
My Computer Dreams of Triangles

John Burkardt
Department of Scientific Computing

Florida State University
..........

16 April 2016,
Conference for Careers and Undergraduate Research in the Natural

Sciences
University of Pittsburgh at Greensburg

..........
https://people.sc.fsu.edu/∼jburkardt/presentations/. . .

. . . mesh 2016 upg.pdf

1 / 1



Scientific Computing aka Computational Science
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A Profile (Not Mine!)
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A Profile (Not Mine!) Rotated
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A Profile (Not Mine!) Rotated and Outlined
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A Profile (Not Mine!) Rotated and Outlined and Extracted
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A Flower Grown In a Computer?

http://people.sc.fsu.edu/∼jburkardt/m src/cvt corn/step30.png
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Meshes Started with Taxation
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Triangles Measure the Earth
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A Mesh Organizes and Simplifies a Complicated View
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A Mesh Can Organize and Measure Curved Surfaces
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Computers Model Reality with Meshes
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Computers Approximate Shapes with Polygons
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Arithmetic is Easy, Geometry is Hard!
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We Can Automate the Measurements

%
% Get th e s c r e e n s i z e .
%

s c r e e n = g e t ( 0 , ’ S c r e e n S i z e ’ ) ;
%
% Use th e whole s c r e e n as a f i g u r e .
%

f i g u r e ( ’ P o s i t i o n ’ , s c r e e n ) ;
%
% C r e a t e a g r a p h i c a l c o o r d i n a t e system on t he f i g u r e .
%

a x e s ( ’ P o s i t i o n ’ , [ 0 , 0 , 1 , 1 ] ) ;
%
% The u s e r c l i c k s sample p o i n t s a l o n g t he boundary
% and t e r m i n a t e s w i t h RETURN.
%

[ x , y ] = g i n p u t ( ) ;
http://people.sc.fsu.edu/∼jburkardt/m src/hand data/hand acquire.m
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From Points We Have an outline

http://people.sc.fsu.edu/∼jburkardt/m src/hand data/hand data.png
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Polygons Are a Little Messy
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But Polygons Can Be Triangulated
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The Area of a Triangle

area(A,B,C ) = 1/2

∣∣∣∣ Bx − Ax By − Ay

Cx − Ax Cy − Ay

∣∣∣∣
= 1/2((Bx − Ax)(Cy − Ay ) − (By − Ay )(Cx − Ax))

= 1/2((8 − 4)(9 − 1) − (3 − 1)(0 − 4))

= 20
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Code for Triangle Area

Listing 1: Area of triangle

funct ion a r e a = t r i a n g l e a r e a ( ax , ay , bx , by , cx , cy )

a r e a = 0 . 5 * . . .
( ( bx − ax ) * ( cy − ay ) . . .
− ( cx − ax ) * ( by − ay ) ) ;

return
end

http://people.sc.fsu.edu/∼jburkardt/m src/triangle properties/triangle area.m
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I Can Compute The Area of My (Flat) Hand

http://people.sc.fsu.edu/∼jburkardt/m src/polygon triangulate/polygon triangulate.m
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Does a Triangle Contain a Point?

P is inside T if all three areas are positive:

Area(P,B,C)

Area(A,P,C)

Area(A,B,P)
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Computer Data Only Computed at a Few Points
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Area-Averaging Vertex Values
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We Know the Values at Triangle Vertices
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Fill Some Points in the Triangle
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Fill All Points in a Triangle
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Fill all Triangles in the Region
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MESH2D Can Create Internal Nodes

[ p, t ] = mesh2d ( v );

v, a list of boundary (x,y) coordinates;

p, the coordinates of nodes;

t, triples of nodes forming triangles.

http://www.mathworks.com/matlabcentral/fileexchange/25555-mesh2d-automatic-mesh-generation
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MESH2D: Simple ELL Mesh

v = [ 0.0, 0.0; ...

2.0, 0.0; ...

2.0, 1.0; ...

1.0, 1.0; ...

1.0, 2.0; ...

0.0, 2.0 ];

[ p, t ] = mesh2d ( v );

http://people.sc.fsu.edu/∼jburkardt/m src/mesh2d/ell demo.m
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MESH2D: Simple ELL Mesh
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MESH2D: Add Two Short Boundary Segments

v = [ 0.0, 0.0; ...

2.0, 0.0; ...

2.0, 0.25;

2.0, 0.5; ...

2.0, 1.0; ...

1.0, 1.0; ...

1.0, 2.0; ...

0.0, 2.0 ];

[ p, t ] = mesh2d ( v );
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MESH2D: Two Short Boundary Segments
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MESH2D: Set Maximum Element Size

v = [ 0.0, 0.0; ...

2.0, 0.0; ...

2.0, 1.0; ...

1.0, 1.0; ...

1.0, 2.0; ...

0.0, 2.0 ];

hdata = [];

hdata.hmax = 0.1;

[ p, t ] = mesh2d ( v, [], hdata );
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MESH2D: Set Maximum Element Size
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MESH2D: Use a Density Function

v = [ 0.0, 0.0; ...

2.0, 0.0; ...

2.0, 1.0; ...

1.0, 1.0; ...

1.0, 2.0; ...

0.0, 2.0 ];

hdata = [];

hdata.fun = @hfun;

[ p, t ] = mesh2d ( v, [], hdata );
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MESH2D: A Density Function Controls Mesh Size H

function h = hfun ( x, y )

%

% Minimum size is 0.01, increasing as we move away

% from ( 1.0, 1.0 ).

%

h = 0.01 + 0.1 * sqrt ( ( x-1.0 ).^2 + ( y-1.0 ).^2 );

return

end
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MESH2D: Ask for a Small Mesh Near the Indentation
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Apply MESH2D to the Hand Data
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Apply MESH2D to the Hand Data

http://people.sc.fsu.edu/∼jburkardt/m src/mesh2d hand/mesh2d hand.m
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A Mesh That’s Finest Near the Edge

http://people.sc.fsu.edu/∼jburkardt/m src/distmesh/p24 mesh.png
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A Mesh for the Holey Pie
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A Mesh for the Holey Pie

Is there time for a quick movie?
http://people.sc.fsu.edu/∼jburkardt/presentations/cvt movie p08 cramped.mp4
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Meshes that Adapt to Flat or Curved Surfaces

http://people.sc.fsu.edu/∼mgunzburger/
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2D: A Moving Mesh for Fluid Flow

http://people.sc.fsu.edu/∼lb13f/ 45 / 1



2D: A Mesh for Greenland Glaciers

https://cfwebprod.sandia.gov/cfdocs/CompResearch/templates/insert/profile.cfm?snl id=225708

46 / 1



21
2D: Accurate Mesh of Coastline Interfaces
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21
2D: Scan, Mesh and Classify Bones for Age-At-Death
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21
2D: Scan, Mesh and Classify Arrowheads
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21
2D: A Flatbed Scanner Only Gets One Side
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A Wrap-Around Scanner for Head-Protection Studies

http://morphlab.sc.fsu.edu/people/lab members.html
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Results of a Wrap-Around Scan

http://people.sc.fsu.edu/∼jburkardt/presentations/my head.ply

52 / 1



SCANNERS: THE MOVIE

Is there time for a another movie?
http://people.sc.fsu.edu/∼jburkardt/presentations/head scan movie.mp4
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Scientific Computing: A Calendar of Careers...

54 / 1



A New Science, A New Major, New Careers

https://www.siam.org/students/resources/report.php
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SLIDE 1/2

Today you will hear about many opportunities for careers in science. I
hope I can interest you in looking into my own area, but you may not
even have heard of it. Scientific computing, or computational science, has
only recently been recognized as its own area, and now degree programs
and separate departments are appearing in colleges across the country.

I’d like to say that if you enjoy mathematics, or computer science or any
science, but especially enjoy doing these things when there is a computer
involved, and an interesting real life problem to solve, then a program in
computational science might be worth considering.

Although my first career choice (age 6) was “farmer”, my first sensible
choice was “something about mathematics”, because I loved reading the
Mathematical Games articles by Martin Gardner.

Starting in mathematics, my interest in writing, education, programming
and research has led me to Scientific Computing, and it’s probably too
late now to make any more big changes.

56 / 1



SLIDES 3 / 4 / 5 / 6

Mathematics intrigued me because it showed that simple things like
numbers and shapes could actually have mysterious properties.

In high school, I read a math book that described a proof that it was
possible to cut a ball up into a few pieces that could be reassembled to
make two balls of the same volume as the original one.

And I read that equations like y = f (x) could not only describe lines and
parabolas and cubics - there was also a formula y = f (x) that
corresponded exactly to the profile of my own face.

I decided this was too nonsensical to believe, but I really wanted to hang
out with people who thought things up like this!

57 / 1



SLIDE 7

After getting a mathematics degree, I was working at Iowa State
University (half time research, half time running the computer lab) when
I walked into a graduate student’s office and saw a plot on his computer
screen that just didn’t make sense to me.

It was beautiful and it was mathematical. That doesn’t happen often!

My friend, Lili Ju, explained to me that this was actually an example of a
kind of mesh that organized itself, almost the way it would happen in
nature.

I’ve got to know more about this! I told him, and I spent some time
learning what he had done and how it could be used.

And I think that leads me into my story...
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SLIDE 8 / 9 / 10 / 11 /12

The Egyptians used 3-4-5 triangles of rope to resurvey the Nile banks
after floods.

The Greeks named geo-metry and trigono-metry, and Eratostenes used
this to measure the size of the Earth, the tilt of the Earth’s axis, the
distance to the sun.

Artists discovered that a complex object could be copied by viewing it
through a wire mesh, and then filling in the boxes.

The French revolution invented the meter, and then had to measure a
section of longitude in order to figure out what the meter was.

Mathematicians didn’t see any reason to divide smooth space up into
triangles, but engineers and computational scientists realized the same
lesson that artists had discovered: a complex shape may be easier to
work with if a regular mesh is used to break it into many similar pieces.
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SLIDE 13

It’s pretty easy to see how computers can be taught to count, by
turning decimal numbers into binary numbers, binary numbers into
strings of 0’s and 1’s, and 0’s and 1’s into electronic switches.

But how do I explain the shape of Mickey Mouse’s head? The area of
lake Erie? The branching pattern of a human lung?

Let’s take a shape that’s not too simple, but not so complex, and
“teach” the computer to see it.

Let’s lower our expectations, and assume that the shapes we describe will
be drawn using a sequence of straight lines. This means we’re working
with poly-gons (Greek for “many sides”).
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SLIDE 14

Using a polygon, we can still ask many interesting geometric questions,
including

perimeters,

areas,

centers of mass,

whether a point is inside or outside a shape,

the distance between a point and a shape

can I get through a maze?

how many objects can fit inside this shape?

do these two shapes fit together?

Answering these questions is sometimes easy for us - but how do we
teach the computer to do this?

61 / 1



SLIDE 15 / 16 / 17 / 18 / 19 / 20 / 21

If we have a shape outlined by straight lines, it is always possible to
regard it as a collection of triangles.

My hand is an interesting shape (at least to me). Using a program like
MATLAB, we can record points on my hand’s outline so the computer
can “see” what I see.

My hand is represented by a polygon. I don’t know a lot about polygons,
but I do know a lot about triangles. As it turns out, any polygon can be
dissected into triangles, by “slicing off one ear at a time.” And you can
teach the computer to do this.

Thanks to the Greeks, we know lots of things about triangles, such as the
area. There’s a formula for the area of any triangle with vertices A, B, C.
Using this, I can get the area of (the polygon representing) my hand.
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SLIDE 22

It is possible to get a negative area. Indeed, if A = (0,0), B = (1,4),
C = (3,2), we get area (A,B,C) = -5. Interestingly enough, area (A,C,B)
= +5.

The minus sign is telling us something very useful: the triangle (A,B,C)
has its vertices listed in clockwise order, but (A,C,B) lists them in
counterclockwise order, The sign of the area is a warning about the
orientation of the triangle.

As long as we promise to list triangle vertices in counterclockwise order,
we will have no problems with the area formula. But it turns out that
this bit of knowledge can be used to determine other information.
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SLIDE 23

Suppose I have a shape that I have turned into a polygonal outline,
and then into a collection of triangles.

And now suppose I ask whether the point P is inside the shape? P is
inside the shape (or at least the polygon) if it is inside a triangle. And it
is inside triangle ABC exactly if all three subtriangles formed by P have
positive area.

So that means we can solve the ”point inside shape” geometry problem.
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SLIDES 24 / 25 / 26 / 27 / 28

We measure temperature at a few places, but ask for its value
anywhere.

To make a good estimate, we need to take the nearest data and
somehow spread it to the query point.

If our data is on the vertices of triangles, then for any point P, we can
find the triangle containing P, and use the triangle average of the vertex
data. That is, the value at P is constructed by using the values at A, B,
and C in the proportions of the triangles PBC, APC, and ABP.

Our estimates are most accurate if the triangles are regular shaped and
relatively small.
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SLIDE 29

Triangulating the hand completely covers the internal area, but it does
so with triangles of many different sizes and shapes.

There might be reasons that we want a pattern of triangles that covers
the region more evenly in shape and size.

mesh2d is a computer program for which the user only has to describe an
outline of the region of interest, that is, a counterclockwise list of points.

We will start by asking for a simple mesh of a simple region, and then
push the code little by little to harder tasks.
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SLIDES 30 / 31 / 32 / 33 / 34 / 35 / 36 / 37 / 38

Describing the boundary of our region is easy.

MESH2D creates a simple triangular mesh.

If we add two points to the boundary, MESH2D takes the hint and
includes more triangles in that area.

We can even specify a maximum triangle size so that MESH2D will fill
up the region as we wish.

We can even specify that the triangle size changes in a way that suits us.
Here, a related program called DISTMESH makes sure we have very
small triangles near the inner corner of the region.
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SLIDES 39 / 40 / 41

We can do similar operations on the hand data.

MESH2D creates a simple triangular mesh, with many internal vertices.

We can specify a maximum triangle size of 0.025 inches.

We can specify that triangles should be small near the edges, using a
feature that MESH2D provides.
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SLIDES 42 / 43

The “computer flower” I saw on Lili Ju’s computer screen is an
example of a special mesh called a Centroidal Voronoi Tessellation
(CVT), a favorite research topic of FSU professor Max Gunzburger.

In the simplest example, you can imagine letting loose a swarm of bees
into a small room, and assume every bee wants to avoid the other bees,
and the walls, as much as possible. The resulting pattern is a CVT.

We often want meshes that are fine in some areas and coarse in others.
That feature can be included in the CVT.

CVT’s are computed using iteration; that is, we make an initial guess for
the mesh, and then repeatedly improve it. Here’s a short movie that
suggests how this works.
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SLIDES 44 / 45 / 46 / 47 / 48 / 49

Professor Max Gunzburger has investigated the creation and use of
these special meshes for regions, surfaces, and volumes.

FSU graduate student Lukas Bystricky studies the flow of fluids past
obstacles. Behind the obstacle, the fluid whips up and down, and Lukas
makes a mesh that follows the fluid action.

FSU postdoc Mauro Perego (now at Sandia lab) studies the slow flow of
the gigantic ice sheet over Greenland. In order to get good results, he
had to use detailed information about the coastline, about the height of
the land surface below the ice, and about the average ice sheet velocity
at each point.

FSU graduate student Geoff Womeldorff (now at Los Alamos lab) was
able to create meshes on the land and ocean, with very small elements
where land and ocean overlap, in order to do climate studies.

Using this idea, FSU graduate student Detelina Stoyanova was able to
estimate the age of skeletons by scanning a particular bone to create a
mesh that could be compared against a collection of such scans.

Undergraduates Marcelina Nagales and Alexa Pennavaria have used the
scanner to start a scientific scheme for classifying early North American
arrowheads by style, region, and age.
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Slides 50 / 51 / 52 / 53 / 54 / 55

FSU Professor Dennis Slice runs a geometric morphology lab. He has
always had a 2D scanner, but now he has a 3D head scanner, for research
on helmet design. FSU graduate student Alex Townsend sat me down in
the barber’s chair and promised me it wouldn’t hurt.

A laser measures hundreds of thousands of points on the head.

A computer program can then organize these points into a triangular
mesh representing the shape of the head.

You may remember that I mentioned at the beginning that mathematics
promised me that an equation for the profile of my face “existed”,
although it offered no way of discovering it. Computational Science has
produced a very reasonable result.

It’s may be just an approximation, but now I can bet my head on it!
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