The Interface between the MPAS Land Ice
Dynamic Core and the Velocity Solver:
Requirements and Design

MPAS Development Team

January 5, 2012

Contents

1 Summary

2 Requirements

2.1 Requirement: MPAS Supplies Initialization Input Needed by
Velocity Solver

2.2 Requirement: MPAS Supplies Grid and Geometry Input Needed
by Velocity Solver

2.3 Requirement: MPAS Supplies State Variable Input Needed
by Velocity Solver

2.4 Requirement: Velocity Solver Returns Output Needed by
MPAS . . e

3 Algorithmic Formulations

3.1 Design Solution: Identification of Initialization Input Needed
by Velocity Solver

3.2 Design Solution: Identification of Grid and Geometry Input
Needed by Velocity Solver

3.3 Design Solution: Identification of State Variable Input Needed
by Velocity Solver

3.4 Design Solution: Identification of Velocity Solver Output . . .

4 Design and Implementation

4.1 Implementation: Initialization Input from MPAS to Velocity
Solver e

4.2 Implementation: Grid and Geometry Input from MPAS to
Velocity Solver L

4.3 Implementation: State Variable Input from MPAS to Velocity
Solver L

4.4 TImplementation: Output from Velocity Solver to MPAS

4.5 Implementation: Format of the Initialization Interface
4.6 Implementation: Format of the Grid and Geometry Interface
4.7 Implementation: Format of the State Variable Interface

Testing
5.1 Testing and Validation: Passing Dummy Data Through the
Interface

5.1.1 Test of steady state velocity solver on greenland

10
10
13

17

17
17

Chapter 1

Summary

The MPAS system is developing a new land ice dynamic core. The geometry
of a given region is modeled by a grid of cells which are organized into vertical
layers or sheets. The values of physical quantities of interest, called state
variables, are to be computed at specific locations within each cell, and over
a sequence of time values. Thus a typical computation involves some initial
setup, associated with defining the grid, followed by a sequence of timestep
calculations which compute estimates for the state variables at the next
time.

A particular state variable needed at each time step is the instantaneous
velocity field. There are a number of approaches to computing this quantity,
and the MPAS land ice development team has decided that the computation
should be carried out by a separate procedure, here called the velocity solver
module.

It is desirable that the internal details of the velocity solver module be
left free to the developers. This is so because:

e it may be desirable to provide a choice of solvers corresponding to
different models;

e velocity solvers may be designed by independent groups;

e it may be preferable to apply the finite element method to model the
velocity equations.

Thus, the land ice dynamic core, as it carries out a time step, must
be prepared to transfer information about the current state to the velocity
solver module, and then to accept back the velocity field as it has been
computed.

Given these considerations, the appropriate approach is to carefully de-
fine an interface that controls the flow of state information, geometry, and
other conditions to the velocity solver, and the return of information that
defines the velocity field. If this interface is carefully and clearly defined,
then the velocity solver itself can be considered a “black box”. As long as de-
signers carry out the required calculations, and respect the communication
interface, they will then be free to implement the computation according to
their interests.

This document is specifies the details of the interfaces needed in order
for the MPAS land ice dynamic core to successfully interact with a velocity
solver module. This entails the information needed to specify the calcu-
lation, and the format of the desired results. Furthermore, it lays out an
explicit interface, that is, a formal function call, with a parameter list, whose
types, dimensions, and meanings are determined.

This information allows developers of the MPAS dynamic core and those
working on velocity solvers to proceed independently on code design, without
having to wait for each other. In particular, a group working on one side of
the interface can test their code by supplying a simple dummy function to
stand on the other side of the interface and supply “canned data”.

A first step towards judging the success of the interface is to run the full
program on one side, with a dummy function on the other, which simply
goes through the motions of computing data, but actually simply sends a
standard set of test data. Thus, the velocity solver can be partially tested
by sending it data from a dummy version of MPAS, while the MPAS land
ice dynamic core can be tested by having a dummy velocity solver return
canned velocities back through the interface.

Chapter 2

Requirements

2.1 Requirement: MPAS Supplies Initialization In-
put Needed by Velocity Solver

Date last modified: 2011/09/15
Contributors: John Burkardt, Mauro Perego

At first, it was thought that the grid interface would be called only once,
and therefore it could be used to pass initialization data as well as the grid
information. However, it seems practical to assume that a single run of
the program might include the necessity to modify the grid several times.
In this case, it is useful to supply an additional interface routine which is
guaranteed to be used only once, and which passes one-time initialization
data.

2.2 Requirement: MPAS Supplies Grid and Ge-
ometry Input Needed by Velocity Solver

Date last modified: 2011/06,/07
Contributors: John Burkardt, Mauro Perego

MPAS stores the geometry, grid, boundary conditions, and state vari-
ables for the entire computation. The velocity solver needs some of this
information once, at the beginning of the computation, in order to set up
its own geometry model. Thus, it is required that MPAS supplies to the
velocity solver the grid and geometry information, before any time steps are

computed, using an agreed interface.

2.3 Requirement: MPAS Supplies State Variable
Input Needed by Velocity Solver

Date last modified: 2011/06,/07
Contributors: John Burkardt, Mauro Perego

MPAS stores and updates state variables for the entire computation.
The velocity solver will need to receive updated information on the current
values of the state variables and boundary conditions in order to correctly
set up the calculation for the corresponding velocity at the new time. Thus,
it is required that MPAS supplies to the velocity solver the changing state
information at each time step, using an agreed interface.

2.4 Requirement: Velocity Solver Returns Output
Needed by MPAS

Date last modified: 2011/06,/07
Contributors: John Burkardt, Mauro Perego

During each time step, once the velocity solver has determined the veloc-
ity field, this information must be returned to MPAS. The velocity solver can
also determine certain related quantities derived from the velocity informa-
tion, and needed by MPAS. This information must be supplied in a suitable
format, and at appropriate geometric positions, as required by MPAS. Thus,
it is required that the velocity solver returns information to MPAS during
each time step, using an agreed interface.

Chapter 3

Algorithmic Formulations

3.1 Design Solution: Identification of Initializa-
tion Input Needed by Velocity Solver

Date last modified: 2011/09/15
Contributors: John Burkardt, Mauro Perego

At the moment, the only data likely to be passed in this way is the
identifier for the MPI communicator.

3.2 Design Solution: Identification of Grid and
Geometry Input Needed by Velocity Solver

Date last modified: 2011/06/07
Contributors: John Burkardt, Mauro Perego

The velocity solver needs the location of the cell centers of the MPAS
mesh, the number of layers, and various connectivity arrays in order to
recreate the discretized geometry. Assuming the basic structure of the mesh
does not vary over the time steps, then this information should only need
to be transferred once.

3.3 Design Solution: Identification of State Vari-
able Input Needed by Velocity Solver

Date last modified: 2011/06/01
Contributors: John Burkardt, Mauro Perego

In order to set up the equations for the velocity, the velocity solver needs,
on each time step, the state variables and boundary condition information
that affect this computation.

3.4 Design Solution: Identification of Velocity Solver
Output

Date last modified: 2011/06/01
Contributors: John Burkardt, Mauro Perego

Once the velocity solver has computed a solution, MPAS will require
velocity values, as well as certain other derived quantities, at specific loca-
tions in the mesh. The velocity solver may carry out interpolation or other
suitable procedures in order to produce these values at the desired locations.

Chapter 4

Design and Implementation

4.1 Implementation: Initialization Input from MPAS
to Velocity Solver

Date last modified: 2011/09/15
Contributors: John Burkardt, Mauro Perego

The velocity solver needs certain information, one time only, as initial-
ization. This information includes:

e comm, the identifier for the MPI Communicator MPI_COMM _WORLD,
as established when MPAS invokes MPI; the velocity solver needs this
communicator in order to make use of MPI as MPAS has initialized
it;

4.2 Implementation: Grid and Geometry Input
from MPAS to Velocity Solver

Date last modified: 2011/06/02
Contributors: John Burkardt, Mauro Perego

It is assumed that the geometry of the MPAS grid is fixed throughout
the computation.

The velocity solver needs mesh information from MPAS in order to con-
struct the grid. This information includes:

o (zCell,yCell,zCell), the coordinates of the MPAS cell centers; under

discussion is the idea of using 2D coordinates from a polar stereo-
graphic projection;

e cellsOnVertex, the indices of cells incident on a vertex;
o indexToVertexID, the tags for vertices;
o verticesOnEdge, indices of the two vertex endpoints of a cell edge;

e nVertLevels, the number of vertical layers.

4.3 Implementation: State Variable Input from
MPAS to Velocity Solver

Date last modified: 2011/06/07
Contributors: John Burkardt, Mauro Perego

As each new time step begins, MPAS updates certain variables that
define the state of the system, and which the velocity solver needs in order
to properly set up the system defining the velocities. These items include:

e temperature, the temperature at each cell center, for each layer;
e thickness, the thickness, associated with each cell center;

e clevation, the elevation, associated with each cell center;

?, the sigma layers (no name suggested; not clear on the meaning);

beta, the sliding coefficient, and other basal parameters, associated
with each cell center.

flowfactor, the flow factor A(T) of each layer in each cell;

emptyCell, a logical variable that indicates whether a cell is empty
(this is a suggestion for how to handle the “empty cell” issue.).

4.4 Implementation: Output from Velocity Solver
to MPAS

Date last modified: 2011/06/07
Contributors: John Burkardt, Mauro Perego

10

The velocity solver determines the velocity vector field. MPAS requires
the velocity solver to return certain velocity components at selected points,
as well as related information:

e u, v, normal and tangential velocities at the midpoint of each edge
face of each layer;

e heat dissipation, the tensor product of the full stress tensor and the
strain tensor integrated over each layer of each cell;

e viscosity, possibly, for diagnostics, the viscosity of each cell;

e 7 possibly, for diagnostics, terms of the stress and strain rate tensors;
(no name specified; not clear on details.);

4.5 Implementation: Format of the Initialization
Interface

Date last modified: 2011/09/15
Contributors: John Burkardt, Mauro Perego

The routine velocity_solver_init() is intended to be used to pass such
information between MPAS and the velocity solver. From the MPAS side,
the routine would behave according to the following declarations:

subroutine velocity_solver_init (comm)

integer, intent (in) :: comm
From the C++ side, the routine would be declared as follows:

void velocity_solver_init (int *comm);

4.6 Implementation: Format of the Grid and Ge-
ometry Interface

Date last modified: 2011/12/15
Contributors: John Burkardt, Mauro Perego

Before the time step calculation begins, the MPAS routine land_ice_init
in module_land_ice_core sets up the geometry and the grid. In order for

11

the velocity solver to update its internal version of the geometric grid and
state variables to correspond to changes made by MPAS, it is necessary that
certain grid and state variable data be transferred. This is accomplished
by providing four interface routines, to be called by the MPAS routine
land_ice_init. Each interface routine looks like a FORTRAN subroutine
to MPAS, and can be documented as such. In fact, however, the underlying
operations are carried out by a C++ function.

The primary interface routine is set_velocity _solver_grid(). This func-
tion builds the two-dimensional triangular grid (already partitioned among
the processors). The grid will keep only the vertices selected by the ar-
ray verticesMask. The function extrude_velocity solver_3d grid() is
called to construct the vertical structured three-dimensional grid, starting
from the two-dimensional grid. After the 3D grid has been built, the solver
to be employed is determined by a call to either initialize L1L2_solver
or initialize FO _solver, which primarily build the necessary finite element
spaces.

In brief, the interface functions have the FORTRAN90 and C++ forms:

subroutine set_velocity_solver_grid () void set_velocity _solver_grid_ ()
subroutine extrude_velocity_solver_3d_grid() | void extrude_velocity_solver_3d_grid_()
subroutine initialize_FO _solver() void initialize FO_solver_()

subroutine initialize_L1L2_solver() void initialize_L1L2_solver_()

These routines are interfaces between a FORTRAN90 main program and
a set of C++ subsidiary functions. This means that it is necessary to be
able to think of them, abstractly, as being written in either language. Here
we produce the corresponding declarations that would be associated with a
FORTRAN90 or C++ version of each of the interface functions.

For the FORTRAN90 version, this information would have the form:

subroutine set_velocity_solver_grid(nCells, nEdges, nVertices, &
nCellsSolve, nEdgesSolve, nVerticesSolve, &
cellsOnEdge, cellsOnVertex, verticesOnCell, verticesOnEdge,&
verticesMask, xCell, yCell, zCell &
sendCellsArray, recvCellsArray, sendEdgesArray, &
recvEdgesArray, sendVerticesArray, recvVerticesArray)

integer, intent (in) :: nCells
integer, intent (in) :: nEdges
integer, intent (in) :: nVertices
integer, intent (in) :: nCellsSolve
integer, intent (in) :: nEdgesSolve

12

integer, intent (in) :: nVerticesSolve

integer, intent (in) cellsOnEdge (2,nEdges)

integer, intent (in) :: cellsOnVertex(3,nVertices)
integer, intent (in) :: verticesOnCell(6,nCells)
integer, intent (in) :: verticesOnEdge(2,nEdges)
logical, intent (in) :: verticesMask(nVertices)

double precision, intent (in) :: xCell(nCells)

double precision, intent (in) :: yCell(nCells)

double precision, intent (in) :: zCell(nCells)

integer, intent (in) sendCellsArray(variableSize)
integer, intent (in) :: recvCellsArray(variableSize)
integer, intent (in) :: sendEdgesArray(variableSize)
integer, intent (in) :: recvEdgesArray(variableSize)
integer, intent (in) sendVerticesArray(variableSize)
integer, intent (in) recvVerticesArray(variableSize)

subroutine extrude_velocity_solver_3d_grid(nVertLevels, thickness, &
elevation)

integer, intent (in) :: nVertLevels
double precision, intent (in) :: thickness(nCells)
double precision, intent (in) :: elevation(nCells)

subroutine initialize_FO0_solver()
subroutine initialize_L1L2_solver ()

In the above, the arrays send XzzArray and recv XaxzArray store the con-
nectivity between the processors. They have the following structure.
sendCellsArray (1) stores the size of the vector.
sendCellsArray(2) stores the ID of the processor P_il to send data to
sendCellsArray (3) stores the number of Ids n_Pil to be sent
sendCellsArray(4:3+n_Pil) store the Ids to be sent to P_il
sendCellsArray (4+n_Pil) stores the ID of the processor P_i2 to send data
to and so on.

The C++ declarations of the interface routines have the following form:

13

void set_velocity_solver_grid_(int const * nCells_F,
int const * nEdges_F, int const * nVertices_F,
int const * nCellsSolve_F,
int const * nEdgesSolve_F, int const * nVerticesSolve_F,
int const * cellsOnEdge_F, int const * cellsOnVertex_F,
int const * verticesOnCell_F, int const * verticesOnEdge_F,
int const * verticesMask_F, double const * xCell_F,
double const * yCell_F, double const * zCell_F,
double const * thickness_F, double const * elevation_F,
int const * sendCellsArray_F, int const * recvCellsArray_F,
int const * sendEdgesArray_F, int const * recvEdgesArray_F,
int const * sendVerticesArray_F, int const * recvVerticesArray_F)

void extrude_velocity_solver_Bd_grid_(int const * nVertLevels_F,
double const * thickness_F, double const * elevation_F)

void initialize_FO_solver_()
void initialize_L1L2_solver()

One consideration for the C++ implementation is that FORTRAN90
double-dimensioned arrays are stored in column-major format. This means
that the C+4 code, which gets a pointer to the first element of each ar-
ray, needs to index the array information by following the FORTRAN90
conventions.

4.7 Implementation: Format of the State Variable
Interface

Date last modified: 2011/15/12
Contributors: John Burkardt, Mauro Perego

Each time integration step of the land ice calculation is carried out in
module_time_integration. Within this module, subroutine timestep()
controls the computation of data associated with the new time by calling the
routine rk4(), which uses a fourth-order Runge Kutta method to advance
the solution data in time.

Since the velocity solver, instead of rk4(), will be computing the new
velocities, then rk4() must be modified so that it no longer attempts to
compute velocity updates, and timestep() must now call both rk4() and

14

the velocity solver. The generic format of this portion of timestep() might
look something like this:

if (trim(config_time_integration) == ’RK4’) then
call rk4 (domain, dt)
else

write(0,*) ’Unknown time integration option ’ &
// trim (config_time_integration)
write(0,*) ’Currently, only ’’RK4’’ is supported.’
stop

end if

call velocity_solver_XXX (elevation, thickness, beta, temperature,
nVertLevels, u, v, heatIntegral, viscosity)

Function velocity_solver_XXX stands for one of velocity_solver_SIA,
velocity_solver_SSA, velocity_solver_L1L2,velocity_solver_FO0 and
possibly for other solvers (like Stokes). It computes the ice velocity. Output
variables are the normal and tangential velocities on the midpoint of edges,
heat dissipation integrated over a cell and the viscosity on each cell.

The Fortran declaration of the function velocity_solver_XXX is

subroutine velocity_solver_XXX (elevation, thickness, beta, &
temperature, nVertLevels, u, v, heatIntegral, viscosity)

double precision, intent (in) elevation(nCells)

double precision, intent (in) :: thickness(nCells)

double precision, intent (in) :: beta(nCells)

double precision, intent (in) :: temperature(nCells, nVertLevels)
integer, intent (in) :: nVertLevels

double precision, intent (out) :: heatIntegral(nCells,nVertLevels)
double precision, intent (out) :: viscosity(nCells,nVertLevels)
double precision, intent (out) :: u(nEdges,nVertLevels)

double precision, intent (out) :: v(nEdges,nVertLevels)

The corresponding C++ declaration is

void velocity_solver_XXX_ (double const * elevation_F,
double const * thickness_F, double const * beta_F,

15

double const * temperature_F, double const * nVertLevels_F,
double const * u_F, double const * v_F,
double const * heatIntegral_F, double const * viscosity_F).

16

Type Name Dimension Definition

double precision | beta (nCells) the sliding coefficient.
integer cellsOnVertex (3, nVertices) the indices of cells incident

on a vertex.
integer comm 1 id for MPI_COMM _WORLD.
double precision | elevation (nCells) the elevation at each cell center.
double precision | thickness (nCells) layer thickness at cell center.
logical verticesMask (nVertices) true if vertex should be kept.
double precision | flowfactor (nCells,nVertLevels) | the flow factor at cell centers.
double precision | heatIntegral (nCells,nVertLevels) | heat dissipation integrated

over each cell.

integer nCells 1 the number of cells,
(unknowns + ghosts).

integer nCellsSolve 1 the number of cells,
(unknowns only).

integer nEdges 1 the number of cell edges,
(unknowns + ghosts).

integer nEdgesSolve 1 the number of cell edges,
(unknowns only).

integer nVertices 1 the number of cell vertices,
(unknowns + ghosts).

integer nVerticesSolve | 1 the number of cell vertices,
(unknowns only).

integer nVertLevels 1 the number of vertical layers,
(typically 10 or 11).

double precision | temperature (nCells,nVertLevels) | temperature at cell centers.

double precision | u (nEdges,nVertLevels) | the normal velocity

at the midpoint

of each edge face of each layer.
double precision | v (nEdges,nVertLevels) | the tangential velocity

at the midpoint

of each edge face of each layer.

integer cellsOnEdge (2,nEdges) the pair of cells that share
the edge.
integer cellsOnVertex (3,nVertices) the three cells that share
the vertex.
integer verticesOnCell | (6,nCells) the six vertices of the cell
integer verticesOnEdge | (2,nEdges) the pair of vertices that are
the endpoints of the cell edge.
double precision | viscosity (nCells,nVertLevels) | the viscosity of each cell.
double precision | xCell (nCells) the x coordinate of the cell center
17 on the unit sphere.
double precision | yCell (nCells) the y coordinate of the cell center
on the unit sphere.
double precision | zCell (nCells) the z coordinate of the cell center

on the unit sphere.

Table 4.1: Glossary of MPAS/Velocity Solver Interface Variables

Chapter 5

Testing

5.1 Testing and Validation: Passing Dummy Data
Through the Interface

Date last modified: 2011/06/01
Contributors: John Burkardt, Mauro Perego

As soon as a reasonably detailed interface has been agreed upon, it will
be possible for developers on either side of the interface to test their code,
and the interface, by creating a dummy version of the program that would
normally be running on the other side of the interface.

Thus, the MPAS developers will be able to write a simple procedure for
producing “plausible” velocity values and related quantities, and to call that
procedure through the interface.

Similarly, developers of the velocity solver functions can set up main
programs that pass in a test case geometry and time evolution data.

Such trial runs enable each developer to make simple test runs of their
code in cases where the other “half” of the code is not yet available; it also
allows developers to spot situations in which the interface does not include
certain information that is required for the calculations to proceed properly.

5.1.1 Test of steady state velocity solver on greenland

In file test_steady_state_greenland the netCDF grid gis_20km.180511.nc
is read and a structured triangular mesh of greenland is obtained, calling
the function set_velocity_solver_grid. Then a SIA problem is solved
prescribing no-slip boundary conditions on the bedrock and setting a con-

18

stant flow rate A. Similarly one can solve the L1L2 model, but in this case
a robin bedrock boundary condition must be available.

19

