
Parallel MATLAB at FSU:
Task Computing

John Burkardt
Virginia Tech

..........
https://people.sc.fsu.edu/∼jburkardt/presentations/...

matlab tasks 2010 fsu.pdf

16 April 2010

1 / 1

Parallel MATLAB: Task Computing

Task Computing

QUAD Example

KNAPSACK Example

CELL DETECTION Example

RANDOM WALK Example

Conclusion

2 / 1

Task Computing: not PARFOR or SPMD

In Monday’s talk about parfor, a single program and a single set of data
were involved. When the“client” reached a parallel loop, extra “workers”
would assist.

On Tuesday, we saw spmd programs, with separate commands to the
client and to the workers (in one program) and separate memory spaces.
Moving data between the client and workers required explicit commands.

Despite their differences, programming with parfor and spmd have
something in common; the client and the workers are simultaneously
executing one program.

3 / 1

Task Computing: Description

Today, we will consider a third technique, task computing, in which a
big job is divided into very independent tasks;

For simplicity, assume each task will be carried out by the same
MATLAB function.

Each task runs on a single processor (although there’s no need to rule
out parallelism) and has its own memory.

Tasks do not communicate while running; they start with input, they
return results upon completion.

When all the tasks are completed, it is possible to gather, analyze and
plot the combined results.

4 / 1

Task Computing: Description

You could set up 100 tasks, and run on 4 workers, for instance.

MATLAB ensures each task receives its input, gets executed somewhere,
sometime, and stores the output for later review.

Task computing is a handy way of filling up spare computer time with
“bite sized” pieces of a computation whose final result can be determined
once all the pieces have been completed.

Tasks can run on your desktop or on a cluster.

5 / 1

Task Computing: Examples

Task computing examples:

search: if the search space can be divided up into subregions
identified numerically;

Monte Carlo: if each task can be sure of generating a separate
stream of random numbers;

summation: any task involving multiple summation, multiplication,
or other operations (quadrature)

image processing: operations that can be carried out over parts of
the image; ray tracing;

6 / 1

Parallel MATLAB: Task Computing

Task Computing

QUAD Example

KNAPSACK Example

CELL DETECTION Example

RANDOM WALK Example

Conclusion

7 / 1

QUAD: Approximate integration

Here we use evenly spaced sample points and equal weights.
Other schemes vary the spacing or weights, or randomize abscissas.

8 / 1

QUAD: Approximate integration

We recall our “favorite” problem, the approximation of an integral by a
weighted sum of function values:

I =

∫ b

a

f (x) dx ≈ Q =
N∑
i=1

wi f (xi)

We could easily regard this computation as, say, 4 tasks:

Q = Q1 + Q2 + Q3 + Q4

where each Qi could be computed independently. The only
communication required would come at the end, when the Qi ’s must be
combined to form Q.

9 / 1

QUAD: Tasks and Jobs

Our basic task estimates the integral over a subinterval [ai , bi] using ni
points. We can write a MATLAB function to do this:

qi = quad_fun (ni, ai, bi)

Then our job is made up of four tasks (assume [a, b] = [0,1]!):

task 1 integrates from 0/4 to 1/4

task 2 integrates from 1/4 to 2/4

task 3 integrates from 2/4 to 3/4

task 4 integrates from 3/4 to 4/4

Each task can be expressed by specifying the appropriate input arguments
to quad task.

10 / 1

QUAD: Tasks and Jobs

So we simply “create” a job, define its tasks, and submit it:

job = createJob (’configuration’, ’local’);

n = 100001;

ni = 25001;

for task = 1 : 4

ai = (task - 1) / 4;

bi = task / 4;

task_id = createTask (job, ...

@quad_task, 1, { ni, ai, bi })

end

submit (job);

wait (job);

(The third argument to createTask, (“1”), reports the number of
outputs produced by quad task).

11 / 1

QUAD: Collecting Results

Our final integral estimate Q is the sum of the individual results.

If qi is the name of the output from the quad task function, the load
command can return a cell array containing the value of qi returned by
each task;

qi = load (job, ’qi’);

qi = cell2mat (qi);

q = sum (qi);

12 / 1

QUAD: FSU HPC Cluster

To run on the FSU HPC cluster, we run as a ”simple” job (’s’), and we
have to create the array of input arguments:

n = 100001;

task_num = 10;

ni = 1 + floor ((n - 1) / task_num);

args = {};

for task = 1 : task_num

ai = (task - 1) / task_num;

bi = task / task_num;

args{task} = { ni, ai, bi };

end

results = fsuClusterMatlab ([], [], ’s’, ’w’, ...

4, @quad_task, args)

13 / 1

QUAD: Our simplest example

QUAD demonstrates the features of task programming.

The calculation is thought of as a job.

The job is thought of as multiple tasks, with each task executed by the
same task function, using different inputs.

The job collects the output from each task function. The user can load
all these output variables, or select a particular variable.

Once loaded, the output can be analyzed, manipulated, or plotted.

14 / 1

Parallel MATLAB: Task Computing

Task Computing

QUAD Example

KNAPSACK Example

CELL DETECTION Example

RANDOM WALK Example

Conclusion

15 / 1

KNAPSACK: Problem Definition

In the classical problem, the objects have both weights and values. For
our problem, we’ll just worry about the weights!

16 / 1

KNAPSACK: Problem Definition

Suppose we have a knapsack with a limited capacity, and a number of
objects of varying weights. We want to find a subset of the objects which
exactly meets the capacity of the knapsack.

(This is sometimes called the greedy burglar’s problem!)

Symbolically, we are given a target value t, and a set W of n weights.
We want a subset S ⊂W so that:

t =
∑
s∈S

s

We don’t know if a given problem has 0, 1, or many solutions.

17 / 1

KNAPSACK: Encoding

A solution of the problem is a subset S ⊂W. Each n-digit binary string
from 0 to 2n − 1 is a code for a possible solution.

For weights W={15,11,10,8,3}, target t=24, we have:

Code Binary Code Indices S
∑

s
0 00000 {} {} 0
1 00001 {1} {3} 3
2 00010 {2} {8} 8
3 00011 {2,1} {8,3} 11
4 00100 {3} {10} 10
5 00101 {3,1} {10,3} 13
6 00110 {3,2} {10,8} 18

...
31 11111 {5,4,3,2,1} {15,11,10,8,3} 47

18 / 1

KNAPSACK: Algorithm

A simple search scheme chooses a value of code in the range 0 to 2n − 1,
decodes the subset S, adds the weights, and compares to t.

On the 23rd step of the search, we have a code of 22 = binary 10110 =
subset {5,3,2}, so a weight of 15+10+8=33, too high.

The process of checking one code is completely independent of checking
any other.

One program could check all codes, or we could subdivide the range, and
check the subranges in any order and at any time.

19 / 1

KNAPSACK: Program to do ALL Codes

function [code, indices] = knapsack_all (w, t)

n = length (w);

for code = 0 : 2^n-1

binary = bitget (code, 1:n);

indices = find (binary);

if (sum (w(indices)) == t)

return

end

end

return

end

20 / 1

KNAPSACK: A Couple Mysterious MATLAB Functions

The MATLAB function bitget returns a vector of 0’s and 1’s for positions
1 to n in code. This creates the binary string that describes the subset.

The function find returns the indices of the 1’s in the binary string.

It is exactly this string of indices that we need to use to index W and
determine the sum of weights.

As soon as we find any solution, we return. We are not trying to find all
solutions.

21 / 1

KNAPSACK: The Calculation is “Divisible”

It’s easy to see that we could divide this problem up into smaller
problems that are worked on independently.

For this problem, it’s clear that the key is to take the original range of
code, from 0 to 2n − 1, and break it into subranges.

A single function can work on the problem over the restricted subrange.
In fact, we only have to slighly modify our original code to make this new
version.

22 / 1

KNAPSACK: Task Program to do SOME Codes

function [code, indices] = knapsack_task (w, t, range)

n = length (w);

for code = range(1) : range(2)

binary = bitget (code, 1:n);

indices = find (binary);

if (sum (w(indices)) == t)

return

end

end

return

end

23 / 1

KNAPSACK: Define the Job and its Tasks

Once we’ve broken our calculation into pieces, we need to tell
MATLAB what the original calculation was, and what the pieces are that
constitute it.

We need to tell MATLAB we want to define a job that is going to carry
out a computation. This is the createjob command.

We need to tell MATLAB that the job consists of a certain number of
tasks; that each task is executed by a particular function, with particular
input. This is done with the createtask command.

24 / 1

KNAPSACK: Define the Job and its Tasks

job = createJob (’configuration’, ’local’, ...

’FileDependencies’, { ’knapsack_task’ });

w = [518533, 1037066, (more), 1259008];

t = 2463098;

i2 = -1;

for task = 1 : 4

i1 = i2 + 1;

i2 = floor ((2^n - 1) * task / 4);

createTask (job, @knapsack_task, ...

2, { w, t, [i1, i2] });

end

25 / 1

KNAPSACK: Submit the Job

With the following commands, we submit the job, and then pause our
interactive MATLAB session until the job is finished.

We then retrieve the output arguments from each task, in a cell array we
call results.

submit (job); <-- Sends the job

wait (job); <-- Waits for completion.

results = getAllOutputArguments (job);

or

results = load (job);

or

code = load (job, ’code’); <-- only load CODE

destroy (job); <-- Clean up

26 / 1

KNAPSACK: FSU HPC Submission

target = 2463098;

weights = [518533, 1037066, ... 1259008];

combos = 2^length(weights);

task_num = 4;

args = {};

hi = -1;

for task = 1 : task_num

lo = hi + 1;

hi = (task / task_num) * combos - 1;

args{task} = { weights, target, [lo, hi] };

end

fsuClusterMatlab ([], [], ’s’, ’w’, 4, ...

@knapsack_task, args)

27 / 1

KNAPSACK: Examine the results

Because your job involved multiple tasks, the output must be returned
to you in a cell array. To see output result 2 from task 3, you refer to
results{3,2}.

for task = 1 : 4

if (isempty (results{task,1}))

fprintf (1, ’Task %d found no solutions.\n’, task);

else

disp (’Weights:’);

disp (results{task,1});

disp (’Weight Values:’);

disp (results{task,2});

end

end

28 / 1

KNAPSACK: Examine the results

There are technical reasons why MATLAB uses cell arrays for many of
the objects in parallel computing.

If the stuff in your cell array is all of one numeric type, you can convert
the cell array to a normal MATLAB array, on which you can do the usual
kinds of indexing and arithmetic and so forth:

results = load (job);

numbers = cell2mat (results);

(numbers is now a (4,2) numeric array)
c = numbers(4,1) + numbers(4,2);

integral = sum (numbers(:,1));

plot (numbers(:,1), numbers(:.2));

29 / 1

Parallel MATLAB: Task Computing

Task Computing

QUAD Example

KNAPSACK Example

CELL DETECTION Example

RANDOM WALK Example

Conclusion

30 / 1

CELLS: Problem Definition

Medical researchers can film small groups of biological cells.

In some cases, an enormous number of such records are created. Rather
than having a lab worker view each frame of film, it is possible to
automatically process the images and, for most part, detect the cells,
determine the position of any given cell over a sequence of images, and
monitor the area, shape and average separation of the cells.

We will look at a simple application in which it is desired to identify cells
by surrounding each one with a white boundary.

If we have 100 image files, each image can be processed independently.

31 / 1

CELLS: A Typical Image

32 / 1

CELLS: A Typical Image with Cells Identified

33 / 1

CELLS: Problem Definition

There are some significant differences between this problem and the
KNAPSACK problem.

In the knapsack problem, the input and output for each task was a short
list of numbers.

For the CELLS problem, the input is really a graphics file, and the output
is a transformed graphics file.

This means that each task, when it runs, has to be able to determine
which unique file it should open; it needs to be able to find that file; and
it needs to know how to name the output file and where to place it.

So while the KNAPSACK tasks used the input and output arguments of
the MATLAB function for their communication, the CELLS example will
almost entirely be dealing with external files.

34 / 1

CELLS: File Names

Our input files are indexed in a natural way, starting with
AT3 1m4 01.tif and running up to AT3 1m4 99.tif.

The output files will follow a similar convention, but their names will
start with BT3.

The input filename for a given task can be computed:

filename_input = sprintf (’AT3_1m4_%02d.tif’, task);

Using the format %02d means that small integers will be left-padded
with zeros.

35 / 1

CELLS: The Task Function

For this problem, the task function will have a simple interface:

function cell_task (task)

It only needs to know the index of the file it should open, and it doesn’t
return any output - at least, not via output arguments.

So the body of this function will be:

generate input filename based on task number

open input file

process data

generate output filename based on task number

write output file

and we won’t worry about the details of processing the data!

36 / 1

CELLS: Initializing the Job

Now we need to create a job that sets up all the tasks.

Each task will need a copy of the task function, so that goes into our file
dependencies.

Each task also needs a particular input file. Do we want to list all 99 of
them? Let’s try not to! Instead, we’ll ensure that each task begins
execution in the directory containing the input files.

This means we initialize the job with this simple statement:

job = createJob (...

’configuration’, ’local’, ...

’FileDependencies’, { ’cell_task’ });

37 / 1

CELLS: Defining the Tasks

Now we must load up our job with tasks. But for this example, that’s
extremely simple!

for task = 1 : 99

task_id = ...

createTask (job, @cell_task, 0, { task });

end

Remember, the 0 indicates there are 0 output arguments,
and { task } is the single input argument to the given task.

38 / 1

CELLS: Defining the Tasks

To run this job, we can simply type:

submit (job);

wait (job);

(no need for load (job); because there’s no output!)

destroy (job);

Assuming things went OK, the output files are in our directory!

39 / 1

CELLS: HPC Execution

On the FSU HPC cluster, we must use the fsuClusterMatlab()
command to set up and execute the tasks.

Recall that this command has the form

results = fsuClusterMatlab (outputdir, moabopts,

’p/m/s’, ’w/n’, workers, @function, {args})

The only tricky part about this is the {args} object. For task computing,
this contains a separate set of input values for every task, in other words,
it’s really { {args1}, {args2}, ... {argsn} }!

40 / 1

CELLS: HPC Execution

args is a cell array whose entries are cell arrays! It looks like this:

args = { {1}, {2}, {3}, ..., {98}, {99} }

and we can create and fill up args this way:

args = {}

for task = 1 : 99

args{task} = {task};

end

Then we are ready to submit the job to run on 4 workers:

results = fsuClusterMatlab([],[],’s’,’w’,4, ...

@cell_task, args)

The ’s’ means this is a “simple” job (multiple separate jobs), that is,
what I’ve been calling a task computation.

41 / 1

Parallel MATLAB: Task Computing

Task Computing

QUAD Example

KNAPSACK Example

CELL DETECTION Example

RANDOM WALK Example

Conclusion

42 / 1

WALKS: Problem Definition

The classic example of a random walk places a person at the origin. The
person then flips a coin, and takes one step to the left or right, repeating
this process as long as desired.

Surprisingingly, random walks are models of many physical processes, and
their simulation and analysis can give insight to situations where there
are no exact methods available.

A variation of this problem is the self avoiding walk in 2D, in which the
person is allowed to move over a 2D lattice, but can never visit the same
place twice.

Because the path never crosses, this walk can be thought of as a simple
model of a protein folding. Self avoiding walks of a fixed length could
represent possible shapes of the protein.

43 / 1

WALKS: A Self Avoiding Walk / Abstract Protein

44 / 1

WALKS: Sampling a Huge, Unruly Space

Our idea is to generate lots of different self avoiding walks. Since the set
is extremely large, we rely on the random number generator to make our
choices. A different initial seed should almost always give a different
walk. The actual number of possible walks can easily exceed the number
of possible seeds!

Our samples might give us

an estimate for the typical distance between the start and end;

the typical distance of the starting point to the “boundary”;

number of empty lattice points in the convex hull of the walk;

the likelihood a walk will terminate early;

45 / 1

WALKS: The Task Code

function [step_num, dist] = walk_task (step_max, seed)

The task uses seed to initialize rand() by:

rand (’twister’, seed);

Then it tries taking step max self-avoiding steps from the origin.

The walk terminates early if all four neighbors have already been visited.
Otherwise, we move to a random unvisited neighbor.

The function returns the actual number of steps taken, and the final
distance from the origin.

46 / 1

WALKS: The Job Code (1)

The job code must decide how many walks are to be generated, and
how many steps they are to take. It chooses random number seeds for
each task, so there is no repetition of computation.

walk num = 100;

step max = 200;

for task = 1 : walk num

seed = 123456789 + task;

task id = createTask (job, ...

@walk task, 2, { step max, seed });

end

The value 2 indicates each task returns 2 output arguments.

47 / 1

WALKS: The Job Code (2)

The job code submits the job, and waits for it to finish and collects the
results:

results = getAllOutputArguments (job);

Now we want to plot the results. This is tricky, because results is a 100 x
2 cell array. We’ll convert it into a standard MATLAB array:

results = cell2mat (results);

Once results is a normal numeric array, we can do a scatter plot of steps
versus distance, or even a least squares fit to the data.

48 / 1

WALKS: The Job Code (3)

49 / 1

CELLS: HPC Execution

On the FSU HPC, we need to make a cell array, containing walk num
pairs of arguments:

args = {};

for task = 1 : walk_num

seed = 123456789 + task;

args{task} = { step_max, seed };

end

and then we submit the job:

results = fsuClusterMatlab ([], [], ’s’, ’w’, 4,...

@walk_task, args)

50 / 1

Parallel MATLAB: Task Computing

Task Computing

QUAD Example

KNAPSACK Example

CELL DETECTION Example

RANDOM WALK Example

Conclusion

51 / 1

CONCLUSION: Summary of Examples

Our examples suggest the computations suitable for task programming.

QUAD is so simple we have used it with parfor, spmd and tasks.

In KNAPSACK, we had to figure out an encoding, and we gave each
task a subrange of the full problem. We had thousands of codes to
check, but we assigned a large subrange of codes to each task (rather
than generating thousands of tiny tasks!)

In CELL, each task worked on a file, and there was no input or output,
except that each task knew its index.

In RANDOM WALK, we had to ensure that each task received a unique
random seed, and we had to gather the data up at the end and plot it.

52 / 1

CONCLUSION: Summary of Task Computing

This kind of parallel programming is quite different from the usual kinds.
Each task is assigned to a single processor. Tasks could run sequentially
on the same processor, simultaneously on different processors, or in many
other combinations.

Tasks do not communicate, except that they receive an initial input from
the job, and send their output results back to it.

In our examples, every task had the same “signature”, but a job could
include tasks with different task functions, different numbers and types of
input and output. That’s why a cell array is necessary to deal with
arbitrary output!

It’s even possible for any task to use parfor and run in parallel on several
processors, but that’s well beyond our concerns right now!

53 / 1

CONCLUSION: Where is it?

The Parallel Computing Toolbox is installed on the HPC login nodes (2
licenses each) and there are 16 DCE licenses on the HPC compute nodes.

For the first presentation of this talk, FSU’s Department of Scientific
Computing received 20 extra, temporary licenses for the Parallel
Computing Toolbox.

It was available on classroom machines class01 through class10 and the
public machines hallway-b through hallway-f, and valid through 16-21
April 2010.

It was run from the commandline by typing
/scratch/R2010aTrial/bin/matlab

54 / 1

CONCLUSION: Where is it?

The temporary license includes lots of extras!:

Curve Fitting Toolbox

Image Processing Toolbox

Optimization Toolbox

Parallel Computing Toolbox

Signal Processing Blockset

Signal Processing Toolbox

Statistics Toolbox

Symbolic Math Toolbox

55 / 1

CONCLUSION: Where is it?

MATLAB Parallel Computing Toolbox User’s Guide 5.0
www.mathworks.com/access/helpdesk/help/pdf doc/distcomp/...
distcomp.pdf

FSU HPC web site: www.hpc.fsu.edu/

Gaurav Sharma, Jos Martin,
MATLAB: A Language for Parallel Computing,
International Journal of Parallel Programming,
Volume 37, Number 1, pages 3-36, February 2009.

http://people.sc.fsu.edu/∼jburkardt/m src/m src.html

quad tasks
knapsack tasks
cell detection tasks
random walk 2d avoid tasks

56 / 1

