

Bayesian Sampling Methods for Population Genetics

Michal Palcewski, Department of Scientific Computing, Florida State University Advisor: Peter Beerli

Metropolis Hastings sliding window proposal

We noticed that the efficiency of this algorithm was dependent on window size

1:41 Adaptive

Slice Sampling as Done by Neil 2003

Start with a function to evaluate

Evaluate the function and choose a random height

Step out until outside of function is reached to create slice

New Point is the first random uniform inside this "Slice"

Start with a function to evaluate

and a window size

Choose a new point within this

Evaluate this new point, and accept or reject it

Probability of acceptance $= \min \left(\right)$

Adaptive Slice Sampling

Too large window size leads to many rejections

Too big or too small a window leads to too many function evaluations

Two small a window size requires many steps to reach outside the function Solution is to dynamically adjust window size.

Convergence is quick


```
2:09
```

non-Adaptive

Result is quicker run time

Adaptive Metropolis Hastings

The optimal acceptance rejection ratio is 0.44, depends on the window size

A large window leads to many samples that will be rejected

New samples aren't much different from old samples too small or too large a window results in poor sampling

Rejection \rightarrow multiply window by beta Acceptance \rightarrow multiply window by alpha $R \rightarrow$ desired acceptance/rejection ratio

We can choose our acceptance rejection ratio(must do this during burn in)

The adaptive algorithm(left) shows better mixing

Adaptive vs. Non adaptive

Future Research Slice Sampling Trees

Slice sampling and adaptive MH on trees may be beneficial. Here I show one way to slice sample a tree. The red branch can be moved anywhere along the green line to reduce this type of sampling to one dimension at a time

References

Neil RM (2001) Slice Sampling The Annals of Statistics Vol 31(3) 705-767

DEPARTMENT SCIENTIFIC COMPUTING

