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Introduction
Pruning deep neural network (DNN) parameters to reduce mem-

ory/computation requirements is an area of much interest, but a variety
of pruning approaches also increase generalization (accuracy on unob-
served data). Knowing how pruning improves generalization could lead
to better pruning algorithms, and a better understanding of the factors
affecting generalization. Traditionally, pruning was thought to prevent
overfitting to the data used to train the model by reducing the number
of parameters. However, such an explanation cannot account for the
results in Figure 1, which shows different pruning algorithms affecting
overfitting behavior differently despite pruning the same number of pa-
rameters.
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Figure 1: When pruning 10% of Conv4’s largest dense layer, the generalization gap depends on the
magnitude of the weights that were pruned during training, and the use of structured pruning (S vs. U).

Furthermore, recent empirical studies and generalization bounds sug-
gest that more parameters may actually be better for generalization
(Neyshabur et al., 2014, 2018). These results raise a puzzling ques-
tion: if larger parameter counts help generalization, how does pruning
increase performance?

Approach
We address this question by studying an aspect of pruning that is

unrelated to parameter counts. Specifically, we consider pruning algo-
rithm instability, which we define on pruning iteration i as instabilityi =
tpre,i− tpost,i, where t is the test-dataset accuracy.
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In the context of three distinct models (ResNet18, VGG11, and Conv4),
we examine how generalization changes in response to changes in
pruning instability, which we modify by varying pruning algorithm facets
that are unrelated to total parameters pruned.

• Pruning Algorithm Facets: Target : small- (“S”), random- (“R”), or
large- (“L”) magnitude parameters. Iterative pruning rate: fraction of
parameters removed on each pruning iteration.

In all experiments, the DNN’s cross-entropy loss on CIFAR-10 train-
ing data is optimized with Adam. In all plots, data points are averages of
10-20 runs, from which 95% confidence error bars are bootstrapped.

Pruning Batch-Normalized Filters
Consider the 2D feature map R produced by convolution with batch

normalization (BN) and a ReLU activation function:

Ri j = max{0,Mi j}, where M = γBN(W ∗ x)+β

Batch normalization obscures the relationship between filter (W ) and
output (R) magnitude, making it difficult to predict the instability associ-
ated with pruning traditional pruning targets (e.g., pruning the filter with
the smallest magnitude). To address this we define the “E[BN]” magni-
tude associated with W as E[Ri j], which we approximate under the as-
sumption that Mi j ∼ N (β ,γ) (justified by the central limit theorem when
the products in W ∗ x are i.i.d. and sufficiently numerous; see paper for
empirical support). Our assumption ensures that the Ri j are either 0 or
samples from a truncated normal distribution with left truncation point
l = 0, right truncation point r = ∞, and mean µ where

µ = γ
φ(λ )−φ(ρ)

Z
+β , and where λ =

l−β

γ
, ρ =

r−β

γ
, Z = Φ(ρ)−Φ(λ ),

and φ(x) and Φ(x) are the standard normal distribution’s PDF and CDF
(respectively) evaluated at x. Thus, we can simply approximate E[Ri j]:

E[Ri j]≈Φ(λ )0+(1−Φ(λ ))µ.

Pruning Instability during Learning
Improves DNN Generalization

Pruning improves generalization most when it is unstable. For ex-
ample, targeting more important parameters leads to particularly higher
instability and generalization
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Figure 2: Pruning instability improves generalization of (Top) VGG11 and (Bottom) ResNet18 when
training on CIFAR-10 (10 runs per configuration). (Left) Test accuracy during training of several models
illustrates how adaptation to more unstable pruning leads to better generalization. (Right) Means reduce
along the epoch dimension (creating one point per run-configuration combination).

Given Pruning Target, Iterative Rate
Affects Instability/Generalization

Iterative pruning rate also affects instability and generalization, mean-
ing that pruning algorithms with the same target do not necessarily af-
fect generalization similarly. This could help explain how typical pruning
studies, which tend to have the same target (small-magnitude parame-
ters), report various generalization benefits from pruning.
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Figure 3: In VGG11, increasing the iterative pruning rate (and decreasing the number of pruning events
in order to hold total pruning percentage constant) leads to more instability, and can allow methods
that target less important parameters to generalize better. Additionally, E[BN] magnitude better ap-
proximates parameter importance than `2-norm magnitude. An unpruned baseline model had 85.21%
average accuracy.

Pruning Acts Like Noise Injection
We have shown that pruning regularizes through an instability-

associated mechanism. Since pruning can be thought of as noise injec-
tion, we hypothesize that the instability level determines the amount of
noise, and therefore noise-based regularization, applied to the network.
Figure 4 shows that replacing pruning with temporary noise injection
creates generalization dynamics similar to pruning’s. In sum, then, our
study supports the idea that pruning improves generalization via noise
injection, wherein pruning instability corresponds to the level of noise,
which is modifiable via pruning facets such as the use of the pruneL

pruning target based on the E[BN] magnitude that we derived.
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Figure 4: Generalization improvements from pruning bear resemblance to those obtained by using tem-
porary (Left) multiplicative zeroing noise, and (Right) additive Gaussian noise, as long as the noise is
applied for enough batches/steps.
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