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At any one time, approximately 50% of the earth is covered with clouds. However, currently operational data assimilation schemes — 1.¢.
algorithms seeking to maximize utilization of meteorological observations in a numerical weather prediction system — throw away satellite observations
that are suspected to be cloud-contaminated. Because much of the severe weather of human interest — such as hurricanes — occurs in the presence of

There are several difficulties associated with assimilating cloudy radiances. One such issue 1s a jump 1n the derivative of the operator modeling the
radiation transfer that a satellite experiences. This creates 1ssues 1n the data assimilation as current algorithms are based on the assumption of smoothness

This poster presents preliminary work on assimilating observations that have a non-smooth observation operator. This work 1s done using a two-
dimensional limited-area shallow-water equation model and its adjoint. We test the performance of the “Four-Dimensional” Variational Approach
(4D-Var, here: two dimensions plus time) compared to that of the Maximum Likelihood Ensemble Filter (MLEF), a hybrid ensemble/variational method.

We also investigate minimization of the data assimilation cost functional using the Limited Memory BFGS (L-BFGS) quasi-Newton algorithm originally
intended for smooth optimization, the non-linear conjugate gradient method also originally intended for smooth optimization, and the Limited-Memory
Bundle Method algorithm (LMBM) specifically designed to address large-scale non-smooth minimization problems. Numerical results obtained show
that both the CG, L-BFGS and LMBM algorithms give excellent results when the non-smoothness 1s not extreme. However, CG and L-BFGS both fail
for non-smooth functions with large Lipschitz constants. The LMBM method is found to be suitable choice for large-scale non-smooth optimization.

Shallow water equations

For our tests, we use the limited area shallow water equation model:
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where © and v are the two components of the horizontal velocity in m/s, ¢ i1s the geopotential field in

m?/s?, and f is the Coriolis factor in s~

The initial conditions used were a (5 plane of length L and depth D, with the height of the free surface,
In meters, given by
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where hg = 2000 m, h; = —220 m, hg = 133 m, L = 6000 km, D = 4400 km, and y5 = D/2.

h(z,y) = hg+ hytanh (9<y—y0> 2

The 1nitial conditions are derived through geostrophic balance. The model 1s discretized using a second-
order quadratic conservation advective scheme. The space and time increments are Ax = 300 km,
Ay = 220 km, and At = 600 s, respectively, resulting in a mesh comprising 21 x 21 spatial grid points.
The boundary conditions are a rigid wall in the north-south direction and periodic flow in the east-west
directions. The model is integrated for 80 time steps, 1.e. a window of assimilation of 13 hours 20 minutes
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Figure 1: ¢ contours Figure 2: u and v wind-field

Observation operator

We create non-smooth observation operators that highlight the performance of the non-smooth data as-
similation techniques.
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4DVar data assimilation
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Data assimilation is used to integrate observations
with the model prediction to come up with an op- 05|
timal estimate of the state. This 1s accomplished @m |
by minimizing a the constrained cost function: T
J(x) = 3 ,(x) " B71(x) ) 15
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e X 18 the control variable, the initial model state Figure 5: H3(¢) = ¢ if ¢ < 20000, @? /20000 else

e X;. is the model state at time k with the strong constraint x;. = M(x;._1), Xg = X

e M is the (generally non-linear) model operator

e ;(x) = x — Xy 1s difference between the background prediction x;, (from a previous analysis cycle)
® by, (x) =y, — H(x}) is difference between the observation y;, at time k and H(xz)

e H 1s the (generally non-smooth and non-linear) observation operator

e B is the background covariance matrix, R 1s the observation covariance matrix

e /V'I'" 1s the number of observation batches (time steps that have observations)

Maximum Likelihood Ensemble Filter

MLEF i1s a hybrid ensemble/variational filter that directly minimizes the likelihood of the posterior pdf
directly in a manner reminiscent of 3DVar (4DVar without the time dependence). It takes several best
practices from other ensemble filter methods, including:

. ~1/2 . 1/2 :
e Using reduced-rank square-root forecast (P Z-/ ) and analysis (P / ) error covariances

e Minimizing the maximum likelihood problem
1 _ 1 _
J(x) = 5 0p(x) P BTH0y(x) + 5 0y, () T Ry () 4)

— here the definitions are the same as in 4DVar, but the observations are only for the current timestep
— uses conjugate gradient to solve the optimization problem

e Sophisticated Hessian preconditioning

e Calculates the square-root analysis error covariance similar to Ensemble Transform Kalman Filter
(ETKF)

¢ Does not required the Jacobian or adjoint of M or H

Non-smooth Optimization

A non-smooth optimization (NSO) problem 1s one where the function or its derivatives have discontinu-
ities. Two main classes of optimization algorithms, bundle and sub-gradient methods, show significant
promise. In this work, we investigate using CG, L-BFGS and LMBM with sub-gradients.
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Figure 6: MLEF CG, RMSE for ¢ Figure 7: MLEF LMBM, RMSE for ¢
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Figure 8: 4D-Var L-BFGS, RMSE for ¢ Figure 9: 4D-Var LMBM, RMSE for ¢

Conclusions and Future Work

We tested the impact of non-differentiable observa-
tion operators on the data assimilation of a limited-
area shallow water equations model. By simply re-
placing the gradient of the cost function with the sub-
gradient (see figure 10), both 4D-Var and MLEF are
able to assimilate the non-smooth observations to vary-
ing degrees of success with a smooth optimization al-
gorithm, especially when the non-smoothness i1s not
severe. However, both methodologies encounter dif-
ficulties with the more sharply non-smooth experi-
ments. This difficulty can be remedied in both MLEF
and 4D-Var with the use of an algorithm specifically
designed for non-smooth optimization, which 1n this

research was the limited memory bundle algorithm
(LMBM).
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Figure 10: Sub-derivative example. Any line
that remains below the function in the neigh-
borhood of a non-smooth point x( can be con-
sidered a sub-derivative. A sub-gradient is the
vector of sub-derivatives with respect to each
independent variable. At smooth points, there
1s only one sub-gradient, and it corresponds to
the traditional gradient.

The next steps are to apply these results, which appear
encouraging, to the problem of all-sky satellite radi-
ance observation assimilation. Modeling and simu-
lating satellite radiative transfer with clouds 1s a chal-
lenge. However, if successful in this application, it
1s anticipated that non-smooth optimization methods
may eventually take hold 1n an operational setting.



