An Overview of Flow Optimization Using
Sensitivities

https://people.sc.fsu.edu/~jburkardt /presentations/flow_optimization.pdf

John Burkardt
Mathematics Department
Iowa State University, Ames, lowa

February 1, 2024

1 The Navier Stokes Equations

The steady incompressible flow of a viscous fluid in a two dimensional region
may be completely described by three state functions: the horizontal velocity
u(x,y), vertical velocity v(z,y), and pressure p(x,y).

Because they represent the behavior of a physical fluid, the functions u, v,
and p obey certain physical laws. Given our assumptions about the problem,
we will find it appropriate to assume that these flow functions satisfy the Navier
Stokes equations for stationary incompressible viscous flow at every point (x, y)
within the flow region .

These equations may be written as:
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The parameter R in Equations (??) and (?7) is the inverse kinematic vis-
cosity. With appropriate scaling, we can take R to be the Reynolds number for
this problem. Physically, the Reynolds number is known to have a strong in-
fluence on a flow; its value determines the balance of momentum and diffusion,
and controls the onset of turbulence in the flow. Mathematically, R controls
the relative weight of the nonlinear terms; as R increases, the equations become
harder to solve.

If we are interested in the exact size and form of the influence of R on
the solution (u,v,p), then we can differentiate the state equations (and any



boundary conditions) with respect to R, interchange the order of differentiation
where desired, to arrive at the first order sensitivity equations. The horizontal
momentum equation becomes:
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with a similar equation for vertical momentum, while the continuity equation

becomes:
8uR 6vR

Or Ay
Note that these equations will be easier to solve than the state equations;
they are linear, and the left hand side operator is identical to that of the Newton
increment equations, meaning the only new coding required is for evaluating the
right hand sides.
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2 The Driven Cavity

To complete our problem formulation, we choose the physical region and bound-
ary conditions known as the driven cavity. A viscous fluid is contained in a (two
dimensional) square region with sides of length 1. The sides and bottom of
the region are no-slip walls. Along the top of the region, some tangential force
impels the fluid to move from left to right with a given speed Utop.

Peterson [?] chose this problem for a study of the reduced basis method.
There, the focus was on using the reduced basis method to compute flow solu-
tions for high values of R. The Newton method requires a very good starting
estimate for convergence at high R, and so the usual solution method involves
calculating flow solutions at a lower, but increasing sequence of values of R, with
each new flow solution used as the starting estimate for the Newton iteration
at the next value of R. Such a procedure can become unacceptably expensive
for high R. Peterson showed that, at values of R as high as 5,000, a problem
requiring as many as 463 standard basis vectors could be solved with just 5
reduced basis vectors.

3 Comparing Taylor Polynomials and Reduced
Basis Solutions

The reduced basis method may be viewed as a generalization of the Taylor
series approximation. The main difference is that instead of using Taylor’s the-
orem to compute the coeflicients of the basis vectors, the reduced basis method
determines them by a finite element calculation.

The main limitation of a Taylor series is that the approximating power is
very local, and rapidly deteriorates as some power of the distance from the point
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Figure 1: The computed velocity for a driven cavity with R



where the series was generated. In contrast, the reduced basis method approxi-
mation seems to produce good, regular results over a much greater interval. To
test these claims, we compared the power of both methods at a variety of values
of R.

Although the full flow problem has three variables, the pressure is of lesser
interest. We will concentrate on the velocities, (u,v), which we may also write
as u.

Let us suppose that at some parameter value Ry, we have a flow solution
u(Ry), and the first n partial derivatives of the flow solution with respect to R,
beginning with u’(Rp). Then for small perturbations AR, we may use the n
term Taylor polynomial to approximate the flow solution u(Ry + AR).

The Taylor approximation has certain typical behaviors:

e For values of R “sufficiently near” Ry, the approximation error can be
decreased by increasing n;

e For any fixed value of n, the error tends to rise as AR increases, as the
n + 1 power of AR.

For the following table, the base parameter value Ry = 100 was chosen, at
which point the full basis solution ugr(Rg) was computed, along with the first
5 Taylor vectors and reduced basis vectors. Then, for a sequence of increasing
parameter values R, the full basis solution upy(R) was computed, as well as
the Taylor approximant urg,(R) and the reduced basis solution ugg(R). The
relative error of the Taylor approximant was computed as the ratio

[uray (R) —urpr(R)]
lurr (Rl

(6)

with a similar ratio used for the reduced basis. Both approximation methods
were studied with the number of vectors varied from 0 to 5. The results are
summarized in Table (?77?).

There are several things to note about the data in this table. First, for the
Taylor data, we see that increasing n reduces the relative error for R = 150 and
R = 200 but has little effect at R = 250 and actually begins to increase the error
thereafter. This suggests that we can only make accurate Taylor approximations
close to the base parameter value.

By contrast, the reduced basis data seems more robust. Even at R = 400,
we can increase the value of n to decrease the relative error. Moreover, the
error made by the reduced basis is generally less than that made by the Taylor
polynomial for values of n exceeding 1.

This data tends to confirm the suspicion that the Taylor approximating space
is itself good, but that the prescribed coefficients can be improved as we move
away from the base parameter value.

Certain points are raised by the graphical comparison of the approximation
behavior for the Taylor and reduced basis schemes. First, we note that the
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Figure 2: Re = 150.
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Figure 3: Re = 200.
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Figure 4: Re = 250.
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Figure 5: Re = 300.
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Figure 6: Re = 350.
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Figure 7: Re = 400.
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Figure 8: Order 0.
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Figure 10: Order 2.
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Figure 11: Order 3.

14

400



35

0.5

"taylord dat" -e—
"reducedd. dat" -+

0
100

150

200 250

Figure 12: Order 4.

15



8 T T T T T

"taylorb.dat" -e—
"reduceds dat" -+~

0
100 150 200

Figure 13: Order 5.

16



Table 1: Comparison of Taylor and Reduced Basis Approximation Errors.

Value of R: 150 200 250 300 350 400
lupr] 0266 0271 0274 0278  0.280  0.282
Taylor

NTay
0 1.10e-1 1.99e-1 2.68e-1 3.21e-1 3.64e-1  3.97e-1
1 3.04e-2 9.98¢-2 1.85e-1 2.78¢-1 3.75e-1 4.75e-1
2 9.66e-3 6.79e-2 1.96e-1 3.95e-1 6.64e-1  1.00
3 2.56e-3 3.28e-2 1.38e-1 3.7le-1 7.86e-1 1.44
4 1.28e-3 3.41e-2 2.09%-1 T7.16e-1 1.82 3.87
5 3.05e-4 1.69e-2 1.69e-1 8.31le-1 2.79 7.34

Reduced Basis
Nrp
0 1.10e-1 1.99e-1 2.68e-1 3.21e-1 3.64e-1 3.97e-1
3.15e-2  1.05e-1 2.0le-1 3.10e-1 4.32e-1 5.60e-1
5.64e-3 3.14e-2 7.08e-2 1.13e-1 1.53e-1 1.90e-1
1.56e-3 1.51e-2 4.64e-2 9.21e-2 1.48e-1 2.1l1e-1
3.60e-4 5.90e-3 2.21e-2 4.71e-2 7.75e-2 1.08e-1
7.86e-5 2.31e-3  1.18¢-2 3.14e-2 6.07e-2 9.86e-2

U W N =

Taylor scheme is only guaranteed to have good approximation properties in
some “small” neighborhood of unspecified size. Yet the graphs suggest that
the neighborhood of R = 100 extends to the right at least to R = 200. How
can we explain such a large range for the approximation? It turns out that an
answer is fairly easy to find; the solution curve for this problem is surprisingly
“flat”, as evidenced by the [, norms of the velocity sensitivities. The zero order
sensitivitity is 500 times larger than the first order, which is 100 times larger
than the second order, and the norms continue to decrease with higher order.
This suggests that we must take a very large step AR indeed before the higher
order sensitivities will be multiplied by scale factors large enough to affect the
zero order sensitivity.

Table 2: [, Norms of Velocity Sensitivities at R=100.

Order: Norm
1.00
1.65e-3
2.01e-5
4.08e-7
9.63e-9
4.23e-10

Tk W N~ O

Note that this result is a special property of the particular Navier Stokes
problem being solved. For problems which are much more nonlinear, we would
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expect at least a few of the early order derivatives to be of comparable magnitude
to the zero order sensitivity, and this would in turn make Taylor approximation
more liable to early breakdown.

It is not so easy to answer a similar question about the reduced basis method.
If the Taylor approximation breaks down after a while, why does the Taylor
space itself still provide a good approximation? We see from the graphs that,
at least for the basis solution at R=100, the reduced basis method is able to
produce approximations still valid at much higher Reynolds numbers than the
Taylor method; moreover, the low order approximations can be improved by in-
creasing the approximation order Ngrp, which is not true for the Taylor method
after about R=200.

Researchers have been able to show analytically why the reduced basis
method produces a good result when quite near the base solution, but have not
been able to address the question of why the approximation can be extended
over such a wide range.

4 Flow Optimization Using a Reduced Basis

The problem of flow optimization requires the determination of parameter values
that specify a flow which in turn produces the “best” value of some special
scalar quantity. For our purposes, we may pose this problem as the search for
the parameter value A* for which the corresponding flow (u, v, p)(\*) produces
the minimal value of the cost function J(u,v,p, ). We may regard (u,v,p) as
determined by A, and consider the equivalent cost function J ().

To efficiently solve this problem using optimization software, it is necessary
to evaluate both J and the partial derivatives such as J, and J for many
argument values. This in turn requires that for many values of A, the state and
sensitivity equations for (u,v,p) be solved.

An optimization problem was set up and solved using the standard finite
element basis, and then again using the reduced basis. The formulation began
with the driven cavity problem. The parameter, as before, was the Reynolds
number R. The cost functional was the integral of the square of the difference
between the computed and desired flow profiles along the vertical bisector of
the region:

TN = /:0 5(U(/\) —u”)? + (v(A) —v")* dy (7)

The desired flow profile data (u*,v*) was generated by setting R* = 100 and
solving for the corresponding flow. The optimization procedure was then begun
with a starting guess Ry = 1. Table 77 lists the sequence of iterates produced
during this optimization.

The optimization was repeated using the reduced basis. A full solution
was computed at R = 1, the reduced basis was set up there, and then the
reduced problem was used to evaluate the cost functional. By this means, the
optimization code was able to reach R = 95, at which point it signaled that no
further progress could be made. This was taken to be a signal that the reduced
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Table 3: Optimization Results for Full System.

Step R J(R)

0 1.0000  4.99e-3

) 1.0111 4.99e-3

10 6.1167  4.49e-3

15 100.0002 1.68e-14
Convergence

basis should be regenerated. The optimization was restarted from this point,
and quickly converged to the desired minimizing value of R.

Table 4: Optimization Results for Reduced System.

Step R J(R)
0 1.0000  4.99e-3
5 1.0350  4.98e-3

10 12.0375  3.93e-3
15 95.30091  1.99e-5
20 95.30003  1.99e-5
Restart
21 95.30003  1.00e-5
25 95.30050  1.00e-5
30 95.51940  9.14e-6
31 95.77294  8.13e-6
32 97.47383  2.89e-6
33 99.63274  6.10e-8
34 99.99644  5.79e-12
Convergence

A cursory comparison of the tables shows that the reduced basis method
took more steps than the full method. However, the reduced basis method
steps are drastically cheaper; there are only 5 nonlinear equations to solve for a
state solution, and only a 5 by 5 matrix to invert during the Newton iterations.
In contrast, the full system involved 3803 equations, with a matrix of 3803 rows
and a bandwidth of 385.

In fact, the major cost for the reduced basis method was in starting and
restarting, where the full basis system had to solved.

5 Conclusions
The reduced basis method is fairly easy to implement in a pre-existing finite

element code, since the reduced basis method itself can be viewed as a finite
element method with a special basis.
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When approximating points along a solution curve, the reduced basis method
can be much more robust than the Taylor method, producing acceptable solu-
tions far away from the starting point, which can be improved by increasing the
degree of the approximation.

The reduced basis method can also be applied to optimization problems,
where the primary computational cost is that of repeated system solutions. By
steeply cutting this cost, the reduced basis method can solve the same problem
much more quickly. To check the accuracy of the result, however, the reduced
basis should be regenerated at the optimization candidate, and the optimization
restarted once.

For the simple driven cavity problem studied here, the generation of the
appropriate reduced basis vectors was easy. This may not be the case when
other parameters are varied. Such parameters might control the magnitude or
shape of the boundary condition function, or of a source term in the equations.
In such cases, a low-order reduced basis system could be generated by finite
differences. A second approach would be simply to generate the reduced basis
vectors associated with the parameter R. These still represent possible behaviors
of the fluid, and may yield a usable approximation to other flows, although
without the approximating power available in the usual Taylor space.
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