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Start with a function to evaluate

and a window size

Start with a function to evaluate

and a window size

Evaluate the function and 
choose a random height

as Done by Neil 2003

Step out until outside of function 
is reached to create slice

New Point is the first random 
uniform inside this “Slice”

Choose a new point within this 
window

Evaluate this new point, and 
accept or reject it

sliding window proposal We noticed that the efficiency of 
this algorithm was dependent on 

window size

Too big or too small a window leads 
to too many function evaluations

Solution is to dynamically adjust 
window size.

Convergence is quick

Result is quicker run time

The optimal acceptance 
rejection ratio is 0.44, depends 

on the window size

too small or too large a window 
results in poor sampling

Adaptive vs. Non adaptive

 We can choose our acceptance 
rejection ratio(must do this during 

burn in)
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Too large window size leads to many rejections

Two small a window size requires many steps to reach outside the function

        






















Iteration vs Stick size
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A large window leads to many samples that will be rejected



New samples aren’t much different from old samples
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R Rejection → multiply window by beta

Acceptance → multiply window by alpha
R → desired acceptance/rejection ratio

Slice sampling and adaptive MH on 
trees may be beneficial. Here I show 
one way to slice sample a tree. The 
red branch can be moved anywhere 
along the green line to reduce this 

type of sampling to one dimension at 
a time

Currently sampling is done one 
parameter at a time.  We know that 

these parameters are correlated

Multi dimensional slice sampling from Neil, 2003
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tions about the adaption procedure (Haario, Saksman, and Tamminen 2001; Andrieu and
Moulines 2003; Atchadé and Rosenthal 2005; Andrieu and Atchadé 2007).

Roberts and Rosenthal (2005) proved ergodicity of adaptive MCMC under conditions
which we find simpler to apply, and which do not require that the adaptive parameters con-
verge. To state their result precisely, suppose the algorithm updates Xn to Xn+1 using the
kernel P!n , where each fixed kernel Pγ has stationary distribution π(·), but where the !n

are random indices, chosen iteratively from some collection Y based on past algorithm out-
put. Write ‖ · · ·‖ for total variation distance, X for the state space, and Mε(x,γ ) = inf{n ≥
1 :‖P n

γ (x, ·)−π(·)‖ ≤ ε} for the convergence time of the kernel Pγ when beginning in state
x ∈ X. Then theorem 13 of Roberts and Rosenthal (2005), combined slightly with their
corollaries 8 and 9 and theorem 23, guaranteed that limn→∞ ‖L(Xn)− π(·)‖ = 0 (asymp-
totic convergence), and also limn→∞ 1

n

∑n
i=1 g(Xi) = π(g) for all bounded g :X → R

(WLLN), assuming only the Diminishing Adaptation condition

lim
n→∞ sup

x∈X

∥∥P!n+1(x, ·) − P!n(x, ·)
∥∥ = 0 in probability, (1.1)

and the Bounded Convergence condition

{Mε(Xn,!n)}∞n=0 is bounded inprobability, ε > 0. (1.2)

Furthermore, they proved that (1.2) is satisfied whenever X × Y is finite, or is compact
in some topology in which either the transition kernels Pγ , or the Metropolis–Hastings
proposal kernels Qγ , have jointly continuous densities. (Condition (1.1) can be ensured
directly, by appropriate design of the adaptive algorithm.) A SLLN is precluded because
the convergence statements above are only stated “in probability,” whereas CLTs do not
necessarily hold because !n does not necessarily converge at all.

Such results provide a “hunting license” to look for useful adaptive MCMC algorithms.
In this article, we shall consider a variety of such algorithms. We shall see that they do
indeed converge correctly, and often have significantly better mixing properties than com-
parable nonadaptive algorithms.

We present a collection of examples. For each one, our adaptive strategy steers the
algorithm toward a desired operational “optimal” according to some prescribed criterion.
Crucially, our approach differs from that of Andrieu and Moulines (2003) and Andrieu
and Atchadé (2007) in that, unlike our method, convergence of the adaptive strategy is
specifically sought in their approach. Our regularity conditions are thus weaker and easier
to verify, though as a result, the results we can demonstrate are necessarily weaker also.

2. ADAPTIVE METROPOLIS (AM)

In this section, we consider a version of the Adaptive Metropolis (AM) algorithm of
Haario, Saksman, and Tamminen (2001). We begin with a d-dimensional target distribution
π(·). We perform a Metropolis algorithm with proposal distribution given at iteration n by
Qn(x, ·) = N(x, (0.1)2Id/d) for n ≤ 2d , whereas for n > 2d ,

Qn(x, ·) = (1 − β)N(x, (2.38)2&n/d) + βN(x, (0.1)2Id/d), (2.1)

where &n is the current empirical estimate of the covariance structure of the target distrib-
ution based on the run so far, and where β is a small positive constant (we take β = 0.05).

Equation for adaptive multidimensional MH from Roberts and 
Rosenthal 2009

References
Roberts GO and Rosenthal JS (2009) Examples of adaptive MCMC 
Journal of Computational and Graphical Statistics Vol 18(2) 349-367

Neil RM (2001) Slice Sampling The Annals of Statistics Vol 31(3) 
705-767

The adaptive algorithm(left) shows better mixing


