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Seeking the shortest round trip connecting state capitals (lower 48 only).

Combinatorics

• Combinatorics asks simple questions about finite collections of objects;
• Questions: number, ordering, arrangement, grouping;
• Fundamental objects: compositions, permutations, sample sequences, subsets, strings, trees,

words;
• Tasks: enumeration, next element, random element, ranking, unranking;
• Optimization over all permutations (traveling salesperson)
• Optimization over all subsets (knapsack)
• Finding a subset of numbers with a given sum (SubsetSum)
• Likelihood of begin dealt five cards in a sequence (Poker)
• How many of each element needed to match a value (McNuggets)
• Dividing a set of valuable items equally among a group (Partition Problem).
• Reconstructing a sequence given many fragments (Partial Digest)
• Distance between two DNA strands (Levenshtein)

1 Permutations: Assigning Order to Elements

If we suppose we have a set of n labeled objects, then a permutation of these objects assigns a rank or order
to each object. For instance, our objects might be the seven spectral colors, represented by the initial letters

c o l o r s = np . array ( [ ’R ’ , ’O ’ , ’Y ’ , ’G’ , ’B ’ , ’ I ’ , ’V ’ ] )
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If this is the natural order, then we can list the ranks of the letters as follows: then one permutation is

0 1 2 3 4 5 6

R O Y G B I V

If we wish to list the colors in alphabetical order, then we must permute them. Here, we list the alphabetized
letters, and their permuted indices:

4 3 5 1 0 6 2

B G I O R V Y

Even when we are working with nonnumeric objects such as the names of colors, it is convenient to identify
them with their indices on a list, and work strictly with the numeric indices. Then the original list is
represented by the values [0, 1, 2, ..., n − 1] and a permutation is presented simply as a scrambling of these
indices. Permutations are often represented by the letter π im mathematical text, or p in programming.
Given a list of values in proper order, and a permutation p, we can print the permuted list as follows:

c o l o r s = np . array ( [ ’R ’ , ’O ’ , ’Y ’ , ’G’ , ’B ’ , ’ I ’ , ’V ’ ] )
p = (4 , 3 , 5 , 1 , 0 , 6 , 2 , 1 )
print ( c o l o r s [ p ] )
B G I O R V Y

In some cases (as in heuristic approaches to the traveling salesperson problem), we may want to consider
random permutations. To do so, we need to initialize the random number generator first. Here is an example
in which we randomly permute the colors array:

from numpy . random import de f au l t r n g
rng = de f au l t r n g ( )
c o l o r s = np . array ( [ ’R ’ , ’O ’ , ’Y ’ , ’G’ , ’B ’ , ’ I ’ , ’V ’ ] )
p = rng . permutation ( 7 )
print ( p )
[ 5 1 0 4 6 2 3 ]
print ( c o l o r s [ p ] )
[ ’ I ’ ’O ’ ’R ’ ’B ’ ’V ’ ’Y ’ ’G’ ]

Given a list of n distinct objects, how many permutations are there? To define a permutation, we have to
write down n distinct indices. We have n choices for index 0, then n − 1 for index 1, and so on, until we
have just 1 choice for index n− 1. This means that the number of possible permutations is

n× n− 1× n− 1× ...× 2× 1 ≡ n!

a quantity known as n factorial. The factorial is a vital function in combinatorics, but it comes with some
problems.

2 The Factorial Function

The values of the factorial function grow large very quickly.
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n n!
0! 1
1! 1
2! 2
3! 6
4! 24
5! 120
... ...

10! 3,628,800
... ...

20! 2,432,902,008,176,640,000
... ...

50! 3.0414093201064

... ...
100! 9.33262154410157

Mathematically, such values are perfectly reasonable; computationally, they can sometimes be difficult to
use when accurate answers are desired. We will return to this problem shortly, when talk about counting
the number of combinations. For now, we note that there are at least three functions available to compute
a factorial using Python:

1. math.factorial(n);

2. numpy.math.factorial(n);

3. scipy.special.factorial(n), where n can be an integer or a numpy integer array.

3 Listing the “Next” Permutation

Suppose you wanted to list every permutation of n objects. For instance, if n = 3, we want to be able to
create, perhaps one at a time, the following sequence of permutations:

0: 0, 1, 2

1: 0, 2, 1

2: 1, 0, 2

3: 1, 2, 0

4: 2, 0, 1

5: 2, 1, 0

You might notice that this list is very orderly; it is, essentially, an “alphabetical” list of the index vectors.
Such an ordering is more properly called “lexicographic”, or “dictionary order”. For small values of n, it’s
not too hard to generate such a list, but when n is large, we will be asking a computer to take over. How
can we teach it to start at the first permutation, and then repeatedly generate the next one, until we reach
the end?

We agree that the 0-th permutation of n objects can be represented by the array [0,1,2,...,n-1]. Now
suppose that we have the k-th permutation array, and we want to figure out the k + 1-th array, using the
lexicographic order. To do so, we need to know which digits to rearrange in the array. Here is an algorithm
for doing so, as applied to the permutation vector p=[1,3,2,0] which has rank=11:

1. If the input value of rank is -1, this is the first call. Return immediately with

p = [0,1,...,n-1] = np.arange ( n )

rank = 0

2. Otherwise, seek the highest index i for which p[i] is smaller than p[i+1].
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p = [1,3,2,0]

p[2] > p[3]

p[1] > p[2]

p[0] < p[1], so i = 0

3. If no such i could be found, return a null permutation, we have completed the permutation list.

4. Find highest index j > i such that p[i] < p[j].

p = [1,3,2,0]

p[0] is 1

p[3] is not greater than p[0]

p[2] is greater than p[0], so j = 2

5. Interchange elements i and j.

p = [1,3,2,0]

i = 0, j = 2

p = [2,3,1,0] after interchange

6. Reverse the elements between indices i+1 (=1) and n-1 (=3).

p = [2,0,1,3] after reversal

rank = rank + 1

This is permutation #12

It is worth the effort to try to write the corresponding Python function p,rank=next permutation(p,rank,n),
and the exercises offer you the challenge of doing so. Otherwise, you can use the code that is provided on
the website.

Applications in which it is useful to be able to generate permutations automatically include the traveling
salesperson problem, and the computation of the determinant of a matrix.

4 The Matrix Determinant using Permutations

Let A be an n× n matrix. The determinant, written det(A), is defined by

det(A) =
∑
π∈Sn

sgn(π)
n∏
i=0

ai,πi

where Sn is the set of all permutations on n objects, and sgnπ is the sign of the permutation, defined by

sgn(π) =

{
+1, π is the product of an even number of transpositions;

−1, π is the product of an odd number of transpositions.

You are probably more comfortable seeing an example, such as:

A =

 a b c
d e f
g h i


for which we have

det(A) = aei+ bfg + cdh− afh− bdi− ceg

Clearly, we need a way to compute the sign of a permutation p before we can write a code to compute
determinants! Here’s an outline of how such a code would work:
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Make a copy of p called q

Initialize the sign s = 1

For each index i

while q[i] is not equal to i

s = -s

swap q[i] and q[j] (carefully!)

Here is an example of how this procedure would compute the sign of the permutation p = [4, 2, 3, 1, 0]:

s = 1

4 2 3 1 0 <-- 4 in position 0, swap with 0 in position 4, s = -1

0 2 3 1 4 <-- 0 in position 0, OK

0 2 3 1 4 <-- 2 in position 1, swap with 3 in position 2, s = +1

0 3 2 1 4 <-- 3 in position 1, swap with 1 in position 3, s = -1

0 1 2 3 4 <-- 1 in position 1, 2 in position 2, 3 in position 3, 4 in position 4, DONE

so s = sign(p) is -1.

The exercises ask you to write a function s = permutation sign(p).

5 Computing Matrix Determinants

Now if we have a matrix A, and the functions permutation next() and permutation sign(), we can
compute the determinant of the matrix. Here is how the code might go:

def matr ix determinant ( A )

n = A. shape
d = 1 .0
rank = −1
while ( True ) :

p , rank = permutat ion next ( p , rank , n )
i f ( rank == −1 )

break
s = permutat ion s ign ( p )
for i in range ( 0 , n ) :

s = s ∗ A[ i , p [ i ] ]
d = d + s

return d

The exercises ask you to create this function, to test it on some random matrices, and compare with the
value returned by scipy.linalg.det().

By the way, matrix determinants are usually not computed this way. There is a much more efficient method
that is a by-product of Gaussian elimination. However, the permutation approach is not useless. There is a
function related to the determinant called the “matrix permanent”, whose definition is similar to the deter-
minant, except that the factor of the permutation sign is removed. It turns out that Gaussian elimination
cannot help in this case, and so the permutation approach is of use.

6 Traveling on a Budget: The Traveling Salesperson Problem

A salesperson is assigned the task of visiting n cities, starting and ending at one city. The traveler is given a
map that reports the distance between each pair of cities. Because of a tight budget, the traveler is required
to determine the round trip that requires the least total distance. How is this to be done?
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For computational convenience, let us replace each city’s name by an identification number. Since we will
be working with Python, these numbers will run from 0 to n− 1. For the traveler’s round trip. the itinerary
is simply a list of the cities in the order in which they are visited. The first and last items on the list will be
the same. If we drop the last item, the remaining list represents a permutation of the n cities. Replacing the
city names by their identification numbers, we now have a list p of n distinct integers between 0 and n− 1,
in other words, a permutation.

Suppose we have been given an n× n array called distance such that the distance between cities i and j is
distance[i,j]. Then, given a permutation p that represents an itinerary, the mileage of this proposed trip
from p[0] to p[1], then from p[1] to p[2], and so on until we return to p[0], is:

mileage = d i s t ance [ p [ 0 ] , p [ 1 ] ] + d i s t ance [ p [ 1 ] , p [ 2 ] ] + . . . + d i s t anc e [ p [ n−1] ,p [ 0 ] ]

7 Brute Force Solution of the Traveling Salesperson Problem

Given that we can automatically generate every possible itinerary for the traveling salesperson, we can clearly
find an itinerary with the shortest total mileage, using a brute force approach:

Brute Force Solution of Traveling Salesperson Problem

Given a list of n cities, and a table of distances between every pair of cities, generate every possible
itinerary as a permutation, compute the associated mileage, and report an itinerary that achieves the
lowest mileage.

Our brute force approach guarantees that we find a best solution. It turns out that there will be at least n
such “best” solutions, unless we specify a particular starting city. Even then, it is possible to have multiple
solutions. But having multiple solutions is not an issue; we will be happy if we can find any solution that
minimizes the total distance.

Here is the distance table for a simple case involving five cities

0 1 2 3 4

+--------------

0 | 0 3 4 2 9

1 | 3 0 4 6 3

2 | 4 4 0 5 8

3 | 2 6 5 0 6

4 | 9 3 8 6 0

The brute force approach discovers the itinerary p=[0,3,4,1,2] with the following mileage:

From To Distance

0 3 2

3 4 6

4 1 3

1 2 4

2 0 4

--

Total: 19

So why is there no cheering for our solution? Recall that the number of permutations of n objects is n!, and
suppose we wanted to solve a problem involving a visit to each of the 50 state capitals in the United States?
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Look above at the discussion of the factorial function, read, very slowly, the value of 50!, and think about
whether you will live long enough to list every permutation of 50 cities. The brute force approach seems to
be able to handle 10 cities, but even 20 cities is not a reasonable problem size for this approach. Although
there are methods that have found the exact solution for the 50 state capital problem, we will concentrate
on simple approaches that give us a hope of approximating a good solution.

8 Traveling Salesperson Heuristics

Given that larger TSP problems are extremely difficult to solve, many suggestions have been made for coming
up with approximate solutions. In each case we start with a basic itinerary 0-->?-->0 and try to fill in the
blanks.

• Nearest neighbor: From your current location, add a trip to the nearest city that has not been visited
yet. Repeat until all cities have been reached, and go home.

• Greedy algorithm: Find the shortest unused city-to-city trip which does not create a “short circuit”
and which does not involve a city which already has a trip in and a trip out; Add this trip to your
itinerary. Keep doing this until your itinerary includes every city.

• Insertion: Choose an unvisited city k at random. For every pair of consecutive cities i and j already in
your itinerary, compute the length of the revised itinerary i− > k− > j. Choose to insert k between
the cities i and j which minimize this change in trip length.

• Transpose: Start with an itinerary chosen at random. Pick two distinct non-neighboring cities i and
j. Reverse the order of all the cities in the itinerary between i and j. If this reduces the total length,
keep the change. Keep trying.

9 Nearest Neighbor Solution of Traveling Salesperson Problem

When faced with a problem that is too large for the brute force approach, we may have to give up our
guarantee of finding the minimal solution. Now we need a some criterion that we believe will take us close
to a minimal solution. An obvious idea is to build the itinerary by picking a starting city at random, and
for each next leg of the itinerary, traveling to the nearest unvisited city. By always choosing the shortest
unused route, it is hoped that the resulting round trip will come close to being minimal.

pick i at random and set p [ 0 ] = i

while some c i t i e s are s t i l l unv i s i t ed
dj = i n f
j = −1
for a l l c i t i e s k

i f k i s not in p
i f d i s t ance [ i , k ] < dj

j = k
dj = d i s t ance [ i , k ]

Set next entry o f p to j

Here is a distance table for a nine city tour:

0 4 100 100 100 100 7 100 100

4 0 9 100 100 100 11 20 100

100 9 0 6 2 100 100 100 100

100 100 6 0 10 5 100 100 100

100 100 2 10 0 15 100 1 5

100 100 100 5 15 0 100 100 12

7 11 100 100 100 100 0 1 100
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100 20 100 100 1 100 1 0 3

100 100 100 100 5 12 100 3 0

It turns out that the brute force method can still handle this size problem, and returns a minimal tour
distance of 50. In this case, the nearest neighbor method also finds a tour of the minimal distance. In
general, we will not be so lucky, but we will be happy to have an approximate answer.

The traveling salesperson problem is an abstract model which turns out to have hundreds of real-life ap-
plications, especially for transportation, delivery, circuit design, and networking. There are many powerful
algorithms for getting very good approximations to the minimal solution, even when the number of cities is
in the thousands or millions.

10 Subsets: Selecting Only Some Elements

Often, a combinatorial task starts by saying “pick a subset of a given set S of n objects”. Sometimes, to
analyze such a task, we actually have to methodically consider every possible such subset, starting with the
empty set φ and finishing with the full set S. If we are going to do computations, we need a simple way to
plod through this list one at a time.

The natural way to represent a subset of n items is with a choice vector x of length n, for which xi is 1
if item i is to be included in a given subset. Interestingly, such binary vectors of length n are essentially
representing the integers from 0 to 2n − 1, For instance, for n = 3, we need to generate 8 vectors. In the
natural way to do this, the order in which we generate each vector is also the integer corresponding to the
binary representation:

order vector expansion

#0: ( 0, 0, 0 ) = 0*4 + 0*2 + 0*1 = 0

#1: ( 0, 0, 1 ) = 0*4 + 0*2 + 1*1 = 1

#2: ( 0, 1, 0 ) = 0*4 + 1*2 + 0*1 = 2

#3: ( 0, 1, 1 ) = 0*4 + 1*2 + 1*1 = 3

#4: ( 1, 0, 0 ) = 1*4 + 0*2 + 0*1 = 4

#5: ( 1, 0, 1 ) = 1*4 + 0*2 + 1*1 = 5

#6: ( 1, 1, 0 ) = 1*4 + 1*2 + 0*1 = 6

#7: ( 1, 1, 1 ) = 1*4 + 1*2 + 1*1 = 7

How can we generate these values computationally? We can imagine creating a function next binary vector(x).
It takes as input the current x, modifies it by adding 1, and returns the result as the new value of x. We
initialize the code with the zero vector, call it repeatedly to get more x values, and stop when we get back
to the zero vector.

Well, that’s how the function looks like from the outside. What’s the magic that happens inside the function?
To carry this out using our vector representation, we start at the rightmost entry of x. If it’s a 0, we change
it to a 1 and exit. Otherwise, we change it to a 0, and move one position to the left if possible. If we can’t
move left, then we have just reset x to all 0 values, and our list is completed.

def b ina ry ve c t o r nex t ( x ) :

i = len ( x ) # s t a r t j u s t pas t the l a s t entry

while ( 0 < i ) :
i = i − 1
i f ( x [ i ] == 0 ) :

x [ i ] = 1
break

else
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x [ i ] = 0
return x

To demonstrate, let’s use this function to print out the list of choice vectors when n = 3:

import numpy as np

n = 3
x = np . z e r o s ( n )
while ( True )

print ( x )
x = b ina ry ve c t o r nex t ( x ) :
i f ( a l l ( x == 0 ) :

break

You might have other ways of writing this loop, but as written, the loop correctly generates and prints the
vectors in the natural order, and terminates as soon as a zero vector is returned.

We will see several instances shortly in which next binary vector() will be useful.

11 Exact Change Only!

Suppose we are trying to pay a bill at the checkout counter, and we have an ample supply of every coin.
After some fumbling around, we manage to come up with a pile of coins that matches the bill exactly. This
process is known as the change making problem:

The Change Making Problem

Given an unlimited supply of coins, which are minted in n denominations, with the i-th denomination
having value vi. Given a bill of size B, is there a collection of coins which matches this bill exactly?
If so, how many different ways are there to do this? What combination involves the fewest number of
coins?

Obviously, if there is a “penny” coin worth 1 cent, then there is always a solution, although not one that
anyone would like. Generally, there will be many solutions. A brute force approach could be tried, although
it’s not clear right away how to march through all the possibilities. What most people use is a greedy
algorithm, which we will now explore.

12 Greedy Algorithm for Change Making

Let’s suppose we are dealing with US currency, and we only have the more common coins of denominations
1, 5, 10 and 25 cents, and no coins or bills of higher value. Let’s suppose we need to pay a bill of $1.37. A
“greedy” algorithm would first try to use as many quarters as possible, then revert to dimes, followed by
nickels and pennies. The process might be something like this:

Owe Coins Pay

Q D N P

--- ------- ---

137 0 0 0 0 0

12 5 0 0 0 125

2 5 1 0 0 135

0 5 1 0 1 137

So we pay our bill with 5 quarters, a dime, and 2 pennies, for a total of 8 coins. While there are many other
combinations of coins corresponding to the bill, this arrangement is optimal in the sense that it minimizes
the number of coins.
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The greedy algorithm will find a solution, and in fact the optimal solution, as long as the denominations
of the available coins have the “canonical” property. For a noncanonical set of coins, the greedy algorithm
might not minimize the number of coins, and for a set that does not include a 1 cent coin, the greedy
algorithm might fail to find a coin combination that matches a desired sum even if such a solution exists.
You are encouraged to think about this question and come up with some examples.

The exercises ask you write a Python code change greedy() to produce a collection of coins that match a
given bill.

13 Diophantine Algorithm for Change Making

A diophantine equation has the form

c1x1 + c2x2 + ...+ cnxn = b

where the coefficient vector c and right hand side b are known integer values, and a solution vector of integers
x is sought.

For the change making problem, we take the c vector to contain the coin values, the b value to be the desired
sum, and the x values to be the number of coins of each type. Naturally, we also impose the condition that
every x value must be nonnegative.

We can use the following function so solve our coin problems:

x = diophant ine nonnegat ive ( c , b )

where c and b are the coefficients and right hand side, and the output x is an sols × n array of solutions,
with each row containing an assignment for the number of coins. Of course, there might be no solutions, in
which case we are getting back an empty array.

Suppose we want to form the sum of 46 cents using pennies, nickels, dimes and quarters. We set

c = np . array ( [ 1 , 5 , 10 , 25 ] )
b = 46
x = d iophan t i n e s o l v e ( c , b )

and get back a 39× 4 array x of solutions whose first rows are:

[ [ 4 6 . 0 . 0 . 0 . ]
[ 4 1 . 1 . 0 . 0 . ]
[ 3 6 . 2 . 0 . 0 . ]
[ 3 6 . 0 . 1 . 0 . ]
[ 3 1 . 3 . 0 . 0 . ] . . .

14 Dynamic Algorithm for Change Making

Another version of the change making problem asks simply: what is the smallest number of coins I need in
order to form a given sum?. Just by convention, if it is not actually possible to form the sum, we will return
the answer of ∞, or, as Python would say, np.inf.

As usual, let v be the vector of coin values, and b be the value we are trying to form. Now we create a vector
a of length b + 1. For i from 0 up to b, we wish to compute a[i] as the minimum number of coins needed
to form the sum i. We can initialize all entries of a to np.inf. Then, if coin i has the value v, we can set
a[v]=1. How do we update the rest of the table?
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Suppose that we have correctly computed all the values of a up to a[i-1], and now we want to compute
a[i]. Suppose we have a coin of value c, and suppose we know a[i-c], the minimum number of coins
necessary to form i − c. Then one way to form the sum i is take the coins that form i − c, add the coin of
value c, which would require a total of a[i-c]+1 coins. We replace the previous value of a[i] by a[i-c]+1

if this is less. Making this check for every coin allows us to get the correct value for a[i], and we can move
on to compute the next entry of a.

This idea is hard to see at first, but let’s take an example. Suppose we are trying to compute a[30], the
smallest number of coins needed to make a sum of 30. This value was initialized to np.inf. Assume we have
already worked out the value of a for indices 0 through 29, which are:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 2 3 4 1 2 3 4 5 1 2 3 4 5 2 3 4 5 6 2 3 4 5 6 1 2 3 4 5 Inf

So now we think about how 30 can be made by adding one coin to a lower sum:

30 = old + coin coins(old) + 1 = coins(30)

-- --- ---- ---------- --- ---------

30 = 29 + 1 a[29] + 1 = 6

30 = 25 + 5 a[25] + 1 = 2

30 = 20 + 10 a[20] + 1 = 3

30 = 5 + 25 a[5] + 1 = 2

And so we can conclude that the minimum number of coins needed to make a sum of 30 is 2.

A sketch of a corresponding program would be:

def change_dynamic ( ? ):

Set a to an array of length b+1

Initialize all entries of a to infinity

For coin i of value v, set a[v] = 1

for each sum s from 0 to b

for each coin i of value v

if 0 < s - v

if a[s-v]+1 < a[s] then a[s] = a[s-v] + 1

The exercises ask you to write and test a corresponding Python program.

15 Polynomial Algorithm for Change Making

Our answers to the change making problem ignore the order in which the coins are arranged. Thus, giving
a quarter plus a dime is regarded as the same solution as giving a dime and then a quarter. If we are willing
to distinguish solutions based on the ordering of the coins, then we can look at a remarkable approach to
counting and representing the solutions of our change making problem. Somewhat unbelievably, this method
involves polynomials.

Assuming that we are using the four smallest US coins, consider the polynomial:

p(x) = x1 + x5 + x10 + x25

and yawn while I tell you that the coefficients of this polynomial encapsulate the information that there is
1 way to make a sum of 1 cent, and similarly 1 way to make 5, 10 or 25 cents, and that no other sum is
possible using just one coin.
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But notice what happens when we look at p2(x):

p2(x) = 1x2 + 2x6 + 1x10 + 2x11 + 2x15 + 1x20 + 2x26 + 2x30 + 2x35 + 1x50

which turns out to say that, using exactly 2 US coins, there is just 1 way to make 2 cents, 2 ways to make
6 cents (1+5 and 5+1), and so on.

The beauty of this system is that it’s so easy to multiply polynomials. Moreover, if we are only interested
in, say, sums up to 100, we can simply drop higher order terms from our polynomial as they arise. Using
this idea,

p3(x) = 1x3 + 3x7 + 3x11 + 3x12 + 1x15 + 6x16 + 3x20 + 3x21 + 3x25 + 3x27 + 1x30

+ 6x31 + 3x35 + 6x36 + 6x40 + 3x45 + 3x51 + 3x55 + 3x60 + 1x75

and it is worthwhile to check that you can really believe that there are, for instance, 6 ways of making the
sum of 31 cents using three coins (where we count different orderings of the coins as different solutions).

The exercises ask you to write a Python function which accepts two polynomials p1(x) and p2(x), producing
the product polynomial p3(x). An easy approach is to assume each polynomial is of degree at most 100, and
store an array of 101 coefficients, most of which are zero. Then the coefficient c3(k) of polynomial p3(x) is
the sum of all products c1(i) ∗ c2(j) where i+ j = k. Try this on a simple polyomial first!

16 Can We Serve Our Guests? Chicken McNuggets

At one time, McDonalds sold packages of Chicken McNuggets in three sizes, containing 6, 9, or 20 pieces.
Supposing you want to buy exactly n McNuggets, how many ways can this be done? Let M(n) represent
this value. For example, if you want 38 pieces, you can either order 6+6+6+20 or 9+9+20, and these are
the only ways to get 38 McNuggets, so M(38)=2.

If you think about this, the McNuggets problem is analogous to the change making problem. We can ask
whether it is possible to make a sum of 38, using “coins” with “value” 6, 9 and 20. Related questsion
ask for the minimal number of “coins” (separate packages) needed to make 38, or the number of different
combinations of packages that will total 38.

For this problem, instead of asking for the minimal number of packages, let’s ask for the number of different
ways of achieving our desired sum. This number might be 0, (which it certainly is if we want 1, 2, 7, or
19 MacNuggets, for instance). We will once again use the “dynamic programming” approach. In order to
determine M(n), we will compute the values associated with smaller arguments, and then consider reaching
a total of n by adding one more package of a given size.

We reason as follows:

• There is no way to achieve the numbers 0 through 5.
• if n is at least 6, there are M(n− 6) ways to achieve n by ordering an additional 6 pack.
• if n is at least 9, there are M(n− 9) ways to achieve n by ordering an additional 9 pack.
• if n is at least 20, there are M(n− 20) ways to achieve n by ordering an additional 20 pack.
• There is no other way to achieve M(n).

This suggests that we write a program like the following:

f unc t i on nugget numbers ( n )

Let m be an array o f n+1 e n t r i e s
Let the zeroth entry o f m be 1
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For i from 1 up to n
I n i t i a l i z e m[ i ] to ze ro
i f ( 6 <= i ) , add m[ i −6]
i f ( 9 <= i ) , add m[ i −9]
i f ( 20 <= i ) , add m[ i −20]

The exercises ask you to write a Python implementation of this algorithm, and to compute the values of
M(n) up to n = 50.

17 Separate but Equal Sums?: The Partition Problem

When kids get together for a team sport, it may be necessary to divide them into two teams. It’s only fair
to try to ensure that the two teams are as evenly matched as possible. A parallel mathematical problem
is known as the partition problem, and asks whether, given a list of numbers (not a set, because we allow
repetitions!), we can split the numbers into two groups with the same sum. Assuming we are working with
integers, we can immediately conclude that there is no perfect solution if the numbers sum to an odd value.
Thus, in some cases, we must conclude that at least in some cases, exact equality is impossible. Thus, we
rephrase the problem:

The Partition Problem

Given a list of n numbers v, with total sum T , divide the numbers into two groups with sums S0 and
S1 such that we minimize |T/2− S0|+ |T/2− S1|.

18 The Partition Problem: A Brute Force Algorithm

Any solution of the partition problem must assign the i-th number vi to one group or the other. We can
represent this assignment by xi, and for convenience, we will assume the two groups are labeled “0” and
“1”. One way to determine a best solution (there might be several) is to simply consider every possible such
assignment vector x, compute the sums, evaluate G(x) = |T −S0|+ |T −S1|, and remember the lowest value
of G(x) that we encounter. This approach is guaranteed to work, requires almost no thought or programming
genius, and is known as the brute force approach.

As an example

2 10 3 8 5 7 9 5 3 2 S0 S1 G

0 0 0 0 0 0 0 0 0 0 0 54 0 54

1 0 0 0 0 0 0 0 0 0 1 52 2 50

2 0 0 0 0 0 0 0 0 1 0 51 3 48

3 0 0 0 0 0 0 0 0 1 1 49 5 44

4 0 0 0 0 0 0 0 1 0 0 49 5 44

....

1020 1 1 1 1 1 1 1 1 0 0 5 49 44

1021 1 1 1 1 1 1 1 1 0 1 3 51 48

1022 1 1 1 1 1 1 1 1 1 0 2 52 50

1023 1 1 1 1 1 1 1 1 1 1 0 54 54

Actually, it turns out that there are 23 different choice vectors x∗ for which both S0 and S1 are exactly
27, so that we achieve the optimal value G(x∗) = 0, a perfect match. But, as you can see, the brute force
approach, while simple, requires a lot of work, namely evaluating 2n separate cases. This is not humanly
interesting for n = 10, but the computer will do it for us. As n grows larger, though, even the computer will
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gradually be unable to produce a result in a reasonable time. Nonetheless, the brute force approach gives us
an opening for small problems.

In order to perform the brute force approach, we need to be able to generate each possible choice vector x,
that is, all the binary vectors of length n. Luckily, the function next binary vector() will do exactly this
task for us. The first set is the one chosen by x, and the second set is the remaining items. So our program
simply has to generate the next x, divide the set into two subsets, compute and compare the sums, and, if
they are equal, increment the number of solutions found.

19 The Partition Problem: A Greedy Algorithm

The brute force approach will solve small partition problems in reasonable time. Bugt because it requires 2n

steps to deal with a problem involving n items, it is useless even for seemingly moderate values of n. Suppose
that even an approximate solution would be valuable to us. Then we can consider a greedy algorithm, that
runs as follows:

The Greedy Partition Algorithm

Process the data in order, starting with the largest. Award the next data item to whichever group has
the smaller sum. In the event of a tie, award the item in any way you wish.

In Python, we can make a descending sorted copy of a list v using the command:

v = v . s o r t ( r e v e r s e = True ) # ” rever s e ” means l a r g e s t f i r s t

The exercises ask you to implement the greedy partition algorithm.

20 The Knapsack Problem: The Optimal Steal

In the knapsack problem, a thief has a knapsack that can carry no more than Wmax pounds. The thief is
in a room with n items, with item i having weight wi and value vi. The thief wants to get away with the
maximum value in goods, while not exceeding the weight limit of the knapsack.

Let x represent a particular choice vector, that is, a list of which items the thief might propose to steal.
Then xi is 1 if the thief proposes to steal item i and 0 otherwise. We can determine the total weight and
value of the items to be stolen:

W (x) =

n∑
i=0

wixi

V (x) =

n∑
i=0

vixi

However, a choice vector x can be immediately rejected if W (x) > Wmax. Each choice vector that is not
rejected is called a feasible choice. Note that the list of feasible choices is not empty; there is always at least
one (why?). The problem is to find the choice vector with the biggest payoff. The thief asks our help in
making the best choice, and we can now phrase this as

The Knapsack Problem

Of all feasible choice vectors x, find an optimal choice vector x∗ which maximizes the value V (x).
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21 The Knapsack Problem: Brute Force

To help the thief, we have to find the feasible choice vector x that maximizes V (x). Unlike problems in
analysis, for this problem we only have a finite number of choices to consider. So one approach to consider
would be to simply work out every possible x vector, determine its corresponding weight, and if that weight
is no bigger than Wmax, work out the profit, and let x∗ be the choice vector for which you saw the biggest
profit.

There’s nothing wrong with this approach, except that it will quickly become useless for large problems. But
let’s start here, work out how many choices we have to deal with, and how we could make sure we consider
each and every one in an orderly way. Once again, we can use our function next binary vector() for this
task. Each time we are presented with a new choice vector x, we check whether it stays within the weight
limit. If so, we evaluate its profit. If this profit beats our previous record, we have found the latest candidate
for the best choice of objects to steal.

Here is how this might look as a program:

def knapsack brute ( Wmax, w, v ) :
import numpy as np
n = len ( w )
vbest = − np . i n f
xbest = [ ]

x = np . z e r o s ( n )
while ( True ) :

wx = np . dot ( w, x )
i f ( wx <= Wmax ) :

vx = np . dot ( v , x )
i f ( vbest < vx ) :

vbest = vx
xbest = x

x = b ina ry ve c t o r nex t ( x )
i f ( a l l ( x == 0 ) ) :

break

return xbest , vbest

Suppose our knapsack has a capacity of 104 pounds, and the objects we can steal have the following properties:

Object Value Weight

1 $442 41

2 $525 50

3 $511 49

4 $593 59

5 $546 55

6 $564 57

7 $617 60

Since n = 7, we have 27 = 128 choice vectors to consider, which is not really a challenge for our computer
(although much to many for us to work through with a pencil!). The winning choice is:

Object Value Weight Choice

1 $546 55 0

2 $442 41 1

3 $511 49 0

4 $593 59 1
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5 $525 50 0

6 $564 57 0

7 $617 60 1

Sum: $1652 169 3

Here, we were lucky to exactly fill our knapsack. In most such problems, we will end up having some capacity
left over, without being able to add any more items to our load.

22 The Knapsack Problem: Greed is Good

As the number n of items grows, the number of choices grows exponentially, as 2n. This means that 10 items
givens about a thousand choices, 20 is a million, and 30 a billion. It’s clear that seemingly moderate values
of n can result in computational work loads beyond our patience or budget. For such larger problems, we
need to search for methods that we can believe have a reasonable chance of approaching the maximal profit
that we can’t afford to compute directly.

If the thief can’t afford to check all the options, then a reasonable approach is to be greedy; in this case, that
means to choose the most precious items first. Thus, the thief would take a gold object first, rather than a
wooden one, no matter how big the two items are. Thus, the thief would first calculate a value per pound,
use this to order the objects, and then fill the knapsack with items in this order. Here is the ratio for our
previous example:

Object Value Weight Value/Weight Rank

1 $546 55 9.9 6

2 $442 41 10.7 1

3 $511 49 10.4 3

4 $593 59 10.0 5

5 $525 50 10.5 2

6 $564 57 9.8 7

7 $617 60 10.2 4

Now the thief would reason as follows:

W = 0 V = 0

Add item 2 of rank 1: W = 0 + 41 = 41, V = 0 + 442 = 442

Add item 5 of rank 2: W = 41 + 50 = 91, V = 442 + 525 = 967

Add item 3 of rank 3: W = 91 + 49 = 140, V = 967 + 511 = 1478

Can’t add any more items without exceeding weight limit.

Note that the strategy almost works. We have 30 pounds of capacity left. If we could add 30 pounds of
item 7 to our take, this would be an additional 30 * $10.2 = $306 of profit, giving us a total profit of $1778
which exceeds the optimal profit. The point is that we only have the options of taking or leaving each object,
and so we can’t squeeze that extra value into our knapsack. However, if we use the greedy option, then the
amount of unused space left over and the per-pound value of the remaining objects gives us an upper bound
on the optimal haul. In particular, if we exactly fill the knapsack, we have an optimal solution.

23 Combinations: Selecting a Certain Number of Elements

A combination is a selection of k items from a set of n items. Thus, in particular, a combination is a kind of
subset. This is also called a combination without replacement: the k items are distinct. Two combinations
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are said to be equal if they are equal as sets, that is, they have exactly the same elements. Thus, the
combinations (1,2,3) and (2,1,3) are equal. The number of distinct combinations has a special symbol nCk
or
(
n
k

)
, and often pronounced “n choose k”. For instance, given a set of 5 objects, the number of combinations

of 0, 1, 2, 3, 4 or 5 items is, respectively 1, 5, 10, 10, 5, 1.

You may realize that these numbers represent row 5 of Pascal’s triangle:

Column k of row n of Pascal’s triangle is the value nCk.

24 Evaluating the Number of Combinations nCk

We have more important things to talk about, but it turns out that we do need to stop for a moment and
consider the fact that sometimes, computing the number of combinations is a little more dangerous than we
might realize.

There is a simple formula for the value of nCk:

nCk =
n!

k!(n− k)!

and it is an interesting exercise to convince yourself that, for 0 ≤ k ≤ n, the quantity nCk is always a positive
integer. It is also a surprise to see that each entry in Pascal’s triangle is found by adding the two entries
immediately above it, where we assume a zero value in cases where we are at the first or last entry of a
row. Since we’re only dealing with integers, it may seem as though this computation will be trouble free.
However, the fact that the factorial function is involved in our calculation means that, even for “reasonable”
values of n and k, we may run across products and ratios of very large numbers, even in cases where the
final result is a small integer.

We will need to evaluate nCk computationally. Although we can do it from the basic formula, it is preferable
to use software that knows about shortcuts and efficient techniques for getting the answer accurately.

Thus, MATLAB can evaluate the quantity with the command

nck = nchoosek ( n , k )

while Python has two ways of quickly computing the result, with an important difference:

from math import comb
nck1 = comb ( n , k )

from s c ipy . s p e c i a l import comb
nck2 = comb ( n , k )

These two Python functions may seem to give the same results, but nck1, the math result, is computed using
integer arithmetic, while nck2, the scipy.special result, is computed with real arithmetic and returned as
a real number. The important thing to realize is that the computation of nCk can involve very large integers,
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even when the final result is small. In Python, integers have no upper size limit, and so such results
can be computed exactly and correctly. However, a computation using real arithmetic may become inexact,
or blow up.

To see an example of inaccuracy, we do have to use fairly large values of n and k, but similar values are
needed for many computations for games involving decks of cards:

>>> from math import comb
>>> v1 = comb ( 100 , 50 )
>>> v1
100891344545564193334812497256
>>> from s c ipy . s p e c i a l import comb
>>> v2 = comb ( 100 , 50 )
>>> v2
1.0089134454556415 e+29 # the l a s t t h ree v i s i b l e d i g i t s are . . . 4 1 5 ; t ha t f i n a l 5 i s wrong !

To see an example of blowup, we won’t bother trying to guess why we are using such large values of n and
k, we will just marvel that it doesn’t bother math.comb() at all:

>>> from math import comb
>>> v1 = comb ( 10000 , 5000 )
>>> v1
1591790263 . . . 0553649120 # huge number o f co r r ec t d i g i t s omit ted here
>>> from s c ipy . s p e c i a l import comb
>>> v2 = comb ( 10000 , 5000 )
>>> v2
i n f # the r e s u l t can ’ t even be approximated in r e a l a r i t hme t i c

25 Exercises

1. Follow the description of the the algorithm for computing the next permutation, and compute the next
permutation for each of these examples:

(a) p = [1,2,5,3,4]

(b) p = [2,3,1,5,4]

(c) p = [3,5,4,2,1]

(d) p = [4,1,5,3,2]

(e) p = [5,3,4,2,1]

2. Follow the description of the algorithm for computing the next permutation, and write a Python
function of the form p,rank=next permutation(p,rank,n). Test it by computing and printing the
permutations of 4 objects.

3. Write a Python function s = permutation sign(p) that computes the sign of a permutation.

4. Create the function matrix determinant(). Test it on some random matrices. Compare your results
with the value returned by scipy.linalg.det().

5. Write a Python function which implements the brute force approach to the traveling salesperson
problem, and solve the five city example given in the text.

6. Use the brute force method to solve the traveling salesperson problem for the nine city distance matrix.

7. Implement the nearest neighbor algorithm for the traveling salesperson problem. Verify that it works
by applying it to the nine city distance matrix. Then download the file forty eight.txt and seek a
minimal tour of the 48 “continental” US capital cities.

8. Write a Python program that implements the change greedy() algorithm. Use it to compute a
collection of coins that add up to 96 cents.

9. Write a Python program that implements the change dynamic() algorithm. Use it to compute the
minimum number of coins needed to form every sum from 1 to 50.
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10. Write a Python program polynomial multiply(), which multiplies two polynomials p1(x) and p2(x),
which are each represented as an array of no more than 101 coefficients. Demonstrate that your
program is correct by computing several polynomial products.

11. Use your Python program polynomial multiply() to report the number of ways of computing every
sum up to 100 cents, using any 4 US coins; for this approach, we count two solutions as different if
they involve the same coins, but in different orders.

12. Write a Python program which handles the MacNuggets problem, computing M(n), the number of
ways of ordering exactly n MacNuggets. Compute results for 0 ≤ n ≤ 50

13. Use the brute force method to solve the partition problem for the set of values [2,10,3,8,5,7,9,5,3,2]. An
article claims there are 23 solutions, but you probably got a different number. Explain the difference.

14. Use the brute force method to solve the partition problem for the set of values [771,121,281,854,885,734,486,1003,83,62].
How many solutions did you find? How many choice vectors x need to be generated to answer this
question?

15. Write an implementation of the greedy partition method. Demonstrate it on the data [2,10,3,8,5,7,9,5,3,2],
for which you probably will not get an exact match.

16. Use the greedy method to solve the partition problem for the set of values [771,121,281,854,885,734,486,1003,83,62].
How close did you come to a perfect match?

17. Another algorithm for the partition problem is known as the “Karmarkar-Karp” algorithm or the
“Largest Difference Method” (LDM). Find documentation on this algorithm, implement it yourself in
Python, and use it on the set of data [771,121,281,854,885,734,486,1003,83,62]. See “The Easiest Hard
Problem” by Brian Hayes, American Scientist, March-April 2002.

18. Run the knapsack brute() code on the sample data and verify that the best result has a value of
$900.

19. The discussion of the greedy algorithm for the knapsack problem concludes with the statement ”In
particular, if we exactly fill the knapsack, we have an optimal solution.” Explain in your own words
why this must be true.

20. Apply the greedy algorithm to the following knapsack problem, and report your result. What is an
upper bound for the optimal profit?

W = 750

v =135, 139, 149, 150, 156, 163, 173, 184, 192, 201, 210, 214, 221, 229, 240

w = 70, 73, 77, 80, 82, 87, 90, 94, 98, 106, 110, 113, 115, 118, 120
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