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Introduction

Random Phase approximation (RPA) correlation provides a route to improve the accuracy
of Kohn-Sham (KS) density functional theory (DFT). In our previous project, we devel-
oped an efficient stochastic method[1] to calculate the RPA correlation energy differences
between two similar large systems. In this work, we implemented a method to calculate
RPA correlation energy directly based on Ref. [2]. The RPA correlation energy can be
formulated in terms of the trace of a large matrix. That matrix is the product between the
Coulomb matrix and the KS linear response function. The trace is then expressed in terms
of the eigenvalues of that large matrix. Fortunately, most of the eigenvalues are very close to
zero and do not contribute much to the RPA correlation energy. We then develop a method
to solve the lowest eigenvalues of this large matrix. The conjugate gradient (CG) method is
used to solve for these low eigenvalues one by one. The Gram-Schmidt procedure is used to
ensure that the current eigenvector is orthogonal to all lower eigenvectors[3]. This method
allows us to calculate the RPA correlation energy by solving the lowest eigenvalues of the
large matrix directly.

Theoretical Methods

The RPA correlation energy within the adiabatic connection fluctuation-dissipation theorem
(ACFDT) formalism is written as

ERPA
c =

1

2π

∫ ∞
0

duTr{ln[I− vcχ0(iu)] + vcχ0(iu)}, (1)

where Tr[AB] =
∫ ∫

d3rd3r′A(r, r′)B(r, r′). χ0(iu) is the linear response function of
the non-interacting electron system at frequency iu. vc is the Coulomb interaction vc =
1/|r − r′|. The RPA correlation energy can therefore be written in terms of the density of
state (DOS) of the matrix M = v

1/2
c χ0v

1/2
c as

ERPA
c =

1

2π

∫ ∞
0

du

∫ 0

−∞
ρM(x; iu)[ln(1− x) + x]dx. (2)

where x is the eigenvalue of M . The second integral’s upper limit is 0 because the matrix
M is semi-negative-definite. In order to employ the kernel polynomial method (KPM), we
need to rescale M̃ = (M − b)/a to make its spectrum to fall within (−1, 1). The RPA
correlation energy can be written in terms of the DOS of the rescaled matrix M̃ as

ERPA
c =

1

2π

∫ ∞
0

du

∫ 1

−1

ρ̃
M̃

(x̃; iu)[ln(1− (ax̃ + b)) + (ax̃ + b)]dx̃, (3)

where x̃ is the eigenvalue of M̃ . We define ρ̃
M̃

(x̃;u) = aρM(x̃a+ b;u) which is the DOS of
M̃ and is computed as

ρ̃
M̃

(x̃) =
1

π
√

1− x̃2

[
g0µ0 + 2

∞∑
n=1

gnµnTn(x̃)

]
, (4)

where {gn} are the Jackson kernels to suppress the Gibbs oscillations. To determine ρ̃
M̃

(x̃),
we compute the moments {µn}, which are given by Tr[Tn(M̃)].

µn = Tr[Tn(M̃)] ≈ 1

R

R∑
r=1

〈r|Tn(M̃) |r〉 . (5)

Here |r〉 is a set of random vectors that satisfy 〈ξrj〉 = 0 and 〈ξriξr′j〉 = δrr′δij, where ξri ∈ R
denotes the ith element of a vector |r〉 and 〈· · · 〉 denotes the statistical average with respect
to different realizations of random vectors[4]. To compute the product of Tn(M̃) and |r〉,
we use the three-term recurrence relation of the Chebyshev polynomials

Tn(M̃) |r〉 = 2M̃Tn−1(M̃) |r〉 − Tn−2(M̃) |r〉 . (6)

The final expression for the RPA correlation energy in terms of the moments are

ERPA
c =

1

2π

∫ ∞
0

du

[
g0c0µ0 + 2

∞∑
n=1

gncnµn

]
, (7)

where cn is defined as

cn =

∫ 1

−1

1

π
√

1− x̃2
Tn(x̃)[ln(1− (ax̃ + b)) + (ax̃ + b)]dx̃. (8)

A different method to calculate ERPA
c is to calculate the relatively small number of eigen-

values of v1/2
c χ0v

1/2
c .

ERPA
c =

1

2π

∫ ∞
0

du
N∑
α=1

{ln[1− aα(iu)] + aα(iu)}, (9)

where the eigenvalues aα(iu) and their corresponding eigenvectors ∆Vα are defined through
the solution of the eigenvalue problem:

v1/2
c χ0(iu)v1/2

c |∆Vα〉 = aα |∆Vα〉 . (10)

Conjugate Gradient Scheme

The CG scheme is used to evaluate the smallest eigenpairs, and the pseudocode of CG
algorithm for finding smallest eigenpairs problem can be outlined as following.

Initialization: {|vm〉}
Gram-Schmidt procedure: |vm〉 = |vm〉 −

∑m−1
i=1 〈vm|vi〉 |vi〉

foreach n = 1 to niter do
foreach m = 1 to neigen do

Let do = 0
foreach j = 1 to nline do

Compute λm = 〈vm|A |vm〉 / 〈vm|vm〉
if (‖Avm − λmvm‖2 < tol) then

exit
end
Compute the gradient gj = 2Avm

〈vm|vm〉 − 2〈vm|A|vm〉〈vm|vm〉2
vm, and perform Gram-Schmidt

procedure |gj〉 = |gj〉 −
∑m−1

i=1 〈gj|vi〉 |vi〉
Make the CG direciton dj = −gj + βdj−1 with β =

〈gj|(gj−gj−1)〉
〈gj−1|gj−1〉

vm = vm + αdj in which α is computed by performing line search
end
Normalization: |vm〉 = |vm〉√

〈vm|vm〉

end
The Gram-Schmidt procedure is performed to ensure that {|vm〉} are orthorgal to each
other.

end
Algorithm 1: CG algorithm for finding smallest eigenpairs.

Results

The RPA correlation energy of following reaction is

H3O
+ + NH3 → H2O + NH+

4 .

We use equation (9) to directly solve the RPA correlation energy difference between two
systems. The RPA correlation energy difference between two systems is solved with dif-
ferent eigenvalues which is showed in the Figure 1(a). When the RPA correlation energy is
solved by using 600 eigenvalues, the RPA correlation difference starts to converge. There-
fore, we used RPA correlation energy difference solving from 1200 eigenvalues to be the
benchmark and compared with the RPA correlation energy difference solving from the KPM
method. In Figure 1(b), we show the convergence of the RPA correlation energy difference
with different number of random vectors for this two similar systems. The red solid line
represents that two similar systems are sampled with the same random seed. The black dash
line represents the RPA correlation energy difference solving using 1200 eigenvalues.

Figure 1: (a) The convergence of the RPA correlation energy difference (eV) between two systems with dif-
ferent number of eigenvalues. (b) The RPA correlation energy differnce between two systems with different
number of random vectors from the KPM and from directly solving 1200 eigenvalues.

Summary and Outlook

We are in the progress of implementing the atom-centered correlated sampling method in the
ABINIT program, an open-source, plane-wave based on DFT program. In the future, this
method will be used to obtain sufficiently accurate surface adsorption energies of molecules
on solids to help us gain reliable understanding of heterogeneous catalysis with the atomic
resolution.
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