
Python #8
Creating new functions to do your work

Location: https://people.sc.fsu.edu/∼jburkardt/classes/python 2022/python08/python08.pdf

Freely adapted from the Python lessons at https://software-carpentry.org/

Functions

• Python has built-in functions, with more available from libraries like numpy;
• A function produces output by operating on input;
• Users can define new functions that carry out useful operations;
• Functions begin def output = function name (input):

• A return statement transfers the output to the user;
• Functions can be defined interactively, but are better saved in a file;
• A user function can be stored in a file and accessed with an import statement.

1 What a function looks like

In Python, a function is an object which has a name, accepts input, carries out a calculation that uses that
input, and returns a result as output. The classic way of using a function is something like this:

output = funct ion name (input)

A function might have no inputs, in which case you just see a pair of empty parentheses after the function
name. One of the few Python functions of this kind is the rarely-used globals():

d i c t i ona ry = globals ()

However, there are many reasons why a user might want to create functions with no input.

A function might take several inputs separated by commas:

1

b i gg e s t = max (input1 , input2 , input3)

A function might not have any output variable

print (’ x = ’ , x)

A function can have multiple outputs. If so, when the user makes a call, the outputs should be separated
by commas. As an example, the divmod() function is given numbers a and b, usually integers, and returns
the quotient q and remainder r of integer division a/b:

q , r = divmod (a , b)

2 Accessing functions that aren’t built-in

As you have probably already seen in other examples, there are many libraries of Python functions which
can be useful in particular calculations. MATLAB users may be reminded of the corresponding Toolbox
feature in that language.

In order to access a function from such a library, several things must happen:

• The library must already be installed. If you are using Anaconda, this will usually not be a problem.
• The user must issue an import command to gain access to the function;
• Depending on the import command, the user may need to specify the library name as well.

There are several versions of the import command, depending on the user’s preference. Since numpy is one
of the most commonly used libraries, we will suppose that the user wants to access the function std() from
that library, which computes the standard deviation of a vector. Here are four possible import statements:

import numpy
value = numpy . std (v) # Inc lude l i b r a r y name in func t i on c a l l

import numpy as np # Spec i f y a shor t ”nickname” fo r l i b r a r y
value = np . std (v) # Inc lude nickname in func t i on c a l l

from numpy import std # Only ge t s t d () from numpy
value = std (v) # No need to s p e c i f y l i b r a r y name

from numpy import ∗ # Get eve ry th ing from numpy
value = std (v) # No need to s p e c i f y l i b r a r y name

Most users prefer the second option, always using np as a nickname for numpy (although actually, you could
use any nickname, such as “fred”, instead!).

Two other commonly used libraries are the scientific computing library scipy, whose common nickname is
sp, and the graphics library with the awful name matplotlib.pyplot, nicknamed plt.

If you want to know the names of all the functions in a library, you can use the dir() command:

dir (numpy)

and if you want more information on one of the library functions, you can use help(), specifying the name
of the function, as well as the library name or nickname, if required:

help (numpy .who) # because you used ” import numpy”
help (np .who) # because you used ” import numpy as np”
help (who) # because you used ”from numpy import who” or e l s e ”from numpy import ∗”

2

3 Form of a user-defined function

A user can write new functions, which follow the form and use of the Python built-in functions. We will see
that, usually, a function is stored in a file, but it’s certainly possible to (carefully and sequentially) enter a
short function during an interactive session.

For starters, here’s a three-line function that evaluates the n-th triangular number:

def t r iangu lar number (n) :
t = (n ∗ (n + 1)) // 2
return t

Let’s analyze this little code to death:

1. This line begin with def because it defines a function. There follows the function name (choose one
you like!), a list of input quantities in parentheses, and a final colon.

2. This function only uses a single computational line; here we apply the formula for triangular numbers
to our input value n, storing the result as t.

3. A return statement exits the function, and returns the named value as the output or result. (Some
functions have no output, in which case they can have a bare return statement, or skip the return

completely.)

Notice that the usual indenting rules apply. Every line that is to be included in the function must be indented
in a consistent way. As soon as Python sees an unindented line, it knows the function definition is complete.

Once we have defined triangular number(), we can test it by

t = tr iangular number (1) # 1
t = tr iangular number (10) # 55
t = tr iangular number (100) # 5050

The function we have defined remains available as long as our Python session continues, but when we quit()
Python, it will vanish, and no longer be accessible. This may not be a tragedy for a short function, but we
will surely want a way to be able to construct more elaborate functions and then not lose them so quickly!

4 The BMI function

Hospitals often combine the patient’s height and weight in a formula known as the body-mass-index (BMI).
In metric units, this is defined by the weight in kilograms, divided by the square of the height in meters.
Mathematically, we might write:

bmi =
kg

m2

Unfortunately, using English units, the process is not so simple, as we have to convert to the metric system.
In order to hide this extra work, we can write our own bmi() function. The input will be the patient’s weight
in pounds, and height in inches, while the output will be the BMI.

Here is what such a function would look like:

def bmi (we ight lb , h e i gh t i n) :
va lue = (we ight lb / 2 .204) ∗ (39 .370 / h e i gh t i n) ∗∗2
return value

You can demonstrate this function by computing

3

bmi (100 , 50) = 28.13
bmi (150 , 60) = 29.30
bmi (200 , 70) = 28.70

Using this bmi() function and a while() statement, determine the maximum weight for which the BMI is
25, given that a person is 50 inches tall. You can assume that the weight will be an integer value.

5 Documenting your function

You may discover that the help() function can be very useful in trying to get some information about a
particular built-in or library function. If you write a function yourself, you can also add information to it
that help() can report. Students doing homework exercises often don’t have the patience to do this, and
regard each function they write as a sort of throwaway or disposable item. If, however, you end up doing
research programming or working on a software team, you will very likely have to share the code you work
on, and in such a case, documentation can be required. So even if you are not prepared to go to the extra
trouble right now, you should be aware of how to add and access such documentation.

In any programming language, a function ought to include the following information:

• Purpose: one line description of the function.
• Discussion: if appropriate, a more extensive explanation of the algorithm.
• Example: at least one example of how the function might be used, with results.
• Modified: the date when the function was created, or most recently changed.
• Author: the name of the person who wrote the code.
• Reference: the name of a reference book or paper, if appropriate.
• Input: the type and meaning of each input variable.
• Output: the type and meaning of each output variable.

Here is a second version of our BMI function, which now looks enormous because it started out essentially
being one line. In order to make the information visible to help(), it must start just after the function
statement, and begin and end with triple single quotes, which are indented.

def bmi (we ight lb , h e i gh t i n) :
’ ’ ’
Purpose : bmi () computes the BMI (body mass index) .

Discuss ion : the BMI has a s imple formula when the input i s de f ined in metric un i t s
This program accep t s data in Eng l i sh un i t s (pounds and inches) and app l i e s the
co r r e c t un i t convers ions . An ” i d e a l ” BMI i s between 18.5 and 30. Above 30 beg ins
to count as ” obese ” and below 18.5 i s cons idered ”underweight ” .

Example : bmi (150 , 60) re turns the va lue 29.30

Modif ied : 12 May 2022

Author : John Burkardt

Reference : h t t p s :// en . w ik iped ia . org/wik i /Body mass index

Input :
we i gh t l b , the weight in pounds .
h e i gh t i n , the he i g h t in inchdes .

Output :
value , the body mass index .

’ ’ ’

4

value = (we ight lb / 2 .204) ∗ (39 .370 / h e i gh t i n) ∗∗2
return value

As this example suggests, proper documentation of a function can sometimes require more work than writing
the actual formulas. But whenever you have written code that you may want to use again later, or share
with others, it is a valuable way to ensure that the code is usable.

6 Putting your function in a file

Obviously, if we are going to document the bmi() function so carefully, it’s really ridiculous if, the minute we
quit() our Python session, all that information disappears forever! Although it’s easy to experiement with
short pieces of code interactively, you will find that for any serious work, you need to focus on preparing
work in files beforehand, so that when you go interactive, you are invoking things that are already done.

Let’s look at how this might be done for our bmi() function. To start with, we need to choose a name for
the file that is to contain our function. We will actually plan to eventually put several functions into this
file, so we’ll give the file the general name my library.py

Using an editor, or applying cut and paste to this document, we assemble the text for the bmi() function
and put it into the file my library.py.

To access our function, we need an import statement that specifies the function name and the library
containing it. We will also assume that when we start Python, we are working in the same directory that
contains our library file, so we don’t have to worry about how to describe a file in another directory. Assuming
all that, here is a very short Python session to demonstrate our function:

python3
>>> import bmi from my l ibrary
>>> value = bmi (150 , 60)
>>> print (’ bmi (150 ,60) = ’ , va lue)
>>> qu i t ()

7 Adding another function to our library, and accessing it

Since we are on an English units streak, let’s write another function, which converts temperatures in Fahren-
heit to Celsius. The mathematical formula is simply

C◦ =
5

9
(F ◦ − 32)

and the reverse is

F ◦ =
9

5
C◦ + 32

Write functions f to c(f) and c to f(c) which convert between the two temperature scales. Add these two
new functions to your file my library(). Use them in a Python calculation to verify the following interesting
facts in which the Celsius temperature is approximately equal to the Fahrenheit temperature with the digits
reversed:

F C

40 04

61 16

82 28

5

Your code might begin:

import f t o c from my l ibrary
for f in [40 , 61 , 82] :

. . . more s t u f f

Verify that one function is the inverse of the other by taking temperature values and converting them back
and forth.

C -> F -> C

-40 -> -40 -> -40

0 -> 32 -> 0

100 -> 212 -> 100

Note that you can write expressions like

fnew = c t o f (f t o c (f))

to do both steps of the conversion in one line.

8 One function can call another

Aside from the Celsius and Fahrenheit temperature scales, physicists work with the Kelvin temperature.
The temperature in degrees Kelvin, K◦, is related to the Celsius temperature by

K = C − 273.15

You should be able to quickly write two new functions, c to k(c) and k to c(k), which convert back and
forth between these two systems. Add them to my library.py.

We shall also write two more functions, f to k(f) and k to f(k), which convert between Fahrenheit and
Kelvin. However, we can take a shortcut, since we already know how to get from F to C, and then from C
to K. So the function f to k(f) could be written something like this:

def f t o k (f) :
c = convert f to c # Replace by the cor r ec t func t i on c a l l
k = convert c to k # Replace by the cor r ec t func t i on c a l l
return k

and the function k to f(k) should be just as easy.

Using these new functions, verify the following:

F -> K -> F

-40 -> 233 -> -40

32 -> 273 -> 32

212 -> 373 -> 212

9 A function that returns an array

A polynomial of degree n can be described by an n+ 1 vector of coefficients that multiply successive powers
of a parameter x:

p(x) = c0 + c1x + c2x
2 + ... + cnx

n

6

Suppose we know the coefficients of p(x), and we wish to compute the coefficients d of the derivative of the

polynomial, p′(x) = dp(x)
dx , whose full expression is

p′(x) = d0 + d1x + d2x
2 + dn−1x

n−1

= c1 + 2c2x + 3c3x
2 + n ∗ cnxn−1

In other words, we want to compute a vector d of length n with values:

d0 = c1

d1 = 2 ∗ c2
...

dn−1 = n ∗ cn

Can we write a Python function of the form poly dif (c) which computes and returns this vector?

Consider the tasks you must carry out:

• Perhaps you need to import a certain library to work with arrays;
• Given only the array c, determine n, the degree of the original polynomial;
• Create a vector d of the appropriate size;
• Set up a loop (perhaps a for loop?) which computes each value d[i];
• return d

Create such a function, perhaps put it in a library called poly.py, and test it on the following polynomial:

p(x) = 100 + 50x + 25x2 + 10 ∗ x3 + 5 ∗ x4 + 2 ∗ x5 + 6 ∗ x6

A second useful function that you could add to your poly library might be called value = poly value(c,x).
This function would take as input the vector c of polynomial coefficients, and a point x. It would return in
value the value of the polynomial at x.

A third useful function might be called value = poly integrate(c,a,b). It would determine the integral
of the polynomial over the interval [a,b]. This takes a little bit of work to get right. You could compute
the coefficients of the antiderivative polynomial, and then call poly val() twice to determine the integral.

7

