
The Generalization-Stability Tradeoff in Neural Network Pruning
Brian Bartoldson1, Adrian Barbu2, Ari Morcos3, Gordon Erlebacher1

{1Department of Scientific Computing, 2Department of Statistics} at Florida State University, 3Facebook AI Research

Introduction
Pruning deep neural network (DNN) parameters to reduce mem-

ory/computation requirements is an area of much interest, but a variety
of pruning approaches also increase generalization (accuracy on unob-
served data). Knowing how pruning improves generalization could lead
to better pruning algorithms, and a better understanding of the factors
affecting generalization. Traditionally, pruning was thought to prevent
overfitting to the data used to train the model by reducing the number
of parameters. However, such an explanation cannot account for the
results in Figure 1, which shows different pruning algorithms affecting
overfitting behavior differently despite pruning the same number of pa-
rameters.

0U 1U 2U 3U 4U 5U 6U 7U 8U 9U10U
Decile Pruned

-7%

-6%

-5%

-4%

-3%

Fi
na

l G
en

er
al

iza
tio

n 
Ga

p

Final Generalization Gap

0.0

0.1

0.2

0.3

Av
er

ag
e 

M
ag

ni
tu

de
 o

f
Pr

un
ed

 W
ei

gh
ts

0S 1S 2S 3S 4S 5S 6S 7S 8S 9S10S
Decile Pruned

-8%

-7%

-6%

-5%

-4%

Fi
na

l G
en

er
al

iza
tio

n 
Ga

p

Final Generalization Gap

0

2

4

6

8

Av
er

ag
e 

L2
 N

or
m

 o
f

Pr
un

ed
 N

eu
ro

ns

Figure 1: When pruning 10% of Conv4’s largest dense layer, the generalization gap depends on the
magnitude of the weights that were pruned during training, and the use of structured pruning (S vs. U).

Furthermore, recent empirical studies and generalization bounds sug-
gest that more parameters may actually be better for generalization
(Neyshabur et al., 2014, 2018). These results raise a puzzling ques-
tion: if larger parameter counts help generalization, how does pruning
increase performance?

Approach
We address this question by studying an aspect of pruning that is

unrelated to parameter counts. Specifically, we consider pruning algo-
rithm instability, which we define on pruning iteration i as instabilityi =
tpre,i− tpost,i, where t is the test-dataset accuracy.

Pruning
Iterationsi−1 i i+1

Train
Test

(tpre,i−1) Prune
Test

(tpost,i−1) Train
Test
(tpre,i) Prune

Test
(tpost,i)

In the context of three distinct models (ResNet18, VGG11, and Conv4),
we examine how generalization changes in response to changes in
pruning instability, which we modify by varying pruning algorithm facets
that are unrelated to total parameters pruned.

• Pruning Algorithm Facets: Target : small- (“S”), random- (“R”), or
large- (“L”) magnitude parameters. Iterative pruning rate: fraction of
parameters removed on each pruning iteration.

In all experiments, the DNN’s cross-entropy loss on CIFAR-10 train-
ing data is optimized with Adam. In all plots, data points are averages of
10-20 runs, from which 95% confidence error bars are bootstrapped.

Pruning Batch-Normalized Filters
Consider the 2D feature map R produced by convolution with batch

normalization (BN) and a ReLU activation function:

Ri j = max{0,Mi j}, where M = γBN(W ∗ x)+β

Batch normalization obscures the relationship between filter (W ) and
output (R) magnitude, making it difficult to predict the instability associ-
ated with pruning traditional pruning targets (e.g., pruning the filter with
the smallest magnitude). To address this we define the “E[BN]” magni-
tude associated with W as E[Ri j], which we approximate under the as-
sumption that Mi j ∼ N (β ,γ) (justified by the central limit theorem when
the products in W ∗ x are i.i.d. and sufficiently numerous; see paper for
empirical support). Our assumption ensures that the Ri j are either 0 or
samples from a truncated normal distribution with left truncation point
l = 0, right truncation point r = ∞, and mean µ where

µ = γ
φ(λ )−φ(ρ)

Z
+β , and where λ =

l−β

γ
, ρ =

r−β

γ
, Z = Φ(ρ)−Φ(λ ),

and φ(x) and Φ(x) are the standard normal distribution’s PDF and CDF
(respectively) evaluated at x. Thus, we can simply approximate E[Ri j]:

E[Ri j]≈Φ(λ )0+(1−Φ(λ ))µ.

Pruning Instability during Learning
Improves DNN Generalization

Pruning improves generalization most when it is unstable. For ex-
ample, targeting more important parameters leads to particularly higher
instability and generalization

50 100 150 200 250 300
Epoch

83.0 83.0

83.5 83.5

84.0 84.0

84.5 84.5

85.0 85.0

85.5 85.5

86.0 86.0

86.5 86.5

To
p-

1 
Ac

cu
ra

cy
 %

21%

Pruning Style
No Pruning
Prune_S 1%
Prune_S 13%
Prune_L 13%

0.0 0.5 1.0 1.5 2.0
Mean Instability (%)

85.2

85.4

85.6

85.8

86.0

86.2

86.4

86.6

To
p-

1 
Ac

cu
ra

cy
 %

pearsonr = 0.89; p = 8.3e-11

50 100 150 200 250 300
Epoch

84 84

85 85

86 86

87 87

88 88

To
p-

1 
Ac

cu
ra

cy
 %

27%

45%

Pruning Style
No Pruning
Prune_S 1%
Prune_S 13%
Prune_L 13%

0 1 2 3 4
Mean Instability (%)

87.4

87.6

87.8

88.0

88.2

88.4

To
p-

1 
Ac

cu
ra

cy
 %

pearsonr = 0.65; p = 5e-05

Figure 2: Pruning instability improves generalization of (Top) VGG11 and (Bottom) ResNet18 when
training on CIFAR-10 (10 runs per configuration). (Left) Test accuracy during training of several models
illustrates how adaptation to more unstable pruning leads to better generalization. (Right) Means reduce
along the epoch dimension (creating one point per run-configuration combination).

Given Pruning Target, Iterative Rate
Affects Instability/Generalization

Iterative pruning rate also affects instability and generalization, mean-
ing that pruning algorithms with the same target do not necessarily af-
fect generalization similarly. This could help explain how typical pruning
studies, which tend to have the same target (small-magnitude parame-
ters), report various generalization benefits from pruning.

0 10 20 30
Iterative Pruning Percentage

0

1

2

3

M
ea

n 
In

st
ab

ilit
y 

(%
)

L2-Norm Pruning

Pruning Style
Prune_L
Prune_R
Prune_S

0 10 20 30
Iterative Pruning Percentage

E[BN] Pruning

0 10 20 30
Iterative Pruning Percentage

85.4

85.6

85.8

86.0

86.2

86.4

To
p-

1 
Ac

cu
ra

cy
 %

L2-Norm Pruning

0 10 20 30
Iterative Pruning Percentage

E[BN] Pruning

Figure 3: In VGG11, increasing the iterative pruning rate (and decreasing the number of pruning events
in order to hold total pruning percentage constant) leads to more instability, and can allow methods
that target less important parameters to generalize better. Additionally, E[BN] magnitude better ap-
proximates parameter importance than `2-norm magnitude. An unpruned baseline model had 85.21%
average accuracy.

Pruning Acts Like Noise Injection
We have shown that pruning regularizes through an instability-

associated mechanism. Since pruning can be thought of as noise injec-
tion, we hypothesize that the instability level determines the amount of
noise, and therefore noise-based regularization, applied to the network.
Figure 4 shows that replacing pruning with temporary noise injection
creates generalization dynamics similar to pruning’s. In sum, then, our
study supports the idea that pruning improves generalization via noise
injection, wherein pruning instability corresponds to the level of noise,
which is modifiable via pruning facets such as the use of the pruneL

pruning target based on the E[BN] magnitude that we derived.

50 100 150 200 250 300
Epoch

83

84

85

86

To
p-

1 
Ac

cu
ra

cy
 %

Noise Type
No Noise
Prune_L
Zeroing 0
Zeroing 50
Zeroing 1500

50 100 150 200 250 300
Epoch

83

84

85

86

To
p-

1 
Ac

cu
ra

cy
 %

Noise Type
No Noise
Prune_L
Gaussian 0
Gaussian 50
Gaussian 1500

Figure 4: Generalization improvements from pruning bear resemblance to those obtained by using tem-
porary (Left) multiplicative zeroing noise, and (Right) additive Gaussian noise, as long as the noise is
applied for enough batches/steps.

Link to Paper


