
Distributed Memory Program-

ming With MPI

CIS4930/CIS5930: Parallel and Distributed Monte Carlo
Methods
..........

John Burkardt
Department of Scientific Computing

Florida State University
https://people.sc.fsu.edu/∼jburkardt/presentations/. . .

. . . mpi 2012 fsu.pdf

13 July 2012
1 / 61

Distributed Memory Programming With MPI

Approximating an Integral

MPI and Distributed Computing

An MPI Program for Integration

Coding Time!

Run Time

Where Do We Go From Here?

2 / 61

EXAMPLE:

Suppose we want to approximate an integral of the form∫
[0,1]m

f (x)dx by a Monte Carlo procedure.

Perhaps we want to do this in such a way that we have
confidence that our error is less than some tolerance ε.

Calling the random number generator m times gives us a
random sample argument x i = (x i

1, x
i
2, ..., x

i
m). We evaluate

f (x i) and add that to a running total. When we’ve generated
n such samples, our integral estimate is simply

∑n
i=1 f (x i)/n.

A good error estimate comes by summing the squares and
subtracting the square of the sum, and this allows us to decide
when to stop.

3 / 61

EXAMPLE:

While this simple process converges inevitably, it can
converge very slowly. The rate of convergence depends only on
n, but the “distance” we have to converge, the constant in
front of the rate of convergence, can be very large, especially
as the spatial dimension m increases.

Since there are interesting and important problems with
dimensions in the hundreds, it’s natural to look for help from
parallel processing.

Estimating an integral is a perfect problem for parallel
processing. We will look at a simple version of the problem,
and show how we can solve it in parallel using MPI, the
Message Passing Interface.

4 / 61

EXAMPLE:

For a specific example, let’s try to approximate:

I (f) =

∫
[0,1]2
|4x − 2| ∗ |4y − 2| dx dy

The exact value of this integral is 1.

If we wish to consider an m dimensional problem, we have

I (f) =

∫
[0,1]m

m∏
i=1

|4xi − 2|dx1dx2...dxm

for which the exact value is also 1.

5 / 61

EXAMPLE: C Version

1 f 1 = 0 . 0 ;
2 f 2 = 0 . 0 ;
3 f o r (i = 0 ; i < n ; i ++)
4 {
5 f o r (j = 0 ; j < m; j++)
6 {
7 x [j] = (double) rand () / (double) RAND MAX;
8 }
9 v a l u e = f (m, x) ;

10 f 1 = f 1 + v a l u e ;
11 f 2 = f 2 + v a l u e * v a l u e ;
12 }
13 f 1 = f 1 / (double) n ;
14 f 2 = f 2 / (double) (n − 1) ;
15 s t d e v = s q r t (f 2 − f 1 * f 1) ;
16 s t e r r = s t d e v / s q r t ((double) n) ;

http://people.sc.fsu.edu/∼jburkardt/latex/fsu mpi 2012/myprog seq.c 6 / 61

EXAMPLE: Output for M = 2

N F1 stdev sterr error

1 1.2329416 inf inf 0.232942

10 0.7625974 0.9751 0.3084 0.237403

100 1.0609715 0.8748 0.0875 0.060971

1000 1.0037517 0.8818 0.0279 0.003751

10000 0.9969711 0.8703 0.0087 0.003028

100000 0.9974288 0.8787 0.0028 0.002571

1000000 1.0005395 0.8824 0.0009 0.000539

We can only print the error because we already know the
answer. If we didn’t know the answer, what other information
suggests how well we are doing?

7 / 61

EXAMPLE: Output for M = 10

N F1 stdev sterr error

1 0.0643729 inf inf 0.935627

10 1.1999289 2.4393 0.7714 0.199929

100 1.2155225 6.2188 0.6219 0.215523

1000 1.2706223 6.2971 0.1991 0.270622

10000 0.9958461 4.4049 0.0440 0.004153

100000 1.0016405 4.3104 0.0136 0.001640

1000000 1.0056709 4.1007 0.0041 0.005670

The standard deviation and error are significantly larger at
1,000,000 samples than for the M=2 case.

8 / 61

EXAMPLE: Output for M = 20

N F1 stdev sterr error

1 0.0055534 inf inf 0.99444

10 0.3171449 0.9767 0.3089 0.68285

100 0.2272844 0.9545 0.0954 0.77271

1000 1.7362339 17.6923 0.5595 0.73623

10000 0.7468981 7.7458 0.0775 0.25310

100000 1.0327975 17.8886 0.0566 0.03279

1000000 0.9951882 16.5772 0.0166 0.00481

The standard deviation and error continue to rise for the M =
20 case

9 / 61

EXAMPLE: Output for M = 20

The Monte Carlo method will converge “eventually”.

If we have a fixed error tolerance in mind, and (of course) we
don’t know our actual correct answer, then we look at the
standard error as an estimate of our accuracy.

Although 1,000,000 points was good enough in a 2
dimensional space, the standard error is warning us that we
need more data in higher dimensions.

If we want to work on high dimensional problems, we will be
desperate to find ways to speed up these calculations!

10 / 61

Distributed Memory Programming With MPI

Approximating an Integral

MPI and Distributed Computing

An MPI Program for Integration

Coding Time!

Run Time

Where Do We Go From Here?

11 / 61

PARALLEL: Is Sequential Execution Necessary?

Now let’s ask ourselves a peculiar question:

We used a serial or sequential computer. The final integral
estimate required computing 1,000,000 random x and y
coordinates, 1,000,000 function evaluations, and 1,000,000
additions, plus a little more (dividing by N at the end, for
instance).

The computation was done in steps, and in every step, we
computed exactly one number, random x, random y, f(x,y),
adding to the sum...

A sequential computer only does one thing at a time. But did
our computation actually require this?

12 / 61

PARALLEL: Is Sequential Execution Necessary?

Look at the computation of F1, our approximate integral:

F1 = (f(x1,y1) + f(x2,y2) + ... + f(xn,yn)) / n

We have to divide by n at the end.

The sum was computed from left to right, but we didn’t have
to do it that way. The sum can be computed in any order.

To evaluate f(x1,y1), we had to generate a random point
(x1,y1).

Does the next evaluation, of f(x2,y2) have to come later? Not
really! It could be done at the same time.

13 / 61

PARALLEL: Is Sequential Execution Necessary?

So a picture of the logical priority of our operations is:

x1 y1 x2 y2 xn yn <--Generate

f(x1,y1) f(x2,y2) f(xn,yn) <--F()

f(x1,y1)+f(x2,y2)+.......+f(xn,yn) <--Add

(f(x1,y1)+f(x2,y2)+.......+f(xn,yn))/n <--Average

So we have about 2 ∗ n + m ∗ n + n + 1 operations, so for our
example, an answer would take about 5,000,000 “steps”.

But if we had n cooperating processors, generation takes 1
step, function evaluation m = 2 steps, addition log(n) ≈ 20
steps, and averaging 1, for a total of 25 steps.

And if we only have k processors, we still run k times faster,
because almost all the work can be done in parallel.

14 / 61

PARALLEL: What Tools Do We Need?

To take advantage of parallelism we need:

multiple cheap processors

communication between processors

synchronization between processors

a programming language that allows us to express which
processor does which task;

And in fact, we have multicore computers and computer
clusters, high speed communication switches, and MPI.

15 / 61

PARALLEL: Is Sequential Execution Necessary?

The FSU High Performance Computing (HPC) facility is a
cluster with 5,284 cores, using the high speed Infiniband
communication protocol.

User programs written in MPI can be placed on the “head
node” of the cluster.

The user asks for the program to be run on a certain number
of cores; a scheduling program locates the necessary cores,
copies the user program to all the cores. The programs start
up, communicate, and the final results are collected back to
the head node.

16 / 61

PARALLEL: What Must the User Do?

Someone wishing to run a problem in parallel can take an
existing program (perhaps written in C or C++), and add calls
to MPI functions that divide the problem up among multiple
processes, while collecting the results at the end.

Because the Monte Carlo integration example has a very
simple structure, making an MPI version is relatively simple.

17 / 61

Distributed Memory Programming With MPI

Approximating an Integral

MPI and Distributed Computing

An MPI Program for Integration

Coding Time!

Run Time

Where Do We Go From Here?

18 / 61

MPI: Logical outline of computation

We want to have one program be in charge, the master. We
assume there are K worker programs available, and that the
master can communicate with the workers, sending or
receiving numeric data.

Our program outline is:

The master chooses the value N , the number of samples.

The master asks the K workers to compute N/K samples.

Each worker sums N/K values of f (x).

Each worker sends the result to the master.

The master averages the sums, reports the result.

19 / 61

MPI: The Master Program

1 SEND v a l u e o f n/k to a l l w o r k e r s
2 RECEIVE f 1 p a r t and f 2 p a r t from each worker
3 f 1 = 0 . 0 ;
4 f 2 = 0 . 0 ;
5 f o r (j = 0 ; j < k ; j++)
6 {
7 f 1 = f 1 + f 1 p a r t [j] ;
8 f 2 = f 2 + f 2 p a r t [j] ;
9 }

10 f 1 = f 1 / (double) n ;
11 f 2 = f 2 / (double) (n − 1) ;
12 s t d e v = s q r t (f 2 − f 1 * f 1) ;
13 s t e r r = s t d e v / s q r t ((double) n) ;

20 / 61

MPI: The Worker Program

1 RECEIVE v a l u e o f n/k from master
2 f 1 p a r t = 0 . 0 ;
3 f 2 p a r t = 0 . 0 ;
4 f o r (i = 0 ; i < n/k ; i ++)
5 {
6 f o r (j = 0 ; j < m; j++)
7 {
8 x [j] = (double) rand () / (double) RAND MAX;
9 }

10 v a l u e = f (m, x) ;
11 f 1 p a r t = f 1 p a r t + v a l u e ;
12 f 2 p a r t = f 2 p a r t + v a l u e * v a l u e ;
13 }
14 SEND f 1 p a r t and f 2 p a r t to master .

21 / 61

MPI: Parallelism

Communication overhead: If we have K workers, the master
needs to send one number N/K to all workers. The master
needs to receive 2 ∗ K real numbers from the workers.

Computational Speedup: The sampling computation, which
originally took N steps, should now run as fast as a single
computation of N/P steps.

Old time ≈ N ∗ one sample

New time ≈ (N/K) ∗ one sample + (3 ∗ K) ∗ communications.

22 / 61

MPI: How Many Programs Do You Write?

So, to use MPI with one master and 4 workers, we write 5
programs, put each on a separate computer, start them at the
same time, and hope they can talk ...right?

It’s not as bad. Your computer cluster software copies your
information to each processor, sets up communication, and
starts them. We’ll get to that soon.

It’s much more surprising that you don’t a separate program
for each worker. That’s good, because otherwise how do
people run on hundreds of processors? In fact, it’s a little bit
amazing, because you only have to write one program!

23 / 61

MPI: One Program Runs Everything

The secret that allows one program to be the master and all
the workers is simple. If we start five copies of the program,
each copy is given a unique identifier of 0, 1, 2, 3 and 4.

The program can the decide that whoever has ID 0 is the
master, and should carry out the master’s tasks. The
programs with ID’s 1 through 4 can be given the worker tasks.

That way, we can write a single program. It will be a little bit
complicated, looking something like the following example.

24 / 61

MPI: One Program Runs Everything

1 e v e r y o n e does t h i s l i n e ;
2 i f (i d == 0)
3 {
4 o n l y th e master does l i n e s i n h e r e .
5 }
6 e l s e
7 {
8 each worker does t h e s e l i n e s .
9 }

10 someth ing t h a t e v e r y o n e does .
11 i f (i d == 0)
12 {
13 o n l y th e master does t h i s .
14 }
15 i f (i d == 2)
16 {
17 o n l y worker 2 does t h i s .
18 }

25 / 61

MPI: Communication Waits

The other thing to realize about MPI is that the programs
start at the same time, but run independently...until a program
reaches a communication point.

If a program reaches a RECEIVE statement, it expects a
message, (a piece of data), from another program. It cannot
move to the next computation until that data arrives.

Similarly, if a program reaches a SEND statement, it sends a
message to one or more other programs, and cannot continue
until it confirms the message was received (or at least was
placed in a buffer).

Programs with a lot of communication, or badly arranged
communication, suffer a heavy penalty because of idle time!

26 / 61

Distributed Memory Programming With MPI

Approximating an Integral

MPI and Distributed Computing

An MPI Program for Integration

Coding Time!

Run Time

Where Do We Go From Here?

27 / 61

CODE: Accessing the MPI Include File

1 # inc lude <s t d i o . h>
2 # inc lude < s t d l i b . h>
3 # inc lude <math . h>
4
5 # inc lude ”mpi . h” <−− N e c e s s a r y MPI d e f i n i t i o n s
6
7 double f (i n t m, double x []) ;
8
9 i n t main (i n t argc , char * a r g v [])

10 {
11 . . .
12 return 0 ;
13 }
14 double f (i n t m, double x [])
15 {
16 . . .
17 return v a l u e ;
18 }

28 / 61

CODE: Initialize and Terminate MPI

1 i n t main (i n t argc , char * a r g v [])
2 {
3 M P I I n i t (&argc , &a r g v) ;
4 . . .
5 <−− Now th e program can a c c e s s MPI ,
6 and communicate w i t h o t h e r p r o c e s s e s .
7 . . .
8 M P I F i n a l i z e () ;
9 return 0 ;

10 }

29 / 61

CODE: Get Process ID and Number of Processes

1 i n t main (i n t argc , char * a r g v [])
2 {
3 i n t id , p ;
4 . . .
5 M P I I n i t (&argc , &a r g v) ;
6 MPI Comm rank (MPI COMM WORLD, &i d) ; <−− i d
7 MPI Comm size (MPI COMM WORLD, &p) ; <−− count
8 . . .
9 <−− Where t he MPI a c t i o n w i l l o c c u r .

10 . . .
11 M P I F i n a l i z e () ;
12 return 0 ;
13 }

30 / 61

CODE: Master sends N/(P-1) to each Worker

1 // The master s e t s NP = N/(P−1) .
2 // Each worker w i l l do NP s t e p s .
3 // N i s a d j u s t e d so i t e qu a l s NP * (P − 1) .
4 //
5 i f (i d == 0)
6 {
7 n = 1000000;
8 np = n / (p − 1) ;
9 n = (p − 1) * np ;

10 }
11 //
12 // The Broadcas t command sends the v a l u e NP
13 // from the master to a l l wo rke r s .
14 //
15 MPI Bcast (&np , 1 , MPI INT , 0 , MPI COMM WORLD) ;
16 . . . (more) . . .
17 return 0 ;
18 }

31 / 61

CODE: Rules for MPI Bcast

error = MPI Bcast (data, count, type, from, communicator);

Sender input/Receiver output, data, the address of data;

Input, int count, number of data items;

Input, type, the data type, such as MPI INT;

Input, int from, the process ID which sends the data;

Input, communicator, usually MPI COMM WORLD;

Output, int error, is 1 if an error occurred.

The values in the data array on process from are copied into
the data arrays on all other processes, overwriting the current
values (if any).

32 / 61

CODE: Examples of MPI Bcast

MPI_Bcast (&np, 1, MPI_INT, 0, MPI_COMM_WORLD);

sends the integer stored in the scalar np

from process 0 to all processes.

MPI_Bcast (a, 2, MPI_FLOAT, 7, MPI_COMM_WORLD);

sends the first 2 floats stored in the array a

(a[0] and a[1]) from process 7 to all processes.

MPI_Bcast (x, 100, MPI_DOUBLE, 1, MPI_COMM_WORLD);

sends the first 100 doubles stored in the array x

(x[0] through x[99]) from process 1 to all processes.

33 / 61

CODE: The Workers Work

1 f 1 p a r t = 0 . 0 ; <−− Even th e master does t h i s !
2 f 2 p a r t = 0 . 0 ;
3 i f (0 < i d)
4 {
5 s e e d = 12345 + i d ; <−− What ’ s g o i n g on h e r e ?
6 s r a n d (s e e d) ;
7 f o r (i = 0 ; i < np ; i ++)
8 {
9 f o r (j = 0 ; j < m; j++)

10 {
11 x [j] = (d o u b l e) rand () / (d o u b l e)

RAND MAX;
12 }
13 v a l u e = f (m, x) ;
14 f 1 p a r t = f 1 p a r t + v a l u e ;
15 f 2 p a r t = f 2 p a r t + v a l u e * v a l u e ;
16 }
17 }

34 / 61

CODE: Almost There!

Once all the workers have completed their loops, the answer
has been computed, but it’s all over the place. It needs to be
communicated to the master.

Each worker has variables called f1 part and f2 part, and the
master has these same variables, set to 0. We know
MPI Bcast() sends data, so is that what we do?

The first worker to broadcast f1 part would:

successfully transmit that value to the master, replacing
the value 0 by the value it computed;

unfortunately, also transmit that same value to all the
other workers, overwriting their values. That’s a
catastrophe!

35 / 61

CODE: The MPI Reduce Command

In parallel programming, it is very common to have pieces of
a computation spread out across the processes in such a way
that the final required step is to add up all the pieces. A
gathering process like this is sometimes called a reduction
operation.

The function MPI Reduce() can be used for our problem. It
assumes that every process has a piece of information, and
that this information should be assembled (added?
multiplied?) into one value on one process.

36 / 61

CODE: Rules for MPI Reduce

ierr = MPI Reduce (data, result, count, type, op, to, comm)

Input, data, the address of the local data;

Output only on receiver, result, the address of the result;

Input, int count, the number of data items;

Input, type, the data type, such as MPI DOUBLE;

Input, op, MPI SUM, MPI PROD, MPI MAX...;

Input, int to, the process ID which collects data;

Input, comm, usually MPI COMM WORLD;

37 / 61

CODE: using MPI Reduce()

1 // The master z e r o s out F1 and F2 .
2 //
3 i f (i d == 0)
4 {
5 f 1 = 0 . 0 ;
6 f 2 = 0 . 0 ;
7 }
8 //
9 // The p a r t i a l r e s u l t s i n F1 PART and F2 PART

10 // a r e ga the r ed i n t o F1 and F2 on the master
11 //
12 MPI Reduce (&f 1 p a r t , &f1 , 1 , MPI DOUBLE ,

MPI SUM , 0 , MPI COMM WORLD) ;
13
14 MPI Reduce (&f 2 p a r t , &f2 , 1 , MPI DOUBLE ,

MPI SUM , 0 , MPI COMM WORLD) ;

38 / 61

CODE: The Master Finishes up

The master process has the values of f1 and f2 summed up
from all the workers. Now there’s just a little more to do!

1 i f (i d == 0)
2 {
3 f 1 = f 1 / (double) n ;
4 f 2 = f 2 / (double) (n − 1) ;
5 s t d e v = s q r t (f 2 − f 1 * f 1) ;
6 s t e r r = s t d e v / s q r t ((double) n) ;
7 e r r o r = f a b s (f 1 − 1 . 0) ;
8 p r i n t f (”%7d %.15g %6.4 f %6.4 f %8g\n” ,
9 n , f1 , s tde v , s t e r r , e r r o r) ;

10 }
11
12 M P I F i n a l i z e () ;

http://people.sc.fsu.edu/∼jburkardt/latex/fsu mpi 2012/myprog mpi.c

39 / 61

CODE: A “Minor” Improvement

When we run our program, what really happens?

1 The master sets up stuff, the workers are idle;
2 The master is idle, the workers compute;
3 The master collects stuff, the workers are idle.

The first and last steps don’t take very long.

But why do we leave the master idle for the (perhaps lengthy)
time that the workers are busy? Can’t it help?

Indeed, all we have to do is remove the restriction:

if (0 < id)

on the computation, and divide the work in pieces of size:

np = n / p

40 / 61

CODE: Comments

To do simple things in MPI can seem pretty complicated.
To send an integer from one process to another, I have to call
a function with a long name, specify the address of the data,
the number of data items, the type of the data, identify the
process and the communicator group.

But if you learn MPI, you realize that this complicated call
means something like ”send the integer NP to process 7”. The
complicated part is just because one function has to deal with
different data types and sizes and other possibilities.

By the way, MPI COMM WORLD simply refers to all the
processes. It’s there because sometimes we want to define a
subset of the processes that can talk just to each other. We’re
allowed to make up a new name for that subset, and to
restrict the ”broadcast” and ”reduce” and ”send/receive”
communications to members only.

41 / 61

Distributed Memory Programming With MPI

Approximating an Integral

MPI and Distributed Computing

An MPI Program for Integration

Coding Time!

Run Time

Where Do We Go From Here?

42 / 61

RUN: Installation of MPI

To use MPI, you need a version of MPI installed somewhere
(your desktop, or a cluster), which:

places “mpi.h” where the compiler can find it;

places the MPI library where the loader can find it;

installs mpirun, or some other system that synchronizes
the startup of the user programs, and allows them to
communicate.

Two free implementations of MPI are OpenMPI and MPICH:

http://www.open-mpi.org/

http://www.mcs.anl.gov/research/projects/mpich2/

43 / 61

RUN: Working on Your Laptop

You can install MPI on your laptop or personal machine. If
you’re using a Windows machine, you’ll need to make a Unix
partition or install VirtualBox or Cygwin or somehow get Unix
set up on a piece of your system.

If your machine only has one core, that doesn’t matter. MPI
will still run; it just won’t show any speedup.

Moreover, you can run MPI on a 1-core machine and ask it to
emulate several processes. This will do a “logical” parallel
execution, creating several executables with separate memory
that run in a sort of timesharing way.

44 / 61

RUN: Working on Your Laptop

If your desktop actually has multiple cores, MPI can take
advantage of them.

Even if you plan to do your main work on a cluster, working on
your desktop allows you to test your program for syntax (does
it compile?) and for correctness (does it work correctly on a
small version of the problem).

If your MPI program is called mprog.c, then depending on the
version of MPI you installed, you might be able to compile and
run with the commands:

mpicc -o myprog myprog.c

mpirun -np 4 myprog <-- -np 4 means run
on 4 processors

45 / 61

RUN: MPICC is “Really” GCC, or Something

The mpicc command is typically a souped up version of
gcc, or the Intel C compiler or something similar.

The modified command knows where to find the extra features
(the include file, the MPI run time library) that are needed.

Since mpicc is “really” a familiar compiler, you can pass the
usual switches, include optimization levels, extra libraries, etc.

For instance, on the FSU HPC system, you type:

mpicc -c myprog_mpi.c <-- to compile

mpicc myprog_mpi.c <-- to compile and load,

creating "a.out"

mpicc myprog_mpi.c -lm <-- to compile and load,

with math library

mpicc -o myprog myprog_mpi.c <-- to compile, load,

creating "myprog"
46 / 61

RUN: The FSU HPC

A big advantage of writing a program in MPI is that you
can transfer your program to a computer cluster to get a huge
amount of memory and a huge number of processors.

The FSU HPC facility is one such cluster, and any FSU
researcher can get such access, although students will require
sponsorship by a faculty member.

While some parts of the cluster are reserved for users who
have contributed to support the system, there is always time
and space available for general users.

FSU HPC Cluster Accounts: http://hpc.fsu.edu, ”Your HPC Account: Apply for an Account”

47 / 61

RUN: Working with a Cluster

There are several headaches to put up with when working
on a computer cluster.

It’s not your machine, so there are rules;

You have to login from your computer to the cluster,
using a terminal program like ssh;

You’ll need to move files between your local machine and
the cluster; you do this with a program called sftp;

The thousands of processors are not directly and
immediately accessible to you. You have to put your
desired job into a queue, specifying the number of
processors you want, the time limit and so on. You have
to wait your turn before it will even start to run.

48 / 61

RUN: Compiling on the FSU HPC

To compile on the HPC machine, transfer all necessary files to
sc.hpc.fsu.edu using sftp, and then log in using ssh or some
other terminal program.

On the FSU HPC machine, there are several MPI
environments. We’ll set up the Gnu OpenMPI environment.
For every interactive or batch session using OpenMPI, we will
need to issue the following command first:

module load gnu-openmpi

Compile your program:

mpicc -o myprog myprog_mpi.c

49 / 61

RUN: Executing in Batch on the FSU HPC

Jobs on the FSU HPC system go through a batch system
controlled by a scheduler called MOAB;

In exchange for being willing to wait, you get exclusive access
to a given number of processors so that your program does not
have to compete with other users for memory or CPU time.

To run your program, you prepare a batch script file. Some of
the commands in the script “talk” to MOAB, which decides
where to run and how to run the job. Other commands are
essentially the same as you would type if you were running the
job interactively.

One command will be the same module... command we
needed earlier to set up OpenMPI.

50 / 61

RUN: A Batch Script for the FSU HPC

#!/bin/bash

Commands to MOAB:

#MOAB -N myprog <-- Name is "myprog"

#MOAB -q classroom <-- Queue is "classroom"

#MOAB -l nodes=1:ppn=4 <-- Limit to 4 processors

#MOAB -l walltime=00:00:30 <-- Limit to 30 seconds

#MOAB -j oe <-- Join output and error

Define OpenMPI:

module load gnu-openmpi

Set up and run the job using ordinary interactive commands:

cd $PBS_O_WORKDIR <-- move to directory

mpirun -np 4 ./myprog <-- run with 4 processes

http://people.sc.fsu.edu/∼jburkardt/latex/fsu mpi 2012/myprog.sh

51 / 61

RUN: Submitting the Job

The command -l nodes=1:ppn=4 says we want to get 4
processors. For the classroom queue, there is a limit on the
maximum number of processors you can ask for, and that limit
is currently 32.

The msub command will submit your batch script to MOAB.
If your script was called myprog.sh, the command would be:

msub myprog.sh

The system will accept your job, and immediately print a job
id, just as 65057. This number is used to track your job, and
when the job is completed, the output file will include this
number in its name.

52 / 61

RUN: The Job Waits For its Chance

The command showq lists all the jobs in the queue, with
jobid, “owner”, status, processors, time limit, and date of
submission. The job we just submitted had jobid 65057.

44006 tomek Idle 64 14:00:00:00 Mon Aug 25 12:11:12

64326 harianto Idle 16 99:23:59:59 Fri Aug 29 11:51:05

64871 bazavov Idle 1 99:23:59:59 Fri Aug 29 21:04:35

65059 ptaylor Idle 1 4:00:00:00 Sat Aug 30 15:11:11

65057 jburkardt Idle 4 00:02:00 Sat Aug 30 14:41:39

To only show the lines of text with your name in it, type

showq | grep jburkardt

...assuming your name is jburkardt, of course!

53 / 61

RUN: All Done!

At some point, the ”idle” job will switch to ”Run” mode.
Some time after that, it will be completed. At that point,
MOAB will create an output file, which in this case will be
called myprog.o65057, containing the output that would
have shown up on the screen. We can now examine the output
and decide if we are satisfied, or need to modify our program
and try again!

I often submit a job several times, trying to work out bugs. I
hate having to remember the job number each time. Instead, I
usually have the program write the “interesting” output to a
file whose name I can remember:

mpirun -np 4 ./myprog > myprog_output.txt

54 / 61

Distributed Memory Programming With MPI

Approximating an Integral

MPI and Distributed Computing

An MPI Program for Integration

Coding Time!

Run Time

Where Do We Go From Here?

55 / 61

CONCLUSION:

Our simple integration problem seems to have become very
complicated.

However, many of the things I showed you only have to be
done once, and always in the same way:

initialization

getting ID and number of processes

getting the elapsed time

shutting down

The interesting part is determining how to use MPI to solve
your problem, so we can put the uninteresting stuff in the
main program, where it never changes.

56 / 61

CONCLUSION: Write the Main Program Once

1 i n t main (i n t argc , char * a r g v [])
2 {
3 i n t id , p ;
4 double t ;
5 M P I I n i t (&argc , &a r g v) ;
6 MPI Comm rank (MPI COMM WORLD, &i d) ; <−− i d
7 MPI Comm size (MPI COMM WORLD, &p) ; <−− count
8 t = MPI Wtime () ;
9 . . . Now w r i t e a f u n c t i o n

10 do work (id , p) ; <−− t h a t does work o f
11 . . . p r o c e s s i d out o f p .
12 t = MPI Wtime () − t ;
13 M P I F i n a l i z e () ;
14 return 0 ;
15 }

57 / 61

CONCLUSION:

Similarly, the process of compiling your program with MPI is
typically the same each time;

Submitting your program to the scheduler for execution also is
done with a file, that you can reuse; occasionally you may
need to modify it to ask for more time or processors.

But the point is, that many of the details I’ve discussed you
only have to worry about once.

What’s important then is to concentrate on how to set up
your problem in parallel, using the ideas of message passing.

58 / 61

CONCLUSION:

For our integration problem, I used the simple
communication routines, MPI Bcast() and MPI Reduce().

But you can send any piece of data from any process to any
other process, using MPI Send() and MPI Receive().

These commands are trickier to understand and use, so you
should refer to a good reference, and find an example that you
can understand, before trying to use them.

However, basically, they are meant to do exactly what you
think: send some numbers from one program to another.

If you understand the Send and Receive commands, you
should be able to create pretty much any parallel program you
need in MPI.

59 / 61

CONCLUSION: Web References

//www-unix.mcs.anl.gov/mpi/, Argonne Labs;

//www.mpi-forum.org, the MPI Forum

//www.netlib.org/mpi/, reports, tests, software;

//www.open-mpi.org , an open source version of MPI;

//www.nersc.gov/nusers/help/tutorials/mpi/intro

//people.sc.fsu.edu/∼jburkardt/pdf/mpi course.pdf

//people.sc.fsu.edu/∼jburkardt/presentations/
fsu mpi 2011.pdf, a different presentation;

//people.sc.fsu.edu/∼jburkardt/presentations/
fsu mpi 2011 exercises.pdf, some MPI exercises;

//people.sc.fsu.edu/∼jburkardt/presentations/
fsu mpi 2012.pdf, these slides;

60 / 61

CONCLUSION: Reference Books

Gropp, Using MPI;

Mascagni, Srinavasan, Algorithm 806: SPRNG: a
scalable library for pseudorandom number generation,
ACM Transactions on Mathematical Software

Openshaw, High Performance Computing;

Pacheco, Parallel Programming with MPI ;

Petersen, Introduction to Parallel Computing;

Quinn, Parallel Programming in C with MPI and
OpenMP;

Snir, MPI: The Complete Reference;

61 / 61

