Python #12
Characters, Strings, Text

Location: https://people.sc.fsu.edu/~jburkardt/classes/python_2022/python12/pythonl2.pdf

Freely adapted from the Python lessons at https://software-carpentry.org/

String data is a standard Python data type;

Strings are somewhat similar to an array of characters;
The print () function has many useful options;

A program can read and respond to interactive user input;

1 Strings

In Python, any text delimited by single or double quotes is a string. By text, we usually mean a sequence of
characters. And by character, we think of alphabetic letters, numbers, punctuation marks, blanks, symbols
and some more obscure items. Here are some examples of characters:

)A)

)7J

)&J

In

"o a single quote has to be delimited by double quotes!
’\t’> a TAB

’\n’ a new line

’\r’ a carriage return

’\\’ a backslash

A string is a sequence of characters, and has the type <class ’str’>. A string is similar to (but not the
same as an array or list of characters. Thus, if we define a string s = *A flock of seagulls’ then we
can examine any substring we like by the usual indexing;:

A flock of seagulls’
0123456789012345678

s[0:4] is ’A f1°
s[6:16:2] is ’ko_eg’
s[-1] is ’s’

2 Character < Integer Conversion

The ASCII character set contains 256 characters, indexed from 0 to 255. The most common characters are
in the first half of the table, which is given below:

dec hex oct char dec hex oct char dec hex oct char dec hex oct char
0 0 000 NULL 32 20 040 space 64 40 100 @ 96 60 140 *
1 1 001 SOH 33 21 041 ! 65 41 101 A 97 61 141 a
2 2 002 STX 34 22 042 " 66 42 102 B 98 62 142 b
3 3! 003 ETX 35 23 043 # 67 43 103 C 99 63 143 c
4 4 004 EOT 36 24 044 $ 68 44 104 D 100 64 144 d
5 5 005 ENQ 37 25 045 % 69 45 105 E 101 65 145 e
6 6 006 ACK 38 26 046 & 70 46 106 F 102 66 146 £
7 7 007 BEL 39 27 047 ' 71 47 107 G 103 67 147 g
8 8 010 BS 40 28 050 (72 48 110 H 104 68 150 h
9 9 011 TAB 41 29 051) 73 49 111 | 105 69 151 i
10 a 012 LF 42 2a 052 * 74 4a 112 J 106 6a 152 j
11 b 013 VT 43 2b 053 + 75 4b 113 K 107 6b 153 k
12 c 014 FF 44 2c 054 7 76 4c 114 L 108 6¢ 154 |
13 d 015 CR 45 2d 055 - 77 4d 115 M 109 6d 155 m
14 e 016 SO 46 2e 056 . 78 4e 116 N 110 6e 156 n
15 f 017 SI 47 2f 057 / 79 af 117 (o] 111 6f 157 o
16 10 020 DLE 48 30 060 0 80 50 120 P 112 70 160 p
17 11 021 DC1 49 31 061 1 81 51 121 Q 113 71 161 q
18 12 022 DC2 50 32 062 2 82 52 122 R 114 72 162 r
19 13 023 DC3 51 33 063 3 83 53 123 3 115 73 163 s
20 14 024 DC4 52 34 064 4 84 54 124 T 116 74 164 t
21 15 025 NAK 53 35 065 5 85 55 125 U 117 75 165 u
22 16 026 SYN 54 36 066 6 86 56 126 \" 118 76 166 v
23 17 027 ETB 55 37 067 7 87 57 127 w 119 77 167 w
24 18 030 CAN 56 38 070 8 88 58 130 X 120 78 170 X
25 19 031 EM 57 39 071 9 89 59 131 Y 121 79 171 Yy
26 la 032 SUB 58 3a 072 g 90 S5a 132 z 122 7a 172 z
27 1b 033 ESC 59 3b 073 3 91 Sb 133 [123 7b 173 {
28 1c 034 FS 60 3c 074 < 92 5c 134 \ 124 7c 174 |
29 1d 035 GS 61 3d 075 = 93 5d 135 | 125 7d 175 }
30 le 036 RS 62 3e 076 > 94 Se 136 A 126 7e 176 i
31 1f 037 us 63 3f 077 7 95 Sf 137 _ 127 7f 177 DEL
www.alpharithms.com

Python offers two functions, ord() and chr(), which can convert between the ASCII index of a single
character and the character itself. For example:

ord(’ ’) = 32 chr(32) =’
ord(’0’) = 48 chr(48) = 0’
ord(’1’) = 49 chr(49) = ’1°
ord(’A’) = 65 chr(65) = ’A’
ord(’Z’) = 90 chr(90) = 2’
ord(’a’) = 97 chr(97) = ’a’

This is only a mapping between the ASCII indices and the ASCII characters. It will not convert the integer
1234 into the string ’1234’. For that, we will need to learn about the str() function, coming shortly.

As an example of using the ord() function, we can print the index value for each character in a string:

for ¢ in ’Monty Python’:
print (> ord(’ 4+ ¢ + ’) =, ord(c))
end{lstlisting}

\section{Concatenation}

We can make a new string using the {\bf{+}} operator to paste several strings together.
\begin{lstlisting }[numbers=none|

rng = np.random.default_rng ()

for i in range (0, 6):
day = rng.choice ([’Monday’, ’Wednesday’, ’Friday’ |)
time = rng.choice ([’10:00am’, ’noon’, ’2:00pm’, ’4:00pm’])
appointment = time + ’ ’ + day

print (appointment)

3 Number to string

We often need to create a string that combines character and numeric data. This might be for a plot title, a
filename, a date or time. The str() function can do this conversion, and, in the case of real numbers, tries
to make an intelligent decision about how many digits to use.

Suppose we wished to stored data in a sequence of files, with titles like ’journal _1900.txt’, ’journal_1901.txt’
and so on. We can generate the years with a for loop, and then combine them with the character data, as
follows:

for date in range (1900, 1906):
s = ’journal_.’ 4+ str (date) 4+ ’.txt’
print (° 7’ 4+ s + ’” was published in ’, date)

If, instead, we are generating plots of some iteration involving the real parameter theta, we may want to
generate a corresponding name for each plot. Again, we can use str():

for theta in [0.0, 0.25, 0.50, 0.75, 1.00]:
s = ’'theta_’ + str (theta) 4+ ’.jpg’
print (° 7’ 4+ s 4+ ’” is an image of data for theta = ’, theta)

Recall that in one of our earlier exercises, we had to deal with a set of files ranging from inflammation-01.csv
to inflammation-12.csv. Clearly, simply using str() will give us some wrong names. In particular, we will
generate the name inflammation-1.csv. And if, instead, we specify a leading ’0’ in the string, we will instead
generate some wrong file names like inflammation-012.csv.

What we want, in this case, is to tell str() to convert an integer to a string, but to make sure that that
string is 2 characters in width. If it would be less than that, then an initial ’0’ should be inserted to fill it
out. The somewhat cumbersome function str() .z£i11() will do that, if we specify the number to convert
as the first argument, and the width of the output string as the second argument:

for i in range (5, 15):
filename = ’inflammation—’ + str (i).zfill (2) + ’.csv’
print (* file #’, i, ’is 7’ 4 filename + 7’)

If we had used a second argument of 3, then our first filename would be inflammation-001.csv and our last
would be inflammation-012.csv. The important reason for doing this is that then an alphabetical list of the
files will correspond to their numerical order.

4 Upper case, lower case, title case

The alphabetic characters come in two flavors, uppercase and lowercase. Sometimes it is desirable to force
an alphabetic character or string to have a specific case. This can be done with the functions lower () and
upper. For example,

sl ’ My name is Elmer! ’

s2 sl.lower ()
s3 sl .upper ()
s4 sl.title ()

Here, the title() method capitalizes each word.

5 Removing or replacing blank characters

We might want to remove all initial and trailing blanks from a string. In that case, we use the .strip()
method. If we only want to remove blanks on the left (initial blanks) or right (final blanks) we use .1strip()
or .rstrip() respectively.

sl ’ My name is Elmer! °

sb sl.strip ()
s6 sl.rstrip ()
s7 sl.lstrip ()

We might want to remove all blanks from a string. In that case, the .replace() method can be called,
listing the string to be removed, and its replacement. In this case, we want to replace space, ’ ’, with an
empty character 7. The .replace() method is actually much more general, and can replace any given
character by another.

sl = My name is Elmer! °
s8 = sl.replace (7 7, 77)
s8 = sl.replace (> 7, ’_7
s10 = sl.replace (’e’, ’Z’)

6 How strings are not like arrays

In most ways, a string can be regarded as an array or list. In particular, we can use indexing to identify a
particular character or a consecutive sequence of characters in the string.

One of the common operations in a string is to directly modify an entry. For instance, we might have an
array like

‘ prime = np.array ([2, 3, 5, 7, 11, 15, 17 |)

and realize that we made a mistake. To correct it, we write

‘ prime [5] = 13

Similarly, we might have written

city = ’Pittzburgh’

in which case we’d be tempted to try to correct this by

city [4] = ’s’ # Warning! This won’t work!

Such a statement will result in a warning from Python that strings are immutable. For our purposes, that
just means that to change a string, we have to create a new one

‘ city2 = city [0:4] 4+ s’ + city [5:] ‘

or simply redefine it correctly

‘city — O PhtrEbungh ‘

To add the state, however, we can simply concatenate:

‘ city = city + ’, Pennsylvania’ ‘

which is legal because it does not use indexing to try to change the string.

7 Comparison

Alphabetical order means that we can say that one alphabetic character is less than, equal to, or greater
than another. (In fact, this is true for any characters, not just alphabetic ones.) This ordering depends on
the ASCII table, so if the ASCII index of character ¢; is lower than that of character co, then it is true that
c1 < co. This means, in particular, that

YA < B’
AT <
B’ < ’a
0’ < YA
& < 50

Our primary interest in this fact is that, if we are given a set of characters or strings, we can use this
alphabetic ordering to sort them. Given a bunch of file names, we can place them in alphabetic order, by
comparing individual characters one by one.

From what we have said, we only know how to compare characters ¢; and ce. Suppose we are given, instead,
two strings, possibly of different lengths. How do we determine if s; < s2, or s == s3, or 51 > 537
You should be able to write a short function that takes as input two strings and returns the result of this
comparison!

8 Printing a value with a label

The Python command print () can display information about almost any Python object. We are used to
printing variables, vectors, arrays, and strings, and seeing their values:

x =mnp.array ([[1,2]; [3,4] 1)
print (x)

We can also print the value of an expression. Here we create a vector of values:

‘ print ([xx5 for x in range (0, 4)]) ‘

or information about a built-in function

‘ print (print) ‘

However, we need to know a little more about the print() command in order to create neat, informative
reports. A common task is to print the value of something, along with a descriptive label. For instance, we
may wish to print out the square root of 10 along with a label. There are several ways to do this:

print (’The square root of 10 =’, np.sqrt(10))

print (’The square root of 10 = %f’ % (np.sqrt(10)))

print ('The square root of 10 = %4.2f’ % (np.sqrt (10)))

s = ?The square root of {value:d} is {root:.2f} to two decimal places.”

UL W N

print (s.format (value = 10, root = np.sqrt (10)))
s = ”?The square root of 10 =7 4+ str (np.sqrt(10))
print (s)

9 Printing a table neatly

Suppose we want to print a table of the powers of the first 10 integers, something like this:

nn"2 n°3 n~4
1 1 1 1
2 4 8 16
3 9 27 81

10 100 1000 10000

Generating the data is no problem, but printing it in a neatly lined up format is harder. Let’s start with
this first try:

print ('n n"2 n"3 n"4’)
for n in range (1, 11):
print (n, nxx2, nx%3, nxx4)

The table does indeed get printed out, but instead of seeing neat columns we see ragged lists of values that
don’t line up. We know that column 1 needs at most 2 spaces, while columns 2, 3 and 4 need 3, 4, and
5 spaces at most. We can use the symbolic print statement in which the place of each numeric value is
indicated by a format string beginning with a percent sign, then an indicator of the number of places to be
used, followed by a d to indicate that these are integers. Remember that, in such a print out, the symbolic
string is followed by a percent sign, and then a list of values to be printed, enclosed in a separate set of
parentheses. Setting this up is a little more troublesome, but we get a table that is readable, rather than

ugly:

print (> n n"2 n"3 n"4’)
for n in range (1, 11):
print ('%2d %3d %4d %5d’ % (n, nxx2, n**x3, nkx4d))

10 More about format strings

As we saw above, one way to control how a variable is printed is to use a format.

The simplest format for an integer is %d which simply indicates that an integer is to be printed. If the
corresponding value is real, then it will be rounded when printed.

Especially when you want data to appear in columns, you want each value to occupy a specify number of
spaces. The format %4d indicates that the corresponding integer value is to be printed using four spaces. If
the integer is less than 1000, then one or more blanks will be printed initially.

In some contexts, instead of leading blanks, you want leading 0’s. The format %03d, by starting with a ’0’,
indicates that integer values should occupy 3 spaces, and be padded with initial zeros, if necessary.

print (> I have %d brothers and %d cats’ % (3, 12))
print (’A circle of radius 10 has area roughly %d’ % (10 * np.pi))
for i in range (1, 5):
print (% %2d %4d’ % (i, i*x*x2, ixx4))
for i in range (1, 5):
print (’%01d %02d %04d’ % (i, i*%2, ixx4))

Real or decimal numbers can be printed in exponential format, floating format or general format. Exponential
format is allowed to print the value in scientific notation; floating format prints all the whole digits of the
value, and may include some decimal values; the general format makes the better choice between exponential
format (for very large and small values) and floating format (for values not too small or large).

A real number format will involve the symbol ’e’; 'f’) or ’g’, possibly preceded by a value of the form s.d
where s is the total number of spaces to be used to print this number, and d is the number of spaces reserved
for the decimal part. If there is no s.d value, then the number is printed with default values. If 4 is omitted,
then a default number of decimals will be used.

Typical formats might be %12.4e, %16.2f, or %15g. Consider the results of the following:

print (> The value of pi is’, np.pi)

print (° The value of pi is %g’ % (np.pi))
print (> The value of pi is %5.3g” % (np.pi))
print (> The value of pi is %5.3f % (np.pi))
print (> The value of 5710 is %e’ % (5xx4))
print (> The value of 5710 is %f> % (5x%x4))
print (° The value of 5710 is %g’ % (5*x4))

Strings have a very simple format symbol of s. If a specific number of spaces are to be allocated to the
string, then this value precedes the s. By default, the string will be printed so that it terminates at the
rightmost. If the string is shorter than the number of spaces, the remainder will be blank. If it is longer,
then the whole string will be printed, but will extend further than expected.

print (> First Last name Age’)

print (—)

print (' %8s %10s %A’ % (’Viktor’, ’Frankenstein’, 35))
print (> %8s %10s %d’ % (’Andy’, 'Warhola’, 45))

print (' %8s %10s %’ % (’Engelbert’, 'Humperdinck’, 55))

If you prefer strings to be “left justified”, that is, to start at the first space that is allocated, simply precede
the number of spaces by a minus sign:

print (’ First Last name Age’)

print (~ —

print (> %8s %—10s %d’ % (’Viktor’, ’Frankenstein’, 35))
print (° %8s %—10s %d’ % (’Andy’, ’'Warhola’, 45))

print (> %8s %—10s %d’ % (’'Engelbert’, ’Humperdinck’, 55))

It is often advisable to print a string with quotes, to delimit it from other text. This is especially useful
when a filename or plot title is displayed:

)

‘ print (Graphics saved as 7’ 4+ filename + 7)

11 Combining several print statements on one line

Normally, the output of each print statement shows up on a new line. This is because each print statement
automatically includes a new line character at the end. Sometimes, you actually want several print statements
to appear on a single line. To do this, you can suppress the new line character with the argument end = °’.
If three print statements should appear on one line, then the first two will need to suppress the new line,
but the last print statement should have the usual form:

print (’The square root of 10 =’, end = 7)
print ("%4.2f> % (np.sqrt(10)), end = ’’)
print (’to two decimal places.’)

12 Using tab and newline characters

There are several characters which don’t appear on your keyboard, but which can be useful in dealing with
text. Two of the most useful are

’\n’ newline shifts output to the next line
’\t’ tab shifts output to the next column

Using the newline character, it is possible for a single print statement to generate several lines of output:

‘ print (’Polonius: What do you read, my lord?\nHamlet: Words, words, words!’)

If we include some tab characters, we can get the texts to line up:

‘ print (’Polonius: \tWhat do you read, my lord?\nHamlet: \tWords, words, words!’)

Note that if you actually want to print strings like \n and \t, you have to use two backslashes (\\) to describe
them.

print (7’)
print (> To actually print strings like \\n and \\t, use TWO backslashes (\\).’)

Similarly, to print a single quote in a string that is delimited by single quotes, precede it by a backslash:

print (77)
print (> That quote is from Hamlet\’s meeting with Polonius.’)

You can make simple tables using tab characters, but unless you know how to change the tab settings, you
may find that some long text stretches over multiple columns, and so makes the columns no longer line up:

print ('’)

print (> Characters in Hamlet:’)

print (° Gertrude: \tThe queen \t(poisoned)’)

print (’> Horatio: \tHamlet\’s friend \t(alive at end)’)
print (> Ophelia: \tHamlet\’s fiancee \t(drowned)’)
print (’> Polonius: \tA courtier \t(stabbed)’)

13 Interactive user input

An interactive Python function allows the user to specify certain quantities while it is running. These
quanties are usually simple numbers or "Yes/No’ choices or string to be used for file names or titles. In order
for the user to know when to respond, the function usually first prints out a request for the data, called a
prompt, and the user then types a response.

For instance, when the user runs an interactive program to compute the body mass index (BMI), the process
might appear like this:

python3

>>> bmi

This program computes your body mass index.
Enter your height in inches: 70

Enter your weight in pounds: 145

Your BMI is 20.8

We have already seen a program to compute the BMI, but in that case, the height and weight came as inputs
to the function. Now, instead, we need to ask the user to supply this information. This is done with the
command input (prompt). The BMI program might look like this:

print (’This program computes your body mass index.’)
height = input (’Enter your height in inches: ’)
weight = input (’Enter your weight in pounds: ’)

bmi = 703 * weight / heightxx2

print (’Your BMI is’, bmi)

14 A program challenge
}

ATURRL RISLE FRODUCT-NAME GENERK

SUNRISE
HERBAL
ARCADIAN
cosmiC
YoGA

The cartoon suggests a way to generate names for health foods by selecting one word from each column.
Thus, one new name would be COSMIC FARMS PATTIES.

Write a Python program that produces all the possible names suggested by this process. Your output should
be a table of 125 names. The three words in the name should be separated by blanks. It might be nice if
only the first letter of the first word was capitalized Cosmic farms patties.

You should be able to write a 4 line program that does this!

