
Lectures - Week 14

Vector Form of Taylor’s Series, Integration in Higher Dimensions,

and Green’s Theorems

Vector form of Taylor Series

We have seen how to write Taylor series for a function of two independent variables, i.e.,
to expand f(x, y) in the neighborhood of a point, say (a, b). We can write out the terms
through the second derivative explicitly, but it’s difficult to write a general form. Recall
that we have

f(a + ∆x, b + ∆y) = f(a, b) + ∆xfx(a, b) + ∆yfy(a, b)

+
∆x2

2
fxx(a, b) +

∆y2

2
fyy(a, b) + ∆x∆yfxy(a, b) + · · ·

or equivalently as

f(x, y) = f(a, b) + (x − a)fx(a, b) + (y − b)fy(a, b)

+
(x − a)2

2
fxx(a, b) +

(y − b)2

2
fyy(a, b) + (x − a)(y − b)fxy(a, b) + · · ·

where x = a + ∆x so ∆x = x − a and y = b + ∆y.

We now want to see if there is a simple way to write these terms for expanding f(~x)
where ~x = (x1, x2, . . . , xn)T in terms of the operator ∇. Before we do this, lets first
rewrite the above Taylor series expansion for f(x, y) in vector form and then it should
be straightforward to see the result if f is a function of more than two variables. We
let ~x = (x, y) and ~a = (a, b) be the point we are expanding f(~x) about. Now the term
representing the change becomes the vector ~x − ~a = (x − a, y − b)T . The gradient of f ,
∇f , is just (fx, fy)

T so the terms involving the first derivatives are just the dot product
of (~x−~a) and ∇f . We claim that the terms involving the second derivatives are found by
taking the product

1

2

[

(~x − ~a)T

(

fxx(~a) fxy(~a)
fyx(~a) fyy(~a)

)

(~x − ~a)
]

because
(

fxx(~a) fxy(~a)
fyx(~a) fyy(~a)

) (

x − a
y − b

)

=

(

(x − a)fxx(a, b) + (y − b)fxy(a, b)
(x − a)fyx(a, b) + (y − b)fyy(a, b)

)

and
1

2
(x − a y − b )

(

(x − a)fxx(a, b) + (y − b)fxy(a, b)
(x − a)fyx(a, b) + (y − b)fyy(a, b)

)

=
1

2

[

(x− a)2fxx(a, b) + (x− a)(y − b)fxy(a, b)+ (y − b)(x− a)fyx(a, b) + (y − b)2fyy(a, b)
]

which is just our terms in the Taylor series above assuming that fxy = fyx. If we note
that the matrix above is just the Hessian of f(x, y) then we can generalize our result for a
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function of more than two independent variables. We can write the Taylor series expansion
for a function f(~x where ~x ∈ IRn in the neighborhood of the point ~a as

f(~x) = f(~a) + (~x − ~a)T∇f(~a) +
1

2!
(~x − ~a)T Hf (~a)(~x − ~a) + · · ·

where Hf (~a) denotes the Hessian of f evaluated at ~a. Higher order terms can be written
in terms of tensors but we will not go in to that here.

Multiple Integration

Recall from calculus of a single variable that if f(x) ≥ 0 on [a, b] then the integral
∫ b

a
f(x) dx

graphically represents the area under the curve y = f(x), above the x axis and between
the lines x = a and x = b. An analogous result holds for the volume of a region in IR3

below the curve z = f(x, y) and between the lines x = a, x = b, y = c and y = d. In this
case we have a double integral. If R represents the rectangle a ≤ x ≤ b, c ≤ y ≤ d then we
can write

∫

R

f(x, y) dA or

∫ d

c

∫ b

a

f(x, y) dxdy

How do we evaluate such integrals? We can write this integral as an iterated integral of
the form

∫ d

c

[

∫ b

a

f(x, y) dx
]

dy

that is, we evaluate the inner integral treating y as a constant and then the outer integral.

Example Evaluate
∫ 2

0

∫ 3

0
(2 − y) dx dy. We have

∫ 2

0

[

∫ 3

0

(2 − y) dx
]

dy =

∫ 2

0

[

(2x − xy)
∣

∣

∣

3

0

]

dy =

∫ 2

0

[

6 − 3y − 0
]

dy = 6y − 3

2
y2

∣

∣

∣

2

0

= 6

Of course our domain is not always a rectangle and so we may need to map it into a simpler
region and evaluate the integral there. For example, if we wanted to evaluate an integral
over a domain where polar coordinates make the integrand much simpler, we might want to
change to polar coordinates and map our domain there. We have done this for a function

of a single variable. For example, to integrate
∫

2

0
xex2

dx we use the substitution u = x2

and du = 2xdx to write

∫

2

0

xex2

dx =

∫

4

0

1

2
eu dx =

1

2
eu

∣

∣

∣

4

0

=
1

2

(

e4 − 1
)

What we are really doing here is using the relationship

(∗)
∫ b

a

f(x) dx =

∫ d

c

f
(

g(u)
)

g′(u) du
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Here we have the generic substitution x = g(u) and dx = g′(u)du. In our example u = x2

so x =
√

u and thus g(u) =
√

u. Also dx = g′(u)du is just dx = 1

2
(u)−1/2du = du/2x or

du = 2xdx.

We would like an analogue of (*) in higher dimensions. Note that if we are in two dimen-
sions, then we need to transform both x and y variables by say

x = g(u, v) y = h(u, v)

We assume that we have in hand a change of variables and now want to write the integral
∫ ∫

D
f(x, y) dxdy in terms of u, v. We have the following relationship analogous to (*).

Theorem Let f(x, y) ∈ C(IR2) and let T be a one to one mapping T : D → D∗ in the
u, v− plane using x = g(u, v), y = h(u, v). Then

(∗∗)
∫ ∫

D

f(x, y) dxdy =

∫ ∫

D∗

f
[

g(u, v), h(u, v)
]∣

∣det J(u, v)
∣

∣ du dv

Here J(u, v) is the Jacobian

J(u, v) =





∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v





and we take the magnitude of its determinant in (**).

Example Let D be the ellipse x2

z2 + y2

b2
= 1. Calculate the area of the ellipse by mapping

it to the unit circle D∗, u2 + v2 = 1.

We want to calculate the area by evaluating
∫ ∫

D
dxdy by using the mapping u = x/a,

v = y/b. So in our relationship in (**) we have x = g(u, v) = au and y = h(u, v) = bv.
The Jacobian is given by

J(u, v) =





∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v



 =

(

a 0
0 b

)

⇒ det J = ab

Our integral becomes

∫ ∫

D∗

|ab| dudv = |ab|
∫ ∫

D∗

dudv = (area of D∗)|ab| = π|ab|

which is the area of our ellipse. Here we don’t actually need the absolute values around ab
because them are positive because they represent the length of the major and minor axes.

Example Transform the integral
∫ ∫

D
f(x, y) dxdy into polar coordinates (r, θ) by using

the mapping
x = r cos θ y = r sin θ .
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Here x = g(r, θ) = r cos θ and y = h(r, θ) = r sin θ. We compute the Jacobian and its
determinant as

J(r, θ) =





∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ



 =

(

cos θ −r sin θ
sin θ r cos θ

)

⇒ det J = r cos2 θ+r sin2 θ = r(cos2 θ+sin2 θ) = r

Thus the change of variables gives

∫ ∫

D

f(x, y) dxdy =

∫ ∫

D∗

f(r cos θ, r sin θ)rdrdθ

Example Write the integral

∫ ∫

D

e−x2/4−y2/9 dydx

in terms of polar coordinates.

Here we need to include a constant so the transformed integrand is e−r2

; we take x =
2r cos θ and y = 3r sin θ and thus the Jacobian is

J =

(

2 cos θ −2r sin θ
3 sin θ 3r cos θ

)

⇒ det J = 6r

so we have
∫ ∫

D

e−x2/4−y2/9 dydx = 6

∫ ∫

D∗

e−r2

r drdθ

where D∗ is found through our mapping.

Multiple integrals in higher dimensions have an analogous definition.
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