C with MPI and OpenMP

134 / 1

