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Introduction

Figure 1: A 75 node RBF-FD stencil with
blue (negative) and red (positive)
differentiation weights to approximate
advective operator at the square.

We introduce a multi-CPU/GPU implementation for the solution of hyperbolic PDEs on a
sphere using Radial Basis Functions (RBF). This work targets the NSF funded Keeneland GPU
cluster, which—like many of the latest HPC systems around the world—offers significantly more
GPU accelerators (360 units) than CPU counterparts (240 units). We present our parallelization
strategy, algorithms and data-structures used to span computation across the system.

RBF-FD Weights (for one n-node stencil centered at xj)
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I φ is Gaussian RBF centered at xk, k = 1, ..., n
I L is some differential operator (i.e., ∂

∂λ, ∂
∂θ, ∇

k, etc.); form multiple RHS system for efficiency
I Repeat this n × n system solve for all N stencils.

Test Case 1: Vortex Roll-up of a Fluid (∂h∂t + ω(θ)cos(θ)
cos θ

∂h
∂λ = 0)

(a) Initial Condition (b) Computed Solution (c) Relative Error

Figure 2: Vortex roll-up solution at time t = 10 using RBF-FD with N = 10, 201 and n = 50 point
stencil. Normalized `2 error of solution at t = 10 is 1.25(10−2)

Test Case 2: Advection of a C 1 Cosine Bell (∂h∂t + sin θ cosλ
cos θ

∂h
∂λ − sinλ∂h∂θ = 0)

(a) Computed Solution (b) Absolute Error

Figure 3: Cosine bell solution after 10 full revolutions over north and south poles with N = 10201
nodes and stencil size n = 101. The solid body is intact with the majority of error where the
discontinuity in the derivative appears.

Stability

I RBF-FD Differentiation Matrices (DM) contain unstable eigenvalues for both test cases
I Adding a small amount of Hyperviscosity damps high modes and stabilizes DM

du

dt
= −Du + Hu where H = γcN
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Figure 4: Eigenvalues of Cosine Bell DM before (left) and after (right) hyperviscosity filter is added.

Convergence
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Figure 5: Convergence of C∞ Vortex Roll-up
on Maximum Determinant node sets [2]
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Figure 6: Discontinuity in the derivative of
C 1 Cosine Bell limits convergence

Parallelization

I The geometry is partitioned into overlapping
subdomains with one partition assigned to
each CPU

I One GPU is associated with every CPU
I Stencils may span one or more partitions
I The Message Passing Interface (MPI) enables

synchronization of solution/intermediate
values between steps of RK4

I When computing on multiple GPUs,
synchronization involves GPU→CPU transfer,
CPU→CPU communication via MPI, and
finally CPU→GPU transfer.

Figure 7: Partitioning of N = 10, 201 nodes to
span four processors with stencil size n = 31.
Alternating representations (node points and
interpolated surfaces) illustrate regions of
partitions synchronized via MPI.

GPU Kernels (4th Order Runge Kutta (RK4) in OpenCL)

1. Kernel to evaluate derivatives on right hand side of PDE (called 4x per time-step)

2. Kernel for advancing PDE in time (called 1x per time-step)
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(b) One Warp Per Stencil

Figure 8: Two kernels are tested for derivative evaluation. The first dedicates one thread to
compute the sparse vector dot product for each stencil. In the second, a full warp (32 threads)
collaborate to perform the same task.

Performance: Multi-CPU, Multi-GPU and Various Stencil Sizes
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(a) Vortex Roll-up By

Thread
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(b) Vortex Roll-up By Warp
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(c) Cosine Bell Advection

By Thread
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(d) Cosine Bell Advection

By Warp

Figure 9: Speedup (tserial/tparallel) achieved on a
single GPU with respect to a single CPU for the
two test cases, both GPU kernels, and various
stencil sizes (n).
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(a) Vortex Roll-up with No

GPUs
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(b) Vortex Roll-up with

GPUs
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(c) Cosine Bell with No

GPUs
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(d) Cosine Bell with GPUs

Figure 10: Multi-CPU (a, c) and multi-GPU (b,
d) scaling for the fixed problem size
N = 27, 556. Speedup is measured relative to
the serial time on a single CPU.
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