Semi-Permeable Deformable Vesicles in a Viscous Fluid Ashley Gannon and Bryan Quaife Department of Scientific Computing, Florida State University • Evaluate the weakly-singular single layer potential S[f](x) with Alpert quadrature Abstract • Time adaptive spectral deferred correction that applies IMEX-Euler twice per time step 0.9 Numerical Examples **Quiescent Flow** Area 0.7 $t = 2.99 \times 10^{-2}$ $t = 1.09 \times 10^{-1}$ $t = 1.83 \times 10^{-1}$ $t = 2.71 \times 10^{-1}$ $t = 3.17 \times 10^{-1}$ Beduced 0.5 $\nu = 0.46$ $\nu = 0.57$ $\nu = 0.77$ $\nu = 0.38$ $\nu = 0.99$ Introduction \longrightarrow \rightarrow 0.4 \rightarrow **Figure 2:** The evolution of a semi-permeable vesicle in a quiescent flow to a circle. ← 0.3 ← Shear Flow **Figure 1:** Ω is the unbounded fluid domain and γ Time is the vesicle membrane. In addition to the vesicleinduced flow, a shear flow is imposed in the far field. 4.0 00000000 $\beta = 1$ and all vesicles have the same length. 0000000000 $ate_{3.2}$ 000000000 000000000 **Governing Equations m**2.4 -0000000000 Figure 3: The steady-state shape of a semi-0000000000 Я permeable vesicle in a shear flow. After reaching a **2**1.6 -0000000000 steady area, the vesicles undergo tank treading dy-S 0000000000 mentum, namics. The most slender tank treading shapes ob-0.8 0000000000 served occurred at small β and large shear rates. SS, ity. 0000000000 $0.4 \quad 0.8 \quad 1.2 \quad 1.6 \quad 2.0$ dition, **Discussion** 0.7 -Numeric, $\beta = 0.1$

Aquaporins are channels located on cell membranes that facilitate the movement of water into and out of a cell at much higher rates than osmosis. Studies have demonstrated that this transport across cell membranes plays a critical role in cell movement. We apply a high-order boundary integral equation method to simulate the motion of a single vesicle with a semi-permeable deformable membrane in a variety of Stokes flows. The dynamics are compared with impermeable vesicles.

Vesicles are deformable capsules that are:

- Submerged in and filled with an incompressible viscous fluid
- Resist bending
- Locally inextensible
- Used to model red blood cell suspensions

The fluid and vesicle equations are

$-\nabla p + \mu \Delta \mathbf{u} = 0,$	$\mathbf{x}\in \Omega$	conservation of mor
$\nabla \cdot \mathbf{u} = 0,$	$\mathbf{x}\in \Omega$	conservation of mas
$[[T]]\mathbf{n} = \mathbf{f},$	$\mathbf{x}\in\gamma$	force balance,
$\mathbf{f} = \mathbf{f}_B + \mathbf{f}_T,$	$\mathbf{x}\in\gamma$	membrane force,
$\mathbf{f}_B = -\kappa_b \mathbf{x}_{ssss},$	$\mathbf{x}\in\gamma$	bending force,
$\mathbf{f}_T = (\sigma \mathbf{x}_s)_s,$	$\mathbf{x}\in\gamma$	tension force,
$\mathbf{u} - \frac{d\mathbf{x}}{dt} = \beta(\mathbf{f} \cdot \mathbf{n})\mathbf{n},$	$\mathbf{x}\in\gamma$	slip boundary con
$\nabla_{\gamma} \cdot \frac{d\mathbf{x}}{dt} = 0,$	$\mathbf{x}\in\gamma$	local inextensibility.

A boundary integral equation formulation places all unknowns on the vesicle interface

$$\begin{aligned} \frac{d\mathbf{x}}{dt} &= -\beta(\mathbf{f} \cdot \mathbf{n})\mathbf{n} + \mathcal{S}[\mathbf{f}](\mathbf{x}), \qquad \mathbf{x} \in \gamma \\ \mathcal{S}[\mathbf{f}](\mathbf{x}) &= \frac{1}{4\pi\mu} \int_{\gamma} \left(-\log\rho + \frac{\mathbf{r} \otimes \mathbf{r}}{\rho^2} \right) \mathbf{f}(\mathbf{y}) ds_{\mathbf{y}}, \qquad \mathbf{r} = \mathbf{x} - \mathbf{y}, \end{aligned}$$

The area is not constant and satisfies

$$\frac{dA}{dt} = \beta \int_{\gamma} (\mathbf{f} \cdot \mathbf{n}) ds$$

Numerical Methods

- Discretize the vesicles at collocation points
- Fourier differentiation to compute f_B and f_T

$$ho = ||\mathbf{r}||.$$
 (*)

Redu 0.55 0.5 Time Figure 4: There is an asymptotic reduced area (RA) that depends on the water flux coef-

0.65

0.6

Φ

 \triangleleft

ed

ficient, β . The analytic expression (\star) is used to predict the RA values of each curve with first order accuracy.

Figure 5: The final RA does not depend on the initial RA or vesicle shape. In this figure,

eta	RA_0	RA_T	$ IA_T $
0.1	0.55	0.51	0.30
1	0.55	0.57	0.40
10	0.55	0.58	0.46
eta	RA_0	RA_T	$ IA_T $
$\frac{\beta}{0}$	<i>RA</i> ₀ 0.51	RA_T	<i>IA</i> _T 0.28
$\frac{\beta}{0}$	<i>RA</i> ₀ 0.51 0.57	<i>RA_T</i> - -	<i>IA_T</i> 0.28 0.31
$\begin{array}{c} \beta \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array}$	<i>RA</i> ₀ 0.51 0.57 0.58	RA _T - -	<i>IA_T</i> 0.28 0.31 0.31

- The steady-state shape of a semi-permeable vesicle in a quiescent flow is circular.
- A semi-permeable vesicle in shear flow tank treads.
- The area of the vesicle is characterized by the flux (\star) .
- The final RA of a semi-permeable vesicle depends on the water flux coefficient and the initial length of the vesicle.
- The final RA of a semi-permeable vesicle does not depend on the initial RA or shape. • In a shear flow, semi-permeable vesicles tank tread at a different inclination angle than
- clean vesicles.
- Future work will include a concentration gradient of a solute.

nal of Computational Physics, 306:478-499, 2016.

[2] Lingxing Yao and Yoichiro Mori. A numerical method for osmotic water flow and solute diffusion with deformable membrane boundaries in two spatial dimension. Journal of *Computational Physics*, 350:728-746, 2017.

 Table 1: We compare impermeable vesicles
 with initial RA values equal to the final RA values of a semipermeable vesicle. Semipermeable vesicles reach higher inclination angles, which can affect the effective viscos-

References

[1] Bryan Quaife and George Biros. Adaptive Time Stepping for Vesicle Simulations. *Jour-*