Parallel Algorithms for RBF-FD Solutions to PDEs on the Sphere

Evan F. Bollig ${ }^{1}$ Gordon Erlebacher ${ }^{1}$ Natasha Flyer²

${ }^{1}$ Dept. of Scientific Computing, Florida State University

## Introduction



Figure 1: A 75 node RBF-FD stencil with blue (negative) and red (positive) differentiation weights to approximate advective operator at the square.

We introduce a multi-CPU/GPU implementation for the solution of hyperbolic PDEs on a sphere using Radial Basis Functions (RBF). This work targets the NSF funded Keeneland GPU cluster, which-like many of the latest HPC systems around the world-offers significantly more GPU accelerators ( 360 units) than CPU counterparts ( 240 units). We present our parallelization strategy, algorithms and data-structures used to span computation across the system.

RBF-FD Weights (for one $n$-node stencil centered at $x_{j}$ )

$$
\left(\begin{array}{cccc}
\phi\left(\epsilon\left\|\mathbf{x}_{1}-\mathbf{x}_{1}\right\|\right) \phi\left(\epsilon\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|\right) & \cdots \phi\left(\epsilon\left\|\mathbf{x}_{1}-\mathbf{x}_{n}\right\|\right) & 1 \\
\phi\left(\epsilon\left\|\mathbf{x}_{2}-\mathbf{x}_{1}\right\|\right) & \phi\left(\epsilon\left\|\mathbf{x}_{2}-\mathbf{x}_{2}\right\|\right) & \cdots \phi\left(\epsilon\left\|\mathbf{x}_{2}-\mathbf{x}_{n}\right\|\right) & 1 \\
\vdots & \cdots & \cdots & \vdots \\
\phi\left(\epsilon\left\|\mathbf{x}_{n}-\mathbf{x}_{1}\right\|\right) \phi\left(\epsilon\left\|\mathbf{x}_{n}-\mathbf{x}_{2}\right\|\right) & \cdots \phi\left(\epsilon\left\|\mathbf{x}_{n}-\mathbf{x}_{n}\right\|\right) & 1 \\
1 & 1 & \cdots & 1
\end{array}\right)\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n} \\
c_{n+1}
\end{array}\right]=\left[\begin{array}{c}
\mathcal{L} \phi\left(\epsilon\left\|\mathbf{x}-\mathbf{x}_{1}\right\|\right)| | \mathbf{x}_{x=\mathbf{x}_{j}} \\
\mathcal{L} \phi\left(\epsilon\left\|\mathbf{x}-\mathbf{x}_{2}\right\|\right)| | \mathbf{x}_{\mathrm{x}=\mathbf{x}_{j}} \\
\vdots \\
\mathcal{L} \phi\left(\epsilon\left\|\mathbf{x}-\mathbf{x}_{n}\right\|\right) \mid \mathbf{x}_{\mathbf{x}=\mathbf{x}_{j}} \\
0
\end{array}\right]
$$

$\phi$ is Gaussian RBF centered at $x_{k}, k=1, \ldots, n$
$\mathcal{L}$ is some differential operator (i.e., $\frac{\partial}{\partial \lambda}, \frac{\partial}{\partial \theta}, \nabla^{k}$, etc.); form multiple RHS system for efficiency - Repeat this $n \times n$ system solve for all $N$ stencils

Test Case 1: Vortex Roll-up of a Fluid $\left(\frac{\partial h}{\partial t}+\frac{\left.\omega(\theta) \cos (\theta) \frac{\partial h}{\partial \lambda}=0\right) ~}{\cos \theta}=0\right.$


Figure 2: Vortex roll-up solution at time $t=10$ using RBF-FD with $N=10,201$ and $n=50$ point stencil. Normalized $\ell_{2}$ error of solution at $t=10$ is $1.25\left(10^{-2}\right)$

Test Case 2: Advection of a $C^{1}$ Cosine Bell $\left(\frac{\partial h}{\partial t}+\frac{\left.\sin \theta \cos \lambda \frac{\partial h}{\cos \theta}-\sin \lambda \frac{\partial h}{\partial \theta}=0\right) ~() ~}{\text { 2 }}\right.$ )


Figure 3: Cosine bell solution after 10 full revolutions over north and south poles with $N=10201$ nodes and stencil size $n=101$. The solid body is intact with the majority of error where the discontinuity in the derivative appears.

## Stability

- RBF-FD Differentiation Matrices (DM) contain unstable eigenvalues for both test cases
- Adding a small amount of Hyperviscosity damps high modes and stabilizes DM

$$
\frac{d u}{d t}=-D u+H u \text { where } H=\gamma_{c} N^{-k} \Delta^{k}
$$



Figure 4: Eigenvalues of Cosine Bell DM before (left) and after (right) hyperviscosity filter is added.

## Convergence



Figure 5: Convergence of $C^{\infty}$ Vortex Roll-up Figure 6: Discontinuity in the derivative of on Maximum Determinant node sets [2] $\quad C^{1}$ Cosine Bell limits convergence

## Parallelization

- The geometry is partitioned into overlapping subdomains with one partition assigned to each CPU
- One GPU is associated with every CPU
- Stencils may span one or more partitions - The Message Passing Interface (MPI) enables synchronization of solution/intermediate values between steps of RK4
- When computing on multiple GPUs, synchronization involves GPU $\rightarrow$ CPU transfer, $\mathrm{CPU} \rightarrow \mathrm{CPU}$ communication via MPI, and finally $\mathrm{CPU} \rightarrow \mathrm{GPU}$ transfer.


Figure 7: Partitioning of $N=10,201$ nodes to span four processors with stencil size $n=31$. Alternating representations (node points and interpolated surfaces) illustrate regions of partitions synchronized via MPI.

## GPU Kernels (4th Order Runge Kutta (RK4) in OpenCL)

1. Kernel to evaluate derivatives on right hand side of PDE (called $4 x$ per time-step) 2. Kernel for advancing PDE in time (called 1 x per time-step)

(a) One Thread Per Stencil

(b) One Warp Per Stencil

Figure 8: Two kernels are tested for derivative evaluation. The first dedicates one thread to compute the sparse vector dot product for each stencil. In the second, a full warp (32 threads) collaborate to perform the same task.

Performance: Multi-CPU, Multi-GPU and Various Stencil Sizes


## Acknowledgements

This work is supported by NSF awards DMS-\#0934331 (FSU), DMS-\#0934317 (NCAR) and ATM-\#0602100 (NCAR), and additional details on can be found in [1].
[1] Evan F. Bollig, Natasha Flyer, and Gordon Erlebacher. Using Radial Basis Function Finite Difference (RBF-FD) for PDE Solutions on the GPU. submitted to Elsevier J. Comput. Phys., 2011.
[2] lan H. Sloan and Robert S. Womersley. Extremal systems of points and numerical integration on the sphere. Adv. Comput. Math, 21:107-125, 2003.

