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Abstract At any one time, approximately 50% of the earth is covered with clouds. However, currently operational data assimilation schemes – i.e.
algorithms seeking to maximize utilization of meteorological observations in a numerical weather prediction system – throw away satellite observations
that are suspected to be cloud-contaminated. Because much of the severe weather of human interest – such as hurricanes – occurs in the presence of
clouds, this is a crucial area of research.

There are several difficulties associated with assimilating cloudy radiances. One such issue is a jump in the derivative of the operator modeling the
radiation transfer that a satellite experiences. This creates issues in the data assimilation as current algorithms are based on the assumption of smoothness
in this observation operator.

This poster presents preliminary work on assimilating observations that have a non-smooth observation operator. This work is done using a two-
dimensional limited-area shallow-water equation model and its adjoint. We test the performance of the “Four-Dimensional” Variational Approach
(4D-Var, here: two dimensions plus time) compared to that of the Maximum Likelihood Ensemble Filter (MLEF), a hybrid ensemble/variational method.

We also investigate minimization of the data assimilation cost functional using the Limited Memory BFGS (L-BFGS) quasi-Newton algorithm originally
intended for smooth optimization, the non-linear conjugate gradient method also originally intended for smooth optimization, and the Limited-Memory
Bundle Method algorithm (LMBM) specifically designed to address large-scale non-smooth minimization problems. Numerical results obtained show
that both the CG, L-BFGS and LMBM algorithms give excellent results when the non-smoothness is not extreme. However, CG and L-BFGS both fail
for non-smooth functions with large Lipschitz constants. The LMBM method is found to be suitable choice for large-scale non-smooth optimization.

———————————————————————————————————————————————————————————————————————————————————————————–

Shallow water equations
For our tests, we use the limited area shallow water equation model:

ut = −uux − vuy + fv − φx
vt = −uvx − vvy + fv − φy
φt = −uφx − vφy

(1)

where u and v are the two components of the horizontal velocity in m/s, φ is the geopotential field in
m2/s2, and f is the Coriolis factor in s−1.

The initial conditions used were a β plane of length L and depth D, with the height of the free surface,
in meters, given by

h(x, y) = h0 + h1 tanh
(

9(y−y0)
2D

)
+ h2 sech2

(
9(y−y0)

2D

)
sin
(

2πx
L

) (2)

where h0 = 2000 m, h1 = −220 m, h2 = 133 m, L = 6000 km, D = 4400 km, and y0 = D/2.

The initial conditions are derived through geostrophic balance. The model is discretized using a second-
order quadratic conservation advective scheme. The space and time increments are ∆x = 300 km,
∆y = 220 km, and ∆t = 600 s, respectively, resulting in a mesh comprising 21 × 21 spatial grid points.
The boundary conditions are a rigid wall in the north-south direction and periodic flow in the east-west
directions. The model is integrated for 80 time steps, i.e. a window of assimilation of 13 hours 20 minutes
in model time.
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Figure 1: φ contours
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Figure 2: u and v wind-field

Observation operator
We create non-smooth observation operators that highlight the performance of the non-smooth data as-
similation techniques.
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Figure 3: H1(u) = u3/25 if u <
−5, u2/5 if u ≥ 5, u else
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Figure 4: H2(v) = log(v + δ) if v ≥ 0, log(−vi +
δ) if vi < 0
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Figure 5: H3(φ) = φ if φ < 20000, φ2
i/20000 else

4DVar data assimilation
Data assimilation is used to integrate observations
with the model prediction to come up with an op-
timal estimate of the state. This is accomplished
by minimizing a the constrained cost function:

J(x) = 1
2 δb(x)T B−1δb(x)

+ 1
2

∑NT
k=0 δyk(x)T R−1δyk(x)

(3)

where:

• x is the control variable, the initial model state

• xk is the model state at time k with the strong constraint xk =M(xk−1), x0 = x

•M is the (generally non-linear) model operator

• δb(x) = x− xb is difference between the background prediction xb (from a previous analysis cycle)

• δyk(x) = yk −H(xk) is difference between the observation yk at time k andH(xk)

•H is the (generally non-smooth and non-linear) observation operator

•B is the background covariance matrix, R is the observation covariance matrix

•NT is the number of observation batches (time steps that have observations)

Maximum Likelihood Ensemble Filter
MLEF is a hybrid ensemble/variational filter that directly minimizes the likelihood of the posterior pdf
directly in a manner reminiscent of 3DVar (4DVar without the time dependence). It takes several best
practices from other ensemble filter methods, including:

•Using reduced-rank square-root forecast (P̂1/2
i ) and analysis (P1/2

i ) error covariances

•Minimizing the maximum likelihood problem

J(x) =
1

2
δb(x)T B−1δb(x) +

1

2
δyk(x)T R−1δyk(x) (4)

– here the definitions are the same as in 4DVar, but the observations are only for the current timestep
– uses conjugate gradient to solve the optimization problem

• Sophisticated Hessian preconditioning

• Calculates the square-root analysis error covariance similar to Ensemble Transform Kalman Filter
(ETKF)

•Does not required the Jacobian or adjoint ofM orH

Non-smooth Optimization
A non-smooth optimization (NSO) problem is one where the function or its derivatives have discontinu-
ities. Two main classes of optimization algorithms, bundle and sub-gradient methods, show significant
promise. In this work, we investigate using CG, L-BFGS and LMBM with sub-gradients.
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Figure 6: MLEF CG, RMSE for φ
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Figure 7: MLEF LMBM, RMSE for φ

0 20 40 60 80
10

0

10
2

Time step

R
o
o
t−

M
e
a
n
−

S
q
u
a
re

d
 E

rr
o
r

 

 

Background

δ = 1d−3

δ = 1d−4

δ = 1d−5

δ = 1d−6

Observation

Figure 8: 4D-Var L-BFGS, RMSE for φ
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Figure 9: 4D-Var LMBM, RMSE for φ

Figure 10: Sub-derivative example. Any line
that remains below the function in the neigh-
borhood of a non-smooth point x0 can be con-
sidered a sub-derivative. A sub-gradient is the
vector of sub-derivatives with respect to each
independent variable. At smooth points, there
is only one sub-gradient, and it corresponds to
the traditional gradient.

Conclusions and Future Work
We tested the impact of non-differentiable observa-
tion operators on the data assimilation of a limited-
area shallow water equations model. By simply re-
placing the gradient of the cost function with the sub-
gradient (see figure 10), both 4D-Var and MLEF are
able to assimilate the non-smooth observations to vary-
ing degrees of success with a smooth optimization al-
gorithm, especially when the non-smoothness is not
severe. However, both methodologies encounter dif-
ficulties with the more sharply non-smooth experi-
ments. This difficulty can be remedied in both MLEF
and 4D-Var with the use of an algorithm specifically
designed for non-smooth optimization, which in this
research was the limited memory bundle algorithm
(LMBM).

The next steps are to apply these results, which appear
encouraging, to the problem of all-sky satellite radi-
ance observation assimilation. Modeling and simu-
lating satellite radiative transfer with clouds is a chal-
lenge. However, if successful in this application, it
is anticipated that non-smooth optimization methods
may eventually take hold in an operational setting.


