omputing

Department of Scientific Computing Florida State University

Solution of the Navier Stokes Equation with a Colored Noise Forcing Term

Wenju Zhao with Max Gunzburger, John Burkardt Department of Scientific Computing Florida state University

Abstract: We pose a version of the time-dependent incompressible Navier-Stokes equations with a stochastic forcing term. The finite element method is used to discretize the variational form of the problem. The stochastic forcing term is represented by a covariance function whose eigenvalues are employed in a truncated Karhunen-Loeve expansion. Finite element computations are applied to problems with both Gaussian and exponential covariance functions, and the appropriate rate of convergence is observed.

Introduction

Guassian Colored Noise Stimulation

Formally, the stochastic incompressible Navier Stokes equations with Newtonian constitutive relationship

may be written as:

 $\mathbf{u}_{t} - \nu \Delta \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p = \mathbf{f}(t, x, \omega) \text{ in } (0, T) \times \mathcal{D} \times \Omega,$ $\nabla \cdot \mathbf{u} = 0 \text{ in } (0, T) \times \mathcal{D} \times \Omega,$ $\mathbf{u} = \mathbf{g}(t, x) \text{ on } (0, T) \times \partial \mathcal{D},$ $\mathbf{u} = \mathbf{u}_{0}(x) \text{ on } \mathcal{D} \times \{0\}.$

A colored noise function $\mathbf{f}(t, x, \omega)$ in space has an associated semidefinite covariance function C(x, y). Thus, the relationship between two values of the forcing term can be measured by

$$<\mathbf{f}(t,x,\omega),\mathbf{f}(s,y,\omega)>=\delta(t-s)C(x,y)$$

whe $\delta(t)$ is the usual Dirac delta function.

The corresponding stochastic variational formulation:

$$\int_{\mathcal{D}} \mathbb{E}[\partial_t \mathbf{u} \cdot \mathbf{v}] dx + \nu \int_{D} \mathbb{E}[\nabla \mathbf{u} : \nabla \mathbf{v}] dx + \int_{\mathcal{D}} \mathbb{E}[(\mathbf{u} \cdot \nabla) \mathbf{u} \cdot \mathbf{v}] dx - \int_{\mathcal{D}} \mathbb{E}[p\nabla \cdot \mathbf{v}] dx$$
$$= \int_{\mathcal{D}} \mathbb{E}[\mathbf{f} \cdot \mathbf{v}] dx$$
$$\int_{\mathcal{D}} \mathbb{E}[\psi\nabla \cdot \mathbf{u}] dx = 0$$

where $\mathbf{v} \in S$ and $\psi \in Q$.

$$\begin{split} \mathbf{S} &= \{ \mathbf{v} \in \mathbf{H}_0^1 : \nabla \cdot \phi(\cdot, \omega) = 0, P\text{-}a.e. \}.\\ \mathbf{Q} &= \{ p \in L^2(\mathbf{u}) : \int_{\mathcal{D}} p(\cdot, \omega) dx = 0, p\text{-}a.e. \}\\ \mathbf{H}_0^1 &\equiv [\widetilde{H}_0^1]^d \text{ equipped with } ||v||_{\widetilde{W}^{s,q}(\mathcal{D})} = (\mathbb{E}[||v||_{H_0^1(\mathcal{D})}])^{1/2}. \end{split}$$

$$C_f(x,y) = \sigma^2 e^{-\frac{|x-y|^2}{L_c}}, x, y \in \mathcal{D}$$

After orthogonalizing e_i with same eigenvalues (eg.Gram Schmidt) and normalizing eigenvectors e_i with numerical integration scheme $\sum_{i=1}^{N} w_n e_i(x_i) e_i(x_i)$, we can find a orthonormal basis $\{e_i\}$ with quadrature weights $\{w_i\}$ which is good numerical approximation of e_i of (1).

científic

Florída State Uníversíty_

(a) Piecewise Middle points rule

(b) Guass-Legendre quadrature rule

Figure 1: the first few eigenvalues with different different quadrature points

Examples

(1)

we consider the following two-dimensional stochastic Navier Stokes driven by color noise.

Monte Carlo Galerkin Finte Element Method

In this section we discribe the use of the standard Monte Carlo Galerkin finite element method to construct approximatations of each realization.

Given a number of realizations, M, and the finite element space S_h, Q_h on \mathcal{D} . For each j=1,2,...,M, sample independent and identically distribution of the external random force $f(t, \cdot, \omega_j)$ based on realization of KL expansion. and find a corresponding approximation $\mathbf{u}_h(t, \cdot, \omega_j) \in S_h, q_h(t, \cdot, \omega) \in Q_h$.

$$\begin{split} \int_{D} \frac{\partial \mathbf{u}(\cdot,\omega_{j})}{\partial t} \cdot \mathbf{v} dx + \int_{D} (\mathbf{u}(\cdot,\omega_{j}) \cdot \nabla) \mathbf{u}(\cdot,\omega_{j}) \cdot \mathbf{v} dx + \nu \int_{D} \nabla \mathbf{u}(\cdot,\omega_{j}) : \nabla \mathbf{v} dx - \\ \int_{D} p(\cdot,\omega) \nabla \cdot \mathbf{v} d\Omega = \int_{D} \mathbf{f}(\cdot,\omega_{j}) \cdot \mathbf{v} dx \\ \int_{D} \phi \nabla \cdot \mathbf{u}(\cdot,\omega_{j}) dx = 0 \end{split}$$

where $\mathbf{v}(t, \cdot, \omega_j) \in S_h, \phi(t, \cdot, \omega_j) \in Q_h$ as-P.

By the Karhuen-Loeve Representation theorem, The colored noised right hand side $\mathbf{f}(x, \cdot, \omega) : \mathcal{D} \times \Omega \to R$ with mean $\mu_f(x)$ and covariance kernal $C(x_1, x_2)$ can be represented as

$$\mathbf{f}(x,\cdot,\omega) = \mu(x) + \sum_{i=1}^{\infty} \sqrt{\lambda_i} e_i(x) \xi_i(\omega) \text{ in } L^2(\Omega) \text{-}a.e$$

where ξ_i are centered mutually uncorrelated random variables with unit variance, $\{\lambda_i, e_i\}$ are the eigenvalues and orthonormal eigenfunctions of the Fredhelm integration equation of second kind

$$\int_D C(x,y) e_j(y) dy = \lambda_j e_j(x), j = 1,2, \ldots$$

$$\mathbf{u}_t - \nu \Delta \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p = f(x, t) + \xi(x, t, \omega) \text{ in } (0, T) \times \mathcal{D} \times \Omega,$$

$$\nabla \cdot \mathbf{u} = 0 \text{ in } (0, T) \times \mathcal{D} \times \Omega,$$

$$\mathbf{u} = \mathbf{g} \text{ on } (0, T) \times \partial \mathcal{D} \times \Omega,$$

$$\mathbf{u} = \mathbf{u}_0 \text{ on } \mathcal{D} \times \{0\} \times \Omega.$$

Where $\xi(x, t, \omega)$ denotes the color noise with mean zeros and gaussian variance function $C_f(x, y) = \sigma^2 e^{-\frac{|x-y|^2}{L_c}}$, $x, y \in D$, $\sigma = 1$ and $\nu = 1$, $L_c = 10$, and

 $\mathbf{g}(t,x) = (e^{-t}\cos(2\pi y)\sin(2\pi x), -e^{-t}\cos(2\pi x)\sin(2\pi y))$

 $f(x,t) = (2x + \pi e^{-2t} \sin(4\pi x) - e^{-t} \cos(2\pi y) \sin(2\pi x) + 8\pi^2 \nu e^{-t} \cos(2\pi y) \sin(2\pi x),$ $2y + \pi e^{-2t} \sin(4\pi y) + e^{-t} \cos(2\pi x) \sin(2\pi y) - 8\pi^2 \nu e^{-t} \cos(2\pi x) \sin(2\pi y))$

 $\mathbf{u}_0 = (\cos(2\pi y)\sin(2\pi x), \cos(2\pi x)\sin(2\pi y))$

h	$ u(T) - u_h(T) $	order	$ v(T) - v_h(T) $	order	$ p(T) - p_h(T) $	order
1/2	2.524270e-02	-	2.524270e-02	-	1.263379e+00	-
1/4	1.069344e-02	1.239141	1.068352e-02	1.240480	7.144075e-01	0.822468
1/8	1.337853e-03	2.998734	1.336509e-03	2.998846	3.077256e-01	1.215103
1/16	1.656229e-04	3.013946	1.651406e-04	3.016702	9.342183e-02	1.719813
1/32	2.081968e-05	2.991882	2.076527e-05	2.991451	2.723982e-02	1.778043
1/64	2.609404e-06	2.996156	2.591168e-06	3.002498	6.451420e-03	2.078028

Table 1: the computational results for 100 simulations

with $\mu_1 \ge \mu_2 \ge \cdots \ge 0$.

Time discretization

Applying the backward Euler method, This leads to fully implicit method for seeking \mathbf{u}_h in n + 1-st time References layer:

$$\frac{1}{\Delta t} \int_{\mathcal{D}} \mathbf{u}_{h}^{n+1}(\omega_{j}) \cdot \mathbf{v}_{h} dx + \int_{\mathcal{D}} (\mathbf{u}_{h}^{n+1}(\omega_{j}) \cdot \nabla) \mathbf{u}_{h}^{n+1}(\omega_{j}) \cdot \mathbf{v}_{h} dx + \nu \int_{\mathcal{D}} \nabla \mathbf{u}_{h}^{n+1}(\omega_{j}) : \nabla \mathbf{v}_{h} dx - \int_{\mathcal{D}} p_{h}^{n+1}(\omega_{j}) \nabla \cdot \mathbf{v}_{h} dx = \int_{\mathcal{D}} \mathbf{f}^{n+1}(\omega_{j}) \cdot \mathbf{v}_{h} dx + \frac{1}{\Delta t} \int_{\mathcal{D}} \mathbf{u}_{h}^{n} \cdot \mathbf{v}_{h} dx, \int_{\mathcal{D}} \psi_{h} \nabla \cdot \mathbf{u}_{h}^{n+1}(\omega_{j}) dx = 0.$$

The resulting nonlinear algebraic system is then solved by the Newton Method. In the inner iterations the umfpack solver are employed to solve the linear system.

- Guannan Zhang and Max Gunzburger, Error analysis of a stochastic collocation method for parabolic partial differential equations with random input data, SIAM J. Numer. Anal. **50** (2012), no. 4, 1922–1940.
- Yan, Yubin, Galerkin finite element methods for stochastic parabolic partial differential equations SIAM Journal on Numerical Analysis, **43** (2005),no. 1363–1384.
- Babuška, Ivo and Tempone, Raúl and Zouraris, Georgios E. Galerkin finite element approximations of stochastic elliptic partial differential equations, SIAM J. Numer. Anal., 42, (2004), no 2, 800-825.