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Abstract

Aquaporins are channels located on cell membranes that facilitate the movement of water
into and out of a cell at much higher rates than osmosis. Studies have demonstrated that
this transport across cell membranes plays a critical role in cell movement. We apply a
high-order boundary integral equation method to simulate the motion of a single vesicle
with a semi-permeable deformable membrane in a variety of Stokes flows. The dynamics
are compared with impermeable vesicles.

Introduction

Vesicles are deformable
capsules that are:
• Submerged in and filled with

an incompressible viscous
fluid
•Resist bending
• Locally inextensible
•Used to model red blood cell

suspensions

𝛾 Ω 

Figure 1: Ω is the unbounded fluid domain and γ

is the vesicle membrane. In addition to the vesicle-
induced flow, a shear flow is imposed in the far field.

Governing Equations

The fluid and vesicle equations are

−∇p + µ∆u = 0, x ∈ Ω conservation of momentum,
∇ · u = 0, x ∈ Ω conservation of mass,
[[T ]]n = f , x ∈ γ force balance,

f = fB + fT , x ∈ γ membrane force,
fB = −κbxssss, x ∈ γ bending force,
fT = (σxs)s, x ∈ γ tension force,

u− dx

dt
= β(f · n)n, x ∈ γ slip boundary condition,

∇γ ·
dx

dt
= 0, x ∈ γ local inextensibility.

A boundary integral equation formulation places all unknowns on the vesicle interface

dx

dt
= −β(f · n)n + S [f ](x), x ∈ γ

S [f ](x) =
1

4πµ

∫
γ

(
− log ρ +

r⊗ r

ρ2

)
f(y)dsy, r = x− y, ρ = ||r||.

The area is not constant and satisfies

dA

dt
= β

∫
γ
(f · n)ds. (?)

Numerical Methods

•Discretize the vesicles at collocation points
• Fourier differentiation to compute fB and fT

• Evaluate the weakly-singular single layer potential S [f ](x) with Alpert quadrature
• Time adaptive spectral deferred correction that applies IMEX-Euler twice per time step

Numerical Examples

Quiescent Flow
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Figure 2: The evolution of a semi-permeable vesicle in a quiescent flow to a circle.

Shear Flow
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Figure 3: The steady-state shape of a semi-
permeable vesicle in a shear flow. After reaching a
steady area, the vesicles undergo tank treading dy-
namics. The most slender tank treading shapes ob-
served occurred at small β and large shear rates.
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Figure 4: There is an asymptotic reduced area (RA) that depends on the water flux coef-
ficient, β. The analytic expression (?) is used to predict the RA values of each curve with
first order accuracy.
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Figure 5: The final RA does not depend on the initial RA or vesicle shape. In this figure,
β = 1 and all vesicles have the same length.

β RA0 RAT IAT
0.1 0.55 0.51 0.30
1 0.55 0.57 0.40
10 0.55 0.58 0.46
β RA0 RAT IAT
0 0.51 - 0.28
0 0.57 - 0.31
0 0.58 - 0.31

Table 1: We compare impermeable vesicles
with initial RA values equal to the final RA
values of a semipermeable vesicle. Semi-
permeable vesicles reach higher inclination
angles, which can affect the effective viscos-
ity.

Discussion

• The steady-state shape of a semi-permeable vesicle in a quiescent flow is circular.
• A semi-permeable vesicle in shear flow tank treads.
• The area of the vesicle is characterized by the flux (?).
• The final RA of a semi-permeable vesicle depends on the water flux coefficient and the

initial length of the vesicle.
• The final RA of a semi-permeable vesicle does not depend on the initial RA or shape.
• In a shear flow, semi-permeable vesicles tank tread at a different inclination angle than

clean vesicles.
• Future work will include a concentration gradient of a solute.
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